1
|
Daeschler SC, Pennekamp A, Tsilingiris D, Bursacovschi C, Aman M, Eisa A, Boecker A, Klimitz F, Stolle A, Kopf S, Schwarz D, Bendszus M, Kneser U, Kender Z, Szendroedi J, Harhaus L. Effect of Surgical Release of Entrapped Peripheral Nerves in Sensorimotor Diabetic Neuropathy on Pain and Sensory Dysfunction-Study Protocol of a Prospective, Controlled Clinical Trial. J Pers Med 2023; 13:jpm13020348. [PMID: 36836582 PMCID: PMC9962788 DOI: 10.3390/jpm13020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Nerve entrapment has been hypothesized to contribute to the multicausal etiology of axonopathy in sensorimotor diabetic neuropathy. Targeted surgical decompression reduces external strain on the affected nerve and, therefore, may alleviate symptoms, including pain and sensory dysfunction. However, its therapeutic value in this cohort remains unclear. AIM Quantifying the treatment effect of targeted lower extremity nerve decompression in patients with preexisting painful sensorimotor diabetic neuropathy and nerve entrapment on pain intensity, sensory function, motor function, and neural signal conduction. STUDY DESIGN This prospective, controlled trial studies 40 patients suffering from bilateral therapy-refractory, painful (n = 20, visual analogue scale, VAS ≥ 5) or painless (n = 20, VAS = 0) sensorimotor diabetic neuropathy with clinical and/or radiologic signs of focal lower extremity nerve compression who underwent unilateral surgical nerve decompression of the common peroneal and the tibial nerve. Tissue biopsies will be analyzed to explore perineural tissue remodeling in correlation with intraoperatively measured nerve compression pressure. Effect size on symptoms including pain intensity, light touch threshold, static and moving two-point discrimination, target muscle force, and nerve conduction velocity will be quantified 3, 6, and 12 months postoperatively, and compared (1) to the preoperative values and (2) to the contralateral lower extremity that continues non-operative management. CLINICAL SIGNIFICANCE Targeted surgical release may alleviate mechanical strain on entrapped lower extremity nerves and thereby potentially improve pain and sensory dysfunction in a subset of patients suffering from diabetic neuropathy. This trial aims to shed light on these patients that potentially benefit from screening for lower extremity nerve entrapment, as typical symptoms of entrapment might be erroneously attributed to neuropathy only, thereby preventing adequate treatment.
Collapse
Affiliation(s)
- Simeon C Daeschler
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG-Trauma Center Ludwigshafen/Rhine, Department of Hand and Plastic Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Anna Pennekamp
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG-Trauma Center Ludwigshafen/Rhine, Department of Hand and Plastic Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Dimitrios Tsilingiris
- Department of Internal Medicine 1 and Clinical Chemistry, University Hospital of Heidelberg, 69120 Heidelberg, Germany
| | - Catalina Bursacovschi
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG-Trauma Center Ludwigshafen/Rhine, Department of Hand and Plastic Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Martin Aman
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG-Trauma Center Ludwigshafen/Rhine, Department of Hand and Plastic Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Amr Eisa
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG-Trauma Center Ludwigshafen/Rhine, Department of Hand and Plastic Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Arne Boecker
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG-Trauma Center Ludwigshafen/Rhine, Department of Hand and Plastic Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Felix Klimitz
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG-Trauma Center Ludwigshafen/Rhine, Department of Hand and Plastic Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Annette Stolle
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG-Trauma Center Ludwigshafen/Rhine, Department of Hand and Plastic Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Stefan Kopf
- Department of Internal Medicine 1 and Clinical Chemistry, University Hospital of Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG-Trauma Center Ludwigshafen/Rhine, Department of Hand and Plastic Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Zoltan Kender
- Department of Internal Medicine 1 and Clinical Chemistry, University Hospital of Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Julia Szendroedi
- Department of Internal Medicine 1 and Clinical Chemistry, University Hospital of Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Joint Heidelberg-ICD Translational Diabetes Program, Helmholtz-Zentrum, 85764 Neuherberg, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG-Trauma Center Ludwigshafen/Rhine, Department of Hand and Plastic Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
- Department of Handsurgery, Peripheral Nerve Surgery and Rehabilitation, BG Trauma Hospital, 67071 Ludwigshafen, Germany
- Department of Orthopedic Surgery, Section Upper Extremity, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Daeschler SC, Zhang J, Gordon T, Borschel GH, Feinberg K. Foretinib mitigates cutaneous nerve fiber loss in experimental diabetic neuropathy. Sci Rep 2022; 12:8444. [PMID: 35589940 PMCID: PMC9120083 DOI: 10.1038/s41598-022-12455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Diabetes is by far, the most common cause of neuropathy, inducing neurodegeneration of terminal sensory nerve fibers associated with loss of sensation, paresthesia, and persistent pain. Foretinib prevents die-back degeneration in cultured sensory and sympathetic neurons by rescuing mitochondrial activity and has been proven safe in prospective clinical trials. Here we aimed at investigating a potential neuroprotective effect of Foretinib in experimental diabetic neuropathy. A mouse model of streptozotocin induced diabetes was used that expresses yellow fluorescent protein (YFP) in peripheral nerve fibers under the thy-1 promoter. Streptozotocin-injected mice developed a stable diabetic state (blood glucose > 270 mg/dl), with a significant reduction of intraepidermal nerve fiber density by 25% at 5 weeks compared to the non-diabetic controls. When diabetic mice were treated with Foretinib, a significantly greater volume of the cutaneous nerve fibers (67.3%) in the plantar skin was preserved compared to vehicle treated (37.8%) and non-treated (44.9%) diabetic mice while proximal nerve fiber morphology was not affected. Our results indicate a neuroprotective effect of Foretinib on cutaneous nerve fibers in experimental diabetic neuropathy. As Foretinib treated mice showed greater weight loss compared to vehicle treated controls, future studies may define more sustainable treatment regimen and thereby may allow patients to take advantage of this neuroprotective drug in chronic neurodegenerative diseases like diabetic neuropathy.
Collapse
Affiliation(s)
- Simeon C Daeschler
- Neuroscience and Mental Health Program, SickKids Research Institute, 686 Bay St, Toronto, ON, M5G 0A4, Canada.
| | - Jennifer Zhang
- Neuroscience and Mental Health Program, SickKids Research Institute, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tessa Gordon
- Neuroscience and Mental Health Program, SickKids Research Institute, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gregory H Borschel
- Neuroscience and Mental Health Program, SickKids Research Institute, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Ophthalmology, Indiana University School of Medicine, IN, Indianapolis, USA
| | - Konstantin Feinberg
- Neuroscience and Mental Health Program, SickKids Research Institute, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Zhou T, Lee A, Lo ACY, Kwok JSWJ. Diabetic Corneal Neuropathy: Pathogenic Mechanisms and Therapeutic Strategies. Front Pharmacol 2022; 13:816062. [PMID: 35281903 PMCID: PMC8905431 DOI: 10.3389/fphar.2022.816062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus (DM) is a major global public health problem that can cause complications such as diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. Besides the reporting of reduction in corneal nerve density and decrease in corneal sensitivity in diabetic patients, there may be a subsequent result in delayed corneal wound healing and increased corneal infections. Despite being a potential cause of blindness, these corneal nerve changes have not gained enough attention. It has been proposed that corneal nerve changes may be an indicator for diabetic neuropathy, which can provide a window for early diagnosis and treatment. In this review, the authors aimed to give an overview of the relationship between corneal nerves and diabetic neuropathy as well as the underlying pathophysiological mechanisms of corneal nerve fiber changes caused by DM for improved prediction and prevention of diabetic neuropathy. In addition, the authors summarized current and novel therapeutic methods for delayed corneal wound healing, nerve protection and regeneration in the diabetic cornea.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Allie Lee
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jeremy Sze Wai John Kwok
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
4
|
The Role of Neurotropic B Vitamins in Nerve Regeneration. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9968228. [PMID: 34337067 PMCID: PMC8294980 DOI: 10.1155/2021/9968228] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022]
Abstract
Damage and regeneration naturally occur in the peripheral nervous system. The neurotropic B vitamins thiamine (B1), pyridoxine (B6), and cobalamin (B12) are key players, which maintain the neuronal viability in different ways. Firstly, they constantly protect nerves against damaging environmental influences. While vitamin B1 acts as a site-directed antioxidant, vitamin B6 balances nerve metabolism, and vitamin B12 maintains myelin sheaths. However, nerve injury occurs at times, because of an imbalance between protective factors and accumulating stress and noxae. This will result in the so-called Wallerian degeneration process. The presence of vitamins B1, B6, and B12 paves the way out to the following important regeneration by supporting the development of new cell structures. Furthermore, vitamin B1 facilitates the usage of carbohydrates for energy production, whereas vitamin B12 promotes nerve cell survival and remyelination. Absence of these vitamins will favor permanent nerve degeneration and pain, eventually leading to peripheral neuropathy.
Collapse
|
5
|
Walckling M, Waterstradt R, Baltrusch S. Collagen Remodeling Plays a Pivotal Role in Endothelial Corneal Dystrophies. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 33259606 PMCID: PMC7718819 DOI: 10.1167/iovs.61.14.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To elucidate the collagen structure in the Descemet membrane (DM) of the human cornea and to characterize its rearrangement in patients with endothelial corneal dystrophies. Methods Corneas from nine human donors and dystrophic DMs removed from 16 affected eyes of 13 patients by endothelial keratoplasty (DMEK) were investigated using a correlative RT-qPCR and label-free two-channel multiphoton microscopy (MPM) setup. Although collagen formation was visualized by second harmonic generation, the cellular structure was determined by autofluorescence. Results The DM of the human donor cornea was characterized by a consistent pattern of fine hexagonal collagen structures that form a supportive scaffold for the endothelial cells. Accordingly, network-forming collagens (8A1 and 8A2) but less fibrillar collagens (only 1A2) were expressed. DMEK resulted in significant (P < 0.0001) improvement of best-corrected visual acuity. In the removed dystrophic DMs, MPM analyses revealed collagen rearrangement in addition to loss of endothelial cells and the development of guttae. MPM analyses of the whole patient's DM demonstrated this collagen remodeling in its entirety and facilitated correlation to Scheimpflug corneal tomography. In most DMs a unique honeycomb collagen network was identified, with distinct bundles surrounding the guttae and correlating with expression of fibrillar collagens (1A1). Conversely, some DMs showed either reduced collagen on MPM and RT-qPCR analysis or diffuse thickening and storage of extracellular matrix. Conclusions The collagen structure of the DM and its adaptive remodeling in endothelial corneal dystrophies has been characterized for the first time here and will facilitate individual therapeutic approaches.
Collapse
Affiliation(s)
- Marcus Walckling
- Department of Ophthalmology, University Medicine Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Petropoulos IN, Ponirakis G, Ferdousi M, Azmi S, Kalteniece A, Khan A, Gad H, Bashir B, Marshall A, Boulton AJM, Soran H, Malik RA. Corneal Confocal Microscopy: A Biomarker for Diabetic Peripheral Neuropathy. Clin Ther 2021; 43:1457-1475. [PMID: 33965237 DOI: 10.1016/j.clinthera.2021.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Diagnosing early diabetic peripheral neuropathy remains a challenge due to deficiencies in currently advocated end points. The cornea is densely innervated with small sensory fibers, which are structurally and functionally comparable to intraepidermal nerve fibers. Corneal confocal microscopy is a method for rapid, noninvasive scanning of the living cornea with high resolution and magnification. METHODS This narrative review presents the framework for the development of biomarkers and the literature on the use and adoption of corneal confocal microscopy as an objective, diagnostic biomarker in experimental and clinical studies of diabetic peripheral neuropathy. A search was performed on PubMed and Google Scholar based on the terms "corneal confocal microscopy," "diabetic neuropathy," "corneal sensitivity," and "clinical trials." FINDINGS A substantial body of evidence underpins the thesis that corneal nerve loss predicts incident neuropathy and progresses with the severity of diabetic peripheral neuropathy. Corneal confocal microscopy also identifies early corneal nerve regeneration, strongly arguing for its inclusion as a surrogate end point in clinical trials of disease-modifying therapies. IMPLICATIONS There are sufficient diagnostic and prospective validation studies to fulfill the US Food and Drug Administration criteria for a biomarker to support the inclusion of corneal confocal microscopy as a primary end point in clinical trials of disease-modifying therapies in diabetic neuropathy.
Collapse
Affiliation(s)
| | | | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Shazli Azmi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Adnan Khan
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hoda Gad
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Bilal Bashir
- Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Clinical Neurophysiology, The Walton Centre, Liverpool, United Kingdom; Division of Neuroscience and Experimental Psychology, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew J M Boulton
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Rayaz A Malik
- Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar; Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
7
|
Tuck H, Park M, Carnell M, Machet J, Richardson A, Jukic M, Di Girolamo N. Neuronal-epithelial cell alignment: A determinant of health and disease status of the cornea. Ocul Surf 2021; 21:257-270. [PMID: 33766739 DOI: 10.1016/j.jtos.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE How sensory neurons and epithelial cells interact with one another, and whether this association can be considered an indicator of health or disease is yet to be elucidated. METHODS Herein, we used the cornea, Confetti mice, a novel image segmentation algorithm for intraepithelial corneal nerves which was compared to and validated against several other analytical platforms, and three mouse models to delineate this paradigm. For aging, eyes were collected from 2 to 52 week-old normal C57BL/6 mice (n ≥ 4/time-point). For wound-healing and limbal stem cell deficiency, 7 week-old mice received a limbal-sparing or limbal-to-limbal epithelial debridement to their right cornea, respectively. Eyes were collected 2-16 weeks post-injury (n=4/group/time-point), corneas procured, immunolabelled with βIII-tubulin, flat-mounted, imaged by scanning confocal microscopy and analyzed for nerve and epithelial-specific parameters. RESULTS Our data indicate that nerve features are dynamic during aging and their curvilinear arrangement align with corneal epithelial migratory tracks. Moderate corneal injury prompted axonal regeneration and recovery of nerve fiber features. Limbal stem cell deficient corneas displayed abnormal nerve morphology, and fibers no longer aligned with corneal epithelial migratory tracks. Mechanistically, we discovered that nerve pattern restoration relies on the number and distribution of stromal-epithelial nerve penetration sites. CONCLUSIONS Microstructural changes to innervation may explain corneal complications related to aging and/or disease and facilitate development of new assays for diagnosis and/or classification of ocular and systemic diseases.
Collapse
Affiliation(s)
- Hugh Tuck
- School of Medical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Mijeong Park
- School of Medical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Michael Carnell
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Joshua Machet
- School of Medical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Alexander Richardson
- School of Medical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Marijan Jukic
- Melbourne School of Population and Global Health, Centre for Health Policy, University of Melbourne, Melbourne, Victoria, 3053, Australia
| | - Nick Di Girolamo
- School of Medical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
8
|
Yamakawa M, Santosa SM, Chawla N, Ivakhnitskaia E, Del Pino M, Giakas S, Nadel A, Bontu S, Tambe A, Guo K, Han KY, Cortina MS, Yu C, Rosenblatt MI, Chang JH, Azar DT. Transgenic models for investigating the nervous system: Currently available neurofluorescent reporters and potential neuronal markers. Biochim Biophys Acta Gen Subj 2020; 1864:129595. [PMID: 32173376 DOI: 10.1016/j.bbagen.2020.129595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Recombinant DNA technologies have enabled the development of transgenic animal models for use in studying a myriad of diseases and biological states. By placing fluorescent reporters under the direct regulation of the promoter region of specific marker proteins, these models can localize and characterize very specific cell types. One important application of transgenic species is the study of the cytoarchitecture of the nervous system. Neurofluorescent reporters can be used to study the structural patterns of nerves in the central or peripheral nervous system in vivo, as well as phenomena involving embryologic or adult neurogenesis, injury, degeneration, and recovery. Furthermore, crucial molecular factors can also be screened via the transgenic approach, which may eventually play a major role in the development of therapeutic strategies against diseases like Alzheimer's or Parkinson's. This review describes currently available reporters and their uses in the literature as well as potential neural markers that can be leveraged to create additional, robust transgenic models for future studies.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Matthew Del Pino
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sebastian Giakas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arnold Nadel
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sneha Bontu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arjun Tambe
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Maria Soledad Cortina
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
9
|
Marfurt C, Anokwute MC, Fetcko K, Mahony-Perez E, Farooq H, Ross E, Baumanis MM, Weinberg RL, McCarron ME, Mankowski JL. Comparative Anatomy of the Mammalian Corneal Subbasal Nerve Plexus. Invest Ophthalmol Vis Sci 2019; 60:4972-4984. [PMID: 31790560 PMCID: PMC6886725 DOI: 10.1167/iovs.19-28519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose The subbasal nerve plexus (SNP) is the densest and most recognizable component of the mammalian corneal innervation; however, the anatomical configuration of the SNP in most animal models remains incompletely described. The purpose of the current study is to describe in detail the SNP architecture in eight different mammals, including several popular animal models used in cornea research. Methods Corneal nerves in mouse, rat, guinea pig, rabbit, dog, macaque, domestic pig, and cow eyes were stained immunohistochemically with antiserum directed against neurotubulin. SNP architecture was documented by digital photomicrography and large-scale reconstructions, that is, corneal nerve maps, using a drawing tube attached to a light microscope. Results Subbasal nerve fibers (SNFs) in mice, rats, guinea pigs, dogs, and macaques radiated centrally from the corneoscleral limbus toward the corneal apex in a whorl-like or spiraling pattern. SNFs in rabbit and bovine corneas swept horizontally across the ocular surface in a temporal-to-nasal direction and converged on the inferonasal limbus without forming a spiral. SNFs in the pig cornea radiated centrifugally in all directions, like a starburst, from a focal point located equidistant between the corneal apex and the superior pole. Conclusions The results of the present study have demonstrated for the first time substantial interspecies differences in the architectural organization of the mammalian SNP. The physiological significance of these different patterns and the mechanisms that regulate SNP pattern formation in the mammalian cornea remain incompletely understood and warrant additional investigation.
Collapse
Affiliation(s)
- Carl Marfurt
- Indiana University School of Medicine-Northwest-Gary, Gary, Indiana, United States
| | - Miracle C. Anokwute
- Indiana University School of Medicine-Northwest-Gary, Gary, Indiana, United States
| | - Kaleigh Fetcko
- Indiana University School of Medicine-Northwest-Gary, Gary, Indiana, United States
| | - Erin Mahony-Perez
- Indiana University School of Medicine-Northwest-Gary, Gary, Indiana, United States
| | - Hassan Farooq
- Indiana University School of Medicine-Northwest-Gary, Gary, Indiana, United States
| | - Emily Ross
- Indiana University School of Medicine-Northwest-Gary, Gary, Indiana, United States
| | - Maraya M. Baumanis
- Indiana University School of Medicine-Northwest-Gary, Gary, Indiana, United States
| | - Rachel L. Weinberg
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Megan E. McCarron
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Joseph L. Mankowski
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
10
|
Jiao H, Hill LJ, Downie LE, Chinnery HR. Anterior segment optical coherence tomography: its application in clinical practice and experimental models of disease. Clin Exp Optom 2018; 102:208-217. [PMID: 30270476 DOI: 10.1111/cxo.12835] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
Optical coherence tomography (OCT) provides non-invasive, high-resolution in vivo imaging of the ocular surface and anterior segment. Over the years, it has become an essential tool for evaluating the anterior segment of the eye to monitor ocular development and ocular pathologies in both the clinical and research fields of ophthalmology and optometry. In this review, the clinical applications relating to the use of anterior segment OCT for imaging and quantifying normal and pathological features of the ocular surface, cornea, anterior chamber, and aqueous outflow system are summarised in a range of human ocular diseases. Applications of anterior segment OCT technology that have improved imaging and quantitation of ocular inflammation in experimental animal models of ocular diseases, such as anterior uveitis, microbial keratitis and glaucoma, are also described. The capacity to longitudinally evaluate anterior segment anatomical changes during development, and inflammation facilitates the understanding of the dynamics of tissue responses, and further enhances the intra-operative in vivo imaging during procedures, such as corneal transplantation and drug delivery. Future developments including in vivo ultrahigh-resolution anterior segment OCT, automated analyses of anterior segment OCT images and functional extensions of the technique, may revolutionise the clinical evaluation of anterior segment, corneal and ocular surface diseases.
Collapse
Affiliation(s)
- Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisa J Hill
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Baltrusch S. [Confocal microscope examination of the corneal nerve plexus as biomarker for systemic diseases : View from the corneal nerve plexus on diabetes mellitus disease]. Ophthalmologe 2018; 114:592-600. [PMID: 28378047 DOI: 10.1007/s00347-017-0480-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is estimated that approximately 50% of patients with diabetes mellitus suffer from polyneuropathy, which is frequently diagnosed too late. Consequently, the question arises whether imaging procedures of the eye, namely optical coherence tomography of the retina and confocal microscopy of the cornea are suitable for the diagnostics and follow-up control of neurodegenerative changes in patients with diabetes mellitus. De Clerck and co-workers could demonstrate this by a systematic review of studies. Of these studies 11 were further evaluated with respect to corneal confocal microscopy. Approximately 15 years after juvenile type 1 diabetes a reduction of corneal nerve fiber length and density was observed, although clinical signs of neuropathy were absent. At this stage an examination seems reasonable. Type 2 diabetes mellitus in the elderly is often associated with a metabolic syndrome and its time of manifestation remains unknown; therefore, corneal confocal microscopy should be implemented at the time of diagnosis of type 2 diabetes. Patients with long disease duration and significant changes in the corneal nerve plexus already showed clinical signs of polyneuropathy and often suffered from proliferative retinopathy. The accessibility of the eye for non-invasive optical modalities should be used more often in the treatment of patients with diabetes mellitus for early identification of patients at risk. Further longitudinal studies are highly necessary.
Collapse
Affiliation(s)
- S Baltrusch
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin, Universität Rostock, Schillingallee 70, 18057, Rostock, Deutschland.
| |
Collapse
|
12
|
Downie LE, Naranjo Golborne C, Chen M, Ho N, Hoac C, Liyanapathirana D, Luo C, Wu RB, Chinnery HR. Recovery of the sub-basal nerve plexus and superficial nerve terminals after corneal epithelial injury in mice. Exp Eye Res 2018; 171:92-100. [PMID: 29550279 DOI: 10.1016/j.exer.2018.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
Abstract
Our aim was to compare regeneration of the sub-basal nerve plexus (SBNP) and superficial nerve terminals (SNT) following corneal epithelial injury. We also sought to compare agreement when quantifying nerve parameters using different image analysis techniques. Anesthetized, female C57BL/6 mice received central 1-mm corneal epithelial abrasions. Four-weeks post-injury, eyes were enucleated and processed for PGP9.5 to visualize the corneal nerves using wholemount immunofluorescence staining and confocal microscopy. The percentage area of the SBNP and SNT were quantified using: ImageJ automated thresholds, ImageJ manual thresholds and manual tracings in NeuronJ. Nerve sum length was quantified using NeuronJ and Imaris. Agreement between methods was considered with Bland-Altman analyses. Four-weeks post-injury, the sum length of nerve fibers in the SBNP, but not the SNT, was reduced compared with naïve eyes. In the periphery, but not central cornea, of both naïve and injured eyes, nerve fiber lengths in the SBNP and SNT were strongly correlated. For quantifying SBNP nerve axon area, all image analysis methods were highly correlated. In the SNT, there was poor correlation between manual methods and auto-thresholding, with a trend towards underestimating nerve fiber area using auto-thresholding when higher proportions of nerve fibers were present. In conclusion, four weeks after superficial corneal injury, there is differential recovery of epithelial nerve axons; SBNP sum length is reduced, however the sum length of SNTs is similar to naïve eyes. Care should be taken when selecting image analysis methods to compare nerve parameters in different depths of the corneal epithelium due to differences in background autofluorescence.
Collapse
Affiliation(s)
- Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cecilia Naranjo Golborne
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Merry Chen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ngoc Ho
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cam Hoac
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dasun Liyanapathirana
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Carol Luo
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ruo Bing Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
13
|
Abstract
The cornea has unique features that make it a useful model for regenerative medicine studies. It is an avascular, transparent, densely innervated tissue and any pathological changes can be easily detected by slit lamp examination. Corneal sensitivity is provided by the ophthalmic branch of the trigeminal nerve that elicits protective reflexes such as blinking and tearing and exerts trophic support by releasing neuromediators and growth factors. Corneal nerves are easily evaluated for both function and morphology using standard instruments such as corneal esthesiometer and in vivo confocal microscope. All local and systemic conditions that are associated with damage of the trigeminal nerve cause the development of neurotrophic keratitis, a rare degenerative disease. Neurotrophic keratitis is characterized by impairment of corneal sensitivity associated with development of persistent epithelial defects that may progress to corneal ulcer, melting and perforation. Current neurotrophic keratitis treatments aim at supporting corneal healing and preventing progression of corneal damage. Novel compounds able to stimulate corneal nerve recovery are in advanced development stage. Among them, nerve growth factor eye drops showed to be safe and effective in stimulating corneal healing and improving corneal sensitivity in patients with neurotrophic keratitis. Neurotrophic keratitis represents an useful model to evaluate in clinical practice novel neuro-regenerative drugs.
Collapse
Affiliation(s)
- Marta Sacchetti
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|