1
|
Abstract
Embryonic diapause – a period of embryonic suspension at the blastocyst stage – is a fascinating phenomenon that occurs in over 130 species of mammals, ranging from bears and badgers to mice and marsupials. It might even occur in humans. During diapause, there is minimal cell division and greatly reduced metabolism, and development is put on hold. Yet there are no ill effects for the pregnancy when it eventually continues. Multiple factors can induce diapause, including seasonal supplies of food, temperature, photoperiod and lactation. The successful reactivation and continuation of pregnancy then requires a viable embryo, a receptive uterus and effective molecular communication between the two. But how do the blastocysts survive and remain viable during this period of time, which can be up to a year in some cases? And what are the signals that bring it out of suspended animation? Here, we provide an overview of the process of diapause and address these questions, focussing on recent molecular data.
Collapse
Affiliation(s)
- Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Victoria, Australia 3010
| | - Jane C. Fenelon
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H8L6
| |
Collapse
|
2
|
Fenelon JC, Shaw G, Frankenberg SR, Murphy BD, Renfree MB. Embryo arrest and reactivation: potential candidates controlling embryonic diapause in the tammar wallaby and mink†. Biol Reprod 2017; 96:877-894. [DOI: 10.1093/biolre/iox019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
|
3
|
Silva-Santos KC, Ferreira CR, Santos GMG, Eberlin MN, Siloto LS, Rosa CO, Marcantonio TN, Seneda MM. MALDI-MS Lipid Profiles of Oocytes Recovered by Ovum Pickup fromBos indicusand 1/2indicus×tauruswith High vs Low Oocyte Yields. Reprod Domest Anim 2014; 49:711-8. [DOI: 10.1111/rda.12352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/14/2014] [Indexed: 11/29/2022]
Affiliation(s)
- KC Silva-Santos
- Laboratório de Biotecnologia da Reprodução Animal (ReproA); DCV-CCA-Universidade Estadual de Londrina (UEL); Londrina Brazil
| | - CR Ferreira
- ThoMSon Mass Spectrometry Laboratory; Institute of Chemistry; University of Campinas; Londrina Brazil
| | - GMG Santos
- Laboratório de Biotecnologia da Reprodução Animal (ReproA); DCV-CCA-Universidade Estadual de Londrina (UEL); Londrina Brazil
| | - MN Eberlin
- ThoMSon Mass Spectrometry Laboratory; Institute of Chemistry; University of Campinas; Londrina Brazil
| | - LS Siloto
- Laboratório de Biotecnologia da Reprodução Animal (ReproA); DCV-CCA-Universidade Estadual de Londrina (UEL); Londrina Brazil
| | - CO Rosa
- Laboratório de Biotecnologia da Reprodução Animal (ReproA); DCV-CCA-Universidade Estadual de Londrina (UEL); Londrina Brazil
| | - TN Marcantonio
- Laboratório de Biotecnologia da Reprodução Animal (ReproA); DCV-CCA-Universidade Estadual de Londrina (UEL); Londrina Brazil
| | - MM Seneda
- Laboratório de Biotecnologia da Reprodução Animal (ReproA); DCV-CCA-Universidade Estadual de Londrina (UEL); Londrina Brazil
| |
Collapse
|
4
|
Fenelon JC, Shaw G, O'Neill C, Frankenberg S, Renfree MB. Paf receptor expression in the marsupial embryo and endometrium during embryonic diapause. Reproduction 2014; 147:21-31. [DOI: 10.1530/rep-13-0140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The control of reactivation from embryonic diapause in the tammar wallaby (Macropus eugenii) involves sequential activation of the corpus luteum, secretion of progesterone that stimulates endometrial secretion and subsequent changes in the uterine environment that activate the embryo. However, the precise signals between the endometrium and the blastocyst are currently unknown. In eutherians, both the phospholipid Paf and its receptor, platelet-activating factor receptor (PTAFR), are present in the embryo and the endometrium. In the tammar, endometrial Paf releasein vitroincreases around the time of the early progesterone pulse that occurs around the time of reactivation, but whether Paf can reactivate the blastocyst is unknown. We cloned and characterised the expression of PTAFR in the tammar embryo and endometrium at entry into embryonic diapause, during its maintenance and after reactivation. Tammar PTAFR sequence and protein were highly conserved with mammalian orthologues. In the endometrium, PTAFR was expressed at a constant level in the glandular epithelium across all stages and in the luminal epithelium during both diapause and reactivation. Thus, the presence of the receptor appears not to be a limiting factor for Paf actions in the endometrium. However, the low levels of PTAFR in the embryo during diapause, together with its up-regulation and subsequent internalisation at reactivation, supports earlier results suggesting that endometrial Paf could be involved in reactivation of the tammar blastocyst from embryonic diapause.
Collapse
|
5
|
Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim 2009; 44 Suppl 3:50-8. [PMID: 19660080 DOI: 10.1111/j.1439-0531.2009.01402.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos.
Collapse
Affiliation(s)
- R G Sturmey
- Department of Biology (Area 3), University of York, York, YO10 5YW, UK.
| | | | | | | |
Collapse
|
6
|
Renfree MB. Society for Reproductive Biology Founders' Lecture 2006 - life in the pouch: womb with a view. Reprod Fertil Dev 2007; 18:721-34. [PMID: 17032580 DOI: 10.1071/rd06072] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/11/2006] [Indexed: 12/15/2022] Open
Abstract
Marsupials give birth to an undeveloped altricial young after a relatively short gestation period, but have a long and sophisticated lactation with the young usually developing in a pouch. Their viviparous mode of reproduction trades placentation for lactation, exchanging the umbilical cord for the teat. The special adaptations that marsupials have developed provide us with unique insights into the evolution of all mammalian reproduction. Marsupials hold many mammalian reproductive 'records', for example they have the shortest known gestation but the longest embryonic diapause, the smallest neonate but the longest sperm. They have contributed to our knowledge of many mammalian reproductive events including embryonic diapause and development, birth behaviour, sex determination, sexual differentiation, lactation and seasonal breeding. Because marsupials have been genetically isolated from eutherian mammals for over 125 million years, sequencing of the genome of two marsupial species has made comparative genomic biology an exciting and important new area of investigation. This review will show how the study of marsupials has widened our understanding of mammalian reproduction and development, highlighting some mechanisms that are so fundamental that they are shared by all today's marsupial and eutherian mammals.
Collapse
|
7
|
Abstract
This commentary on the scientific basis of laboratory procedures in assisted conception discusses the origins of widespread discrepancies in 'standard' laboratory techniques experienced by patients and their embryos. The lack of direct evidence from clinical laboratory trials and the reasons for this will be highlighted using some examples drawn mainly from embryo culture. Inconsistencies and grey areas in the governance framework of this unique field could usefully be eliminated and attention focused on the need for a rational approach to procedural trials and pilot studies necessarily conducted in clinical laboratories. This may help progress towards a consensus on fundamental questions for which the evidence is currently lacking.
Collapse
|
8
|
Magarey GM, Mate KE. Comparison of glucose metabolism in in vivo- and in vitro-matured tammar wallaby oocytes and its relationship to developmental potential following intracytoplasmic sperm injection. Reprod Fertil Dev 2004; 16:617-23. [PMID: 15740684 DOI: 10.1071/rd03062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 04/30/2004] [Indexed: 11/23/2022] Open
Abstract
Although marsupial oocytes undergo nuclear maturation in vitro, there is, at present, no indication of their developmental potential, largely owing to the lack of in vitro fertilisation and related technologies for marsupials. Glucose metabolism has proven a useful indicator of oocyte cytoplasmic maturation and developmental potential in several eutherian species. Therefore, the aims of the present study were to compare: (1) the rates of glycolysis and glucose oxidation in immature, in vitro-matured and in vivo-matured tammar wallaby oocytes; and (2) the metabolic rate of individual oocytes with their ability to form pronuclei after intracytoplasmic sperm injection. The rates of glycolysis measured in immature (2.18 pmol oocyte–1 h–1), in vitro-matured (0.93 pmol oocyte–1 h–1) and in vivo-matured tammar wallaby oocytes (0.54 pmol oocyte–1 h–1) were within a similar range to values obtained in eutherian species. However, unlike the trend observed in eutherian oocytes, the glycolytic rate was significantly higher in immature oocytes compared with either in vivo- or in vitro-matured oocytes (P < 0.001) and significantly higher in in vitro-matured oocytes compared with in vivo-matured oocytes (P < 0.001). No relationship was identified between glucose metabolism and the developmental capacity of oocytes after intracytoplasmic sperm injection when assessed after 17–19 h. Oocytes that became fertilised (two pronuclei) or activated (one or more pronucleus) were not distinguished from others by their metabolic rates. Longer culture after intracytoplasmic sperm injection (e.g. blastocyst stage) may show oocyte glucose metabolism to be predictive of developmental potential; however, culture to the single-cell stage did not reveal any significant differences in normally developing embryos.
Collapse
Affiliation(s)
- Genevieve M Magarey
- Cooperative Research Centre for Conservation and Management of Marsupials, Macquarie University, Sydney, NSW, Australia
| | | |
Collapse
|
9
|
Abstract
This review uses nutritional markers of normal and impaired development to address the question; what makes a viable mammalian preimplantation embryo? Resolution of this question is important to ensure the long-term safety of embryo-based biotechnologies in man and domestic animals, the optimisation of embryo production and culture conditions and the development of methods to select viable embryos for replacement. After considering the nutrition of embryos and somatic cells, and the phenomenon of caloric restriction, it is concluded that preimplantation embryo survival is best served by a relatively low level of metabolism; a situation achieved by reducing the concentrations of nutrients in culture media and encouraging the use endogenous resources.
Collapse
Affiliation(s)
- Henry J Leese
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
| |
Collapse
|
10
|
Martin KL. Nutritional and metabolic requirements of early cleavage stage embryos and blastocysts. HUM FERTIL 2002; 3:247-254. [PMID: 11844386 DOI: 10.1080/1464727002000199071] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
During preimplantation human embryo development there is an increase in the synthesis of macromolecules and a demand for energy. Consequently, the metabolic requirements of the human embryo change as development proceeds from the zygote to the blastocyst stage. Evidence from a number of species indicates that before activation of the embryonic genome, human and other mammalian embryos have a preference for oxidizable energy substrates, particularly pyruvate, non-essential amino acids and glutamine. After embryonic genome activation, glucose and essential amino acids become increasingly important. As such, there is a switch in energy metabolism during preimplantation development from one based principally on aerobic respiration, to another based on oxidative metabolism and aerobic glycolysis.
Collapse
Affiliation(s)
- Karen L. Martin
- Department of Obstetrics and Gynaecology, University of Sheffield, Jessop Hospital for Women, Sheffield S3 7RE, UK
| |
Collapse
|
11
|
Abstract
Embryonic diapause, or delayed implantation as it is sometimes known, is said to occur when the conceptus enters a state of suspended animation at the blastocyst stage of development. Blastocysts may either cease cell division so that their size and cell numbers remain constant, or undergo a period of very slow growth with minimal cell division and expansion. Diapause has independently evolved on many occasions. There are almost 100 mammals in seven different mammalian orders that undergo diapause. In some groups, such as rodents, kangaroos, and mustelids, it is widespread, whereas others such as the Artiodactyla have only a single representative (the roe deer). In each family the characteristics of diapause differ, and the specific controls vary widely from lactational to seasonal, from estrogen to progesterone, or from photoperiod to nutritional. Prolactin is a key hormone controlling the endocrine milieu of diapause in many species, but paradoxically it may act either to stimulate or inhibit growth and activity of the corpus luteum. Whatever the species-specific mechanisms, the ecological result of diapause is one of synchronization: It effectively lengthens the active gestation period, which allows mating to occur and young to be born at times of the year optimal for that species.
Collapse
Affiliation(s)
- M B Renfree
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|