1
|
Khan M, Halim SA, Waqas M, Golmohammadi F, Balalaie S, Csuk R, Uddin J, Khan A, Al-Harrasi A. Substrate-like novel inhibitors of prolyl specific oligo peptidase for neurodegenerative disorders. J Biomol Struct Dyn 2024; 42:8454-8472. [PMID: 37608559 DOI: 10.1080/07391102.2023.2246577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Prolyl specific oligopeptidase (POP), is one of the highly expressed enzymes in the brain and is a prime target to treat disorders related to the central nervous system. Here, we describe the structure-based design of the tacrine derivatives, selective, and brain-permeable POP inhibitors. These compounds inactivate POP in-vitro specifically and sustainably at very low concentrations (nano molar). Among this series, compound 6b (IC50 = 0.81 ± 0.04 µM) exhibited most potent inhibition. Furthermore, kinetic study revealed that these molecules target active site of POP which is further confirmed by in-silico molecular interaction analysis. The computational docking results indicates that the compounds are well fitted in the active site with high binding score (i.e., > -7 to > -4 kcal/mol) where Trp595, Arg643, Tyr473, and Ser554 plays important role in binding with the active compounds. The molecular dynamic simulation of most active compounds (6a, 6b, 6d, and 6f) displayed higher free energy binding, when compared to the standard drug in MM-PBSA based binding free energy calculation. In addition, the predicted pharmacokinetic profile suggests that these compounds can serve as excellent inhibitors upon additional optimization which makes them prime choice for further investigation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Farhad Golmohammadi
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
2
|
Cho-Clark MJ, Watkins A, Wu TJ. The role of GnRH metabolite, GnRH-(1-5), in endometrial cancer. Front Endocrinol (Lausanne) 2023; 14:1183278. [PMID: 37124730 PMCID: PMC10140499 DOI: 10.3389/fendo.2023.1183278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
From the time of its discovery and isolation in the mammalian hypothalamus, the decapeptide, gonadotropin-releasing hormone (GnRH), has also been found to be expressed in non-hypothalamic tissues and can elicit a diverse array of functions both in the brain and periphery. In cancer, past studies have targeted the gonadotropin-releasing hormone receptors (GnRHR) as a way to treat reproductive cancers due to its anti-tumorigenic effects. On the contrary, its metabolite, GnRH-(1-5), behaves divergently from its parental peptide through putative orphan G-protein coupled receptor (oGPCR), GPR101. In this review, we will focus on the potential roles of GnRH-(1-5) in the periphery with an emphasis on its effects on endometrial cancer progression.
Collapse
|
3
|
Mohammadzadeh S, Ahmadifar E, Masoudi E, Milla S, El-Shall NA, Alagawany M, Emran TB, Michalak I, Dhama K. Applications of recombinant proteins in aquaculture. AQUACULTURE 2022; 561:738701. [DOI: 10.1016/j.aquaculture.2022.738701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Effects of Gonadotropin-Releasing Hormone (GnRH) and Its Analogues on the Physiological Behaviors and Hormone Content of Tetrahymena pyriformis. Int J Mol Sci 2019; 20:ijms20225711. [PMID: 31739545 PMCID: PMC6888530 DOI: 10.3390/ijms20225711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
The unicellular Tetrahymena distinguishes structure-related vertebrate hormones by its chemosensory reactions. In the present work, the selectivity of hormone receptors was evaluated by analyzing the effects of various gonadotropin-releasing hormone (GnRH) analogs (GnRH-I, GnRH-III) as well as truncated (Ac-SHDWKPG-NH2) and dimer derivatives ([GnRH-III(C)]2 and [GnRH-III(CGFLG)]2) of GnRH-III on (i) locomotory behaviors, (ii) cell proliferation, and (iii) intracellular hormone contents of Tetrahymena pyriformis. The migration, intracellular hormone content, and proliferation of Tetrahymena were investigated by microscope-assisted tracking analysis, flow cytometry, and a CASY TT cell counter, respectively. Depending on the length of linker sequence between the two GnRH-III monomers, the GnRH-III dimers had the opposite effect on Tetrahymena migration. [GnRH-III(CGFLG)]2 dimer had a slow, serpentine-like movement, while [GnRH-III(C)]2 dimer had a rather linear swimming pattern. All GnRH-III derivatives significantly induced cell growth after 6 h incubation. Endogenous histamine content was uniformly enhanced by Ac-SHDWKPG-NH2 and GnRH-III dimers, while some differences between the hormonal activities of GnRHs were manifested in their effects on intracellular levels of serotonin and endorphin. The GnRH peptides could directly affect Tetrahymena migration and proliferation in a structure-dependent manner, and they could indirectly regulate these reactions by paracrine/autocrine mechanisms. Present results support the theory that recognition ability and selectivity of mammalian hormone receptors can be deduced from a phylogenetically ancient level like the unicellular Tetrahymena.
Collapse
|
5
|
Mohammadzadeh S, Moradian F, Yeganeh S, Falahatkar B, Milla S. Design, production and purification of a novel recombinant gonadotropin-releasing hormone associated peptide as a spawning inducing agent for fish. Protein Expr Purif 2019; 166:105510. [PMID: 31628987 DOI: 10.1016/j.pep.2019.105510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/10/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
GnRH is a neuropeptide known to regulate reproduction in vertebrates. The purpose of this study was to design and produce recombinant gonadotropin-releasing hormone associated peptide (rGnRH/GAP) as an alternative of the previous GnRHs and native extracted hormone from tissue, to induce final maturation in fish. Decapeptide as well as GAP area sequences were compared between GnRH1, GnRH2, and mGnRH from Acipenser sp and Huso huso, respectively. Considering the conserved amino acids and the replacement of un-stable amino acids with those that were more stable against proteolytic digestion as well as had a longer half-life, the sequence was designed. The sequences of decapeptide and GAP region were synthesized and then cloned on pET28a expression vector and transformed into expression host Escherichia coli BL21(DE3). The supernatant of cultured recombinant bacteria was used for purification using TALON Metal affinity resin. The purity of the GnRH/GAP was confirmed by single 8 kDa band on SDS-PAGE and Western blot. Bioinformatics studies were performed for evaluation of homology between GnRH protein sequences and prediction of 3D protein structure using Swiss Model. The result showed that the structure prediction of the recombinant GnRH decapeptide was relatively similar to decapeptide of GnRH2 from Beluga (Huso huso). The GAP structure was similar to GAP1 of Nile tilapia (Oreochromis niloticus) and sturgeon and GnRH2 of Chinese sturgeon (Acipenser sinensis). The mass analysis showed that the sequence was exactly the same as designated sequence. Biology activity of rGnRH/GAP was tested in mature goldfish (Carassius auratus) and results showed that rGnRH/GAP had a positive effect in final maturation. Indeed 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) was increased 17 h and 24 h after injection with rGnRH/GAP and spawning stemmed from that injection. These novel findings introduce the potential of utilizing rGnRH/GAP in aquaculture.
Collapse
Affiliation(s)
- Sedigheh Mohammadzadeh
- Fisheries Department, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Fatemeh Moradian
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Sakineh Yeganeh
- Fisheries Department, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Sylvain Milla
- University of Lorraine, Unit of Animal Research and Functionalities of Animal Products, USC INRA 340, F-54505, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
6
|
Gupta JC, Hada RS, Sahai P, Talwar GP. Development of a novel recombinant LHRH fusion protein for therapy of androgen and estrogen dependent cancers. Protein Expr Purif 2017; 134:132-138. [PMID: 28410993 DOI: 10.1016/j.pep.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 01/31/2023]
Abstract
LHRH based vaccines are promising candidates for therapy of androgen and estrogen dependent cancers. We report in this communication development of a novel recombinant protein vaccine candidate against LHRH. A synthetic gene was designed in which the codon sequence in the LHRH decapeptide was modified by substituting the codon for 6-glycine with that of l-leucine. Further the LHRH(6leu) gene was linked to heat-labile enterotoxin of E. coli (LTB) as carrier. This LHRH(6leu)-LTB gene was cloned into a prokaryotic expression vector under the control of inducible and strong bacteriophage T7 promoter to over-express LHRH(leu) fused to LTB as recombinant protein in E. coli. Recombinant LHRH(leu)-LTB protein of ∼14 kDa size, was purified from inclusion bodies using in-situ refolding on the column and Ni-NTA based immobilized affinity chromatography. Western blot confirmed the immunoreactivity of purified LHRH(leu)-LTB fusion protein with anti-LHRH monoclonal antibody. The vaccine protein was further characterized by mass spectroscopy, circular dichroism and fluorescence spectroscopy. This communication reports a recombinant LHRH fusion protein with potential for blocking of sex hormones production for eventual therapy of sex hormones dependent neoplasms.
Collapse
Affiliation(s)
- Jagdish C Gupta
- Talwar Research Foundation, E-8 Neb Valley, New Delhi 110068, India.
| | - Rohit S Hada
- Talwar Research Foundation, E-8 Neb Valley, New Delhi 110068, India
| | - P Sahai
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - G P Talwar
- Talwar Research Foundation, E-8 Neb Valley, New Delhi 110068, India
| |
Collapse
|
7
|
Moradi SV, Varamini P, Toth I. Evaluation of the Biological Properties and the Enzymatic Stability of Glycosylated Luteinizing Hormone-Releasing Hormone Analogs. AAPS JOURNAL 2015; 17:1135-43. [PMID: 25956382 DOI: 10.1208/s12248-015-9769-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/06/2015] [Indexed: 12/15/2022]
Abstract
The enzymatic stability, antitumor activity, and gonadotropin stimulatory effects of glycosylated luteinizing hormone-releasing hormone (LHRH) analogs were investigated in this study. Conjugation of carbohydrate units, including lactose (Lac), glucose (GS), and galactose (Gal) to LHRH peptide protected the peptide from proteolytic degradation and increased the peptides' half-lives in human plasma, rat kidney membrane enzymes, and liver homogenate markedly. Among all seven modified analogs, compound 1 (Lac-[Q(1)][w(6)]LHRH) and compound 6 (GS(4)-[w(6)]LHRH) were stable in human plasma during 4 h of experiment. The half-lives of compounds 1 and 6 improved significantly in kidney membrane enzymes (from 3 min for LHRH to 68 and 103 min, respectively). The major cleavage sites for most of the glycosylated compounds were found to be at Trp(3)-Ser(4) and Ser(4)-Tyr(5) in compounds 1-5. Compound 6 was hydrolyzed at Ser(4)-Tyr(5) and the sugar conjugation site. The antiproliferative activity of the glycopeptides was evaluated on LHRH receptor-positive prostate cancer cells. The glycosylated LHRH derivatives had a significant growth inhibitory effect on the LNCaP cells after a 48-h treatment. It was demonstrated that compound 1 significantly increased the release of luteinizing hormone (LH) at 5 and 10 nM concentrations and compound 5 (GS-[Q(1)]LHRH) stimulated the release of follicle-stimulating hormone (FSH) at 5 nM concentration in dispersed rat pituitary cells (p < 0.05). In our studies, compound 1-bearing lactose and D-Trp was the most stable and active and is a promising candidate for future preclinical investigations in terms of in vitro biological activity and metabolic stability.
Collapse
Affiliation(s)
- Shayli Varasteh Moradi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
8
|
Ferro ES, Rioli V, Castro LM, Fricker LD. Intracellular peptides: From discovery to function. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Synthesis and in vitro evaluation of glycosyl derivatives of luteinizing hormone-releasing hormone (LHRH). Bioorg Med Chem 2013; 21:4259-65. [PMID: 23712085 DOI: 10.1016/j.bmc.2013.04.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 11/23/2022]
Abstract
Luteinizing hormone-releasing hormone (LHRH) analogues are used extensively for the treatment of various hormone-dependent diseases. However, none of the currently marketed derivatives can be administered orally. Modification of peptide sequences by attachment of carbohydrate moieties is a promising strategy that may increase the metabolic stability of the target peptide and enhance its transport across cell membranes, subsequently improving peptide bioavailability. In this study, either the N- or C-terminus of the LHRH peptide was altered by attachment of carbohydrate moieties. Caco-2 cells were chosen as an in vitro model to investigate both the permeability and stability of the new LHRH analogues. Our findings show that conjugating sugar moieties to the N-terminus of the LHRH peptide significantly increased both permeability and metabolic stability of most of the modified LHRH derivatives.
Collapse
|
10
|
Larco DO, Semsarzadeh NN, Cho-Clark M, Mani SK, John Wu T. The Novel Actions of the Metabolite GnRH-(1-5) are Mediated by a G Protein-Coupled Receptor. Front Endocrinol (Lausanne) 2013; 4:83. [PMID: 23847594 PMCID: PMC3703583 DOI: 10.3389/fendo.2013.00083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022] Open
Abstract
The gonadotropin-releasing hormone (GnRH) was originally isolated from the mammalian hypothalamus for its role as the primary regulator of reproductive function. Since its discovery, GnRH has also been shown to be located in non-hypothalamic tissues and is known to have diverse functions. Although the regulation of GnRH synthesis and release has been extensively studied, there is additional evidence to suggest that the processing of GnRH to the metabolite GnRH-(1-5) represents another layer of regulation. The focus of this review will be on the current evidence for the action of the pentapeptide metabolite GnRH-(1-5) in regulating cellular migration. We discuss the potential role of GnRH-(1-5) in regulating GnRH neuronal migration during development. Furthermore, we demonstrate these actions are mediated by the activation of a G protein-coupled receptor. Our findings suggest that GnRH-(1-5) may play a developmental function in addition to regulating developing cells.
Collapse
Affiliation(s)
- Darwin Omar Larco
- Program in Molecular and Cellular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nina Nashat Semsarzadeh
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Madelaine Cho-Clark
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shaila K. Mani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - T. John Wu
- Program in Molecular and Cellular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- *Correspondence: T. John Wu, Department of Obstetrics and Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA e-mail:
| |
Collapse
|
11
|
Bruce LA, Cyr NE, Qiao JW, DeFries CC, Tetel MJ, Wolfson AJ. Neuropeptidase activity is down-regulated by estradiol in steroid-sensitive regions of the hypothalamus in female mice. Neuropeptides 2012; 46:167-72. [PMID: 22672888 PMCID: PMC3404208 DOI: 10.1016/j.npep.2012.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/26/2012] [Accepted: 04/24/2012] [Indexed: 11/16/2022]
Abstract
Thimet oligopeptidase (TOP) and prolyl endopeptidase (PEP) are neuropeptidases involved in the hydrolysis of gonadotropin-releasing hormone, a key component of the hypothalamic-pituitary-gonadal axis. GnRH is regulated in part by feedback from steroid hormones such as estradiol. Previously, we demonstrated that TOP levels are down-regulated by estradiol in reproductively-relevant regions of the female rodent brain. The present study supports these findings by showing that TOP enzyme activity, as well as protein levels, in the ventromedial hypothalamic nucleus of female mice is controlled by estradiol. We further demonstrate that PEP levels in this same brain region are down-regulated by estradiol in parallel with those of TOP. These findings provide evidence that these neuropeptidases are part of the fine control of hormone levels in the HPG axis.
Collapse
Affiliation(s)
- Lisa A. Bruce
- Chemistry Department, Wellesley College, Wellesley, MA. USA
| | - Nicole E. Cyr
- Chemistry Department, Wellesley College, Wellesley, MA. USA
| | - Jana W. Qiao
- Chemistry Department, Wellesley College, Wellesley, MA. USA
| | | | - Marc J. Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA. USA
| | - Adele J. Wolfson
- Chemistry Department, Wellesley College, Wellesley, MA. USA
- Corresponding author: Chemistry Department, Wellesley College, 106 Central St., Wellesley, MA 01746 USA; 781-283-3106 (tel); 781-283-3642 (fax);
| |
Collapse
|
12
|
Yao JF, Zhou N, Lv YJ, Zhang R, Liu KL, Xue M. Metabolic stability of long-acting luteinizing hormone-releasing hormone antagonists. Amino Acids 2012; 43:1557-66. [PMID: 22327511 DOI: 10.1007/s00726-012-1231-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 01/20/2012] [Indexed: 11/24/2022]
Abstract
Long-acting luteinizing hormone-releasing hormone (LHRH) antagonists designed to be protease resistant consisted of a series of novel decapeptides structurally similar to LHRH. The aim of this study was to evaluate the in vitro metabolic stability of the LHRH decapeptides using pancreatin and homogenates models and identify the metabolites in rat liver homogenate for the purpose of illustrating the metabolic features of the decapeptides. The major metabolites in rat liver homogenate were identified by LC-ESI-MS(n). The half-lives of the 11 LHRH decapeptides were from 44 to 330 min in the pancreatin model. The half-lives of the five decapeptides in rat liver, kidney and lung homogenates were between 8 and 462 min. The most stable decapeptides were the LY616 and LY608 peptides with half-lives of 36 min in liver homogenate. Two major cleavage sites were found by analysing the metabolites of the LY618 peptide in rat liver homogenate, between the Pal(3)-Ser(4) and the Leu(7)-Ilys(8) peptide bonds. The major metabolites were produced via cleavages of peptide bonds at these sites, and further metabolic reactions such as hydroxylation, oxidative dechlorination, alcohol dehydration and isopropyl dealkylation were also observed.
Collapse
Affiliation(s)
- Jin-Feng Yao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | | | | | | | | | | |
Collapse
|
13
|
Pappa EV, Zompra AA, Spyranti Z, Diamantopoulou Z, Pairas G, Lamari FN, Katsoris P, Spyroulias GA, Cordopatis P. Enzymatic stability, solution structure, and antiproliferative effect on prostate cancer cells of leuprolide and new gonadotropin-releasing hormone peptide analogs. Biopolymers 2011; 96:260-72. [PMID: 20632397 DOI: 10.1002/bip.21521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Analogs of GnRH, including [DLeu6, desGly1o]-GnRH-NHEt (leuprolide, commercial product), have been widely used in oncology to induce reversible chemical castration. Several studies have provided evidence that, besides their pituitary effects, GnRH analogs may exert direct antiproliferative effects on tumor cells. To study the effect of modifications in positions 4 and 6 of leuprolide on prostate cancer cell proliferation, we synthesized 12 new leuprolide analogs. All GnRH analogs lacked the carboxy-terminal Gly10-amide of GnRH, and an ethylamide residue was added to Pro9. Gly6 was substituted by DLys, Nepsilon-modified DLys, Glu, and DGlu. To improve the enzymatic stability, NMeSer was incorporated in position 4, and the rate of hydrolysis by alpha-chymotrypsin and subtilisin was investigated. Our results demonstrate that this incorporation increases enzymatic stability in all analogs of GnRH, whereas the antiproliferative effect on PC3 and LNCaP prostate cancer cells is similar to that of leuprolide. Conformational studies were performed to elucidate structural changes occurring on substitution of native residues and to study structure-activity relationship for these analogs. The solution models of [DLeu6, desGly10]-GnRH-NHEt (leuprolide), [NMeSer4, DGlu6, desGly10]-GnRH-NHEt, [Glu6, desGly10]-GnRH-NHEt, and [DGIu6, desGly10]-GnRH-NHEt peptides were determined through two-dimensional nuclear magnetic resonance spectroscopy in dimethylsulfoxide. Nuclear magnetic resonance data provide experimental evidence for the U-turn-like structure appeared in all four analogs, which could be characterized as beta-hairpin conformation. The most stable analog [NMeSer4, DGlu6, desGly10]-GnRH-NHEt against proteolytic cleavage forms a second extra backbone turn observed for residues 1-4.
Collapse
Affiliation(s)
- Eleni V Pappa
- Department of Pharmacy, University of Patras, Patras 26504, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Katsila T, Balafas E, Liapakis G, Limonta P, Montagnani Marelli M, Gkountelias K, Tselios T, Kostomitsopoulos N, Matsoukas J, Tamvakopoulos C. Evaluation of a stable gonadotropin-releasing hormone analog in mice for the treatment of endocrine disorders and prostate cancer. J Pharmacol Exp Ther 2010; 336:613-23. [PMID: 21106905 DOI: 10.1124/jpet.110.174375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) receptor agonists have wide clinical applications including the treatment of prostate cancer and endocrine disorders. However, such agonists are characterized by poor pharmacokinetic properties, often requiring repeated administration or special formulations. Therefore, the development of novel peptide analogs with enhanced in vivo stability could potentially provide therapeutic alternatives. The pharmacological evaluation of a bioactive peptide [Des-Gly¹⁰,Tyr⁵(OMe),D-Leu⁶,Aze-NHEt⁹]GnRH, analog 1, is presented herein and compared with leuprolide. Peptide stability was evaluated using mouse kidney membrane preparations, followed by a liquid chromatography-tandem mass spectrometry-based approach that afforded identification and quantification of its major metabolites. The analog was significantly more stable in vitro in comparison with leuprolide. In vitro and in vivo stability results correlated well, encouraging us to develop a clinically relevant pharmacokinetic mouse model, which facilitated efficacy measurements using testosterone as a biomarker. Analog 1, an agonist of the GnRH receptor with a binding affinity in the nanomolar range, caused testosterone release in mice that was acutely dose-dependent, an effect blocked by the GnRH receptor antagonist cetrorelix. Repeated dosing studies in mice demonstrated that analog 1 was well tolerated and had potency similar to that of leuprolide, based on plasma and testis testosterone reduction and histopathological findings. Analog 1 also shared with leuprolide similar significant antiproliferative activity on androgen-dependent prostate cancer (LNCaP) cells. On the basis of pharmacokinetic advantages, we expect that analog 1 or analogs based on this new design will be therapeutically advantageous for the treatment of cancer and endocrine disorders.
Collapse
Affiliation(s)
- Theodora Katsila
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cyr NE, Kua LH, Bruce LA, Chadwick JG, Tetel MJ, Wolfson AJ. Nuclear Thimet oligopeptidase is coexpressed with oestrogen receptor alpha in hypothalamic cells and regulated by oestradiol in female mice. J Neuroendocrinol 2010; 22:936-43. [PMID: 20456597 PMCID: PMC2921797 DOI: 10.1111/j.1365-2826.2010.02009.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thimet oligopeptidase (EC 3.4.24.15; also called EP24.15 and TOP; referred to here as TOP) is a neuropeptidase involved in the regulation of several physiological functions including reproduction. Among its substrates is gonadotrophin-releasing hormone (GnRH), an important hypothalamic hormone that regulates the synthesis and release of oestradiol and facilitates female sexual behaviour. Using immunohistochemistry, we found that TOP is expressed in the nucleus of cells throughout the female mouse brain, and in high levels in steroid-sensitive regions of the hypothalamus, which is consistent with previous findings in male rats. Furthermore, dual-label immunofluorescence revealed that TOP and oestrogen receptor alpha (ERalpha) coexpress in several reproductively-relevant brain regions, including the medial preoptic area (mPOA), arcuate nucleus (ARC), ventrolateral portion of the ventromedial hypothalamic nucleus (VMNvl) and the midbrain central grey (MCG). Previous studies in rats have shown that oestradiol decreases hypothalamic TOP levels or activity, possibly potentiating the effects of GnRH. In the present study, analysis by immunohistochemistry revealed that oestradiol decreased TOP immunoreactivity in the VMNvl, whereas no differences were detected in the mPOA, ARC or median eminence. Overall, the present findings indicate that TOP is coexpressed with ERalpha, and oestradiol regulates TOP expression in a brain region-specific manner in female mice, providing neuroanatomical evidence that TOP may function in reproductive physiology and/or behaviour.
Collapse
Affiliation(s)
- N E Cyr
- Chemistry Department, Wellesley College, Wellesley, MA 02481-8203, USA
| | | | | | | | | | | |
Collapse
|