1
|
Grzegorzewska AK, Grot E, Sechman A. Sodium Fluoride In Vitro Treatment Affects the Expression of Gonadotropin and Steroid Hormone Receptors in Chicken Embryonic Gonads. Animals (Basel) 2021; 11:ani11040943. [PMID: 33810503 PMCID: PMC8066272 DOI: 10.3390/ani11040943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Effects of in vitro sodium fluoride (NaF) treatment on the mRNA expression of luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), estrogen receptors (ESR1 and ESR2), progesterone receptor (PGR), and the immunolocalization of PGRs were examined in gonads of 14-day-old chicken embryos. In the ovary, the NaF treatment significantly increased mRNA levels of all investigated receptors. In the testes, the lowest applied dose of NaF (1.7 mM) significantly decreased the expression of FSHR, ESR1, ESR2, and PGR. Alternatively, the higher NaF dose (7.1 mM) elevated PGR mRNA level in the male gonad. Immunohistochemical analysis revealed that the NaF exposure increased PGR expression in the ovarian cortex, while it decreased its expression in the testes. Collectively, these data indicate that: (i) NaF may disturb the chicken embryonic development, and (ii) different mechanisms of this toxicant action exist within the female and male gonads. Abstract Sodium fluoride (NaF), in addition to preventing dental decay may negatively affect the body. The aim of this study was to examine the effect of a 6 h in vitro treatment of gonads isolated from 14-day-old chicken embryos with NaF at doses of 1.7 (D1), 3.5 (D2), 7.1 (D3), and 14.2 mM (D4). The mRNA expression of luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), estrogen receptors (ESR1 and ESR2), progesterone receptor (PGR), and the immunolocalization of progesterone receptors were examined in the tissue. In the ovary, the expression of FSHR and LHR increased following the NaF treatment. In the case of FSHR the highest stimulatory effect was noticed in the D2 group, while the expression of LHR increased in a dose-dependent manner. A gradual increase in ESR1 and PGR mRNA levels was also observed in the ovary following the NaF treatment, but only up to the D3 dose of NaF. The highest ESR2 level was also found in the D3 group. In the testes, the lowest dose of NaF significantly decreased the expression of FSHR, ESR1, ESR2, and PGR. On the other hand, an increase in PGR expression was observed in the D3 group. The expression of LHR in the testes was not affected by the NaF treatment. Immunohistochemical analysis showed that NaF exposure increased progesterone receptor expression in the ovarian cortex, while it decreased its expression in the testes. These results reveal that NaF may disturb the chicken embryonic development and different mechanisms of this toxicant action exist within the females and males.
Collapse
|
2
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Kiezun J, Kaminska B, Jankowski J, Dusza L. Concentrations of the adrenocorticotropic hormone, corticosterone and sex steroid hormones and the expression of the androgen receptor in the pituitary and adrenal glands of male turkeys (Meleagris gallopavo) during growth and development. Gen Comp Endocrinol 2015; 217-218:62-70. [PMID: 25776460 DOI: 10.1016/j.ygcen.2015.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/29/2014] [Revised: 12/09/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Androgens take part in the regulation of puberty and promote growth and development. They play their biological role by binding to a specific androgen receptor (AR). The aim of this study was to evaluate the expression of AR mRNA and protein in the pituitary and adrenal glands, to localize AR protein in luteinizing hormone (LH)-producing pituitary and adrenocortical cells, to determine plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone and the concentrations of corticosterone, testosterone (T), androstenedione (A4) and oestradiol (E2) in the adrenal glands of male turkeys at the age of 4, 8, 12, 16, 20, 24 and 28weeks. The concentrations of hormones and the expression of AR varied during development. The expression of AR mRNA and protein in pituitary increased during the growth. The increase of AR mRNA levels in pituitary occurred earlier than increase of AR protein. The percentage of pituitary cells expressing ARs in the population of LH-secreting cells increased in week 20. It suggests that AR expression in LH-producing pituitary cells is determined by the phase of development. The drop in adrenal AR mRNA and protein expression was accompanied by an increase in the concentrations of adrenal androgens. Those results could point to the presence of a compensatory mechanism that enables turkeys to avoid the potentially detrimental effects of high androgen concentrations. Our results will expand our knowledge of the role of steroids in the development of the reproductive system of turkeys from the first month of age until maturity.
Collapse
Affiliation(s)
- J Kiezun
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| | - B Kaminska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| | - J Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 5, 10-719 Olsztyn, Poland.
| | - L Dusza
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
4
|
Kiezun J, Leska A, Kaminska B, Jankowski J, Dusza L. Expression of the androgen receptor in the testes and the concentrations of gonadotropins and sex steroid hormones in male turkeys (Meleagris gallopavo) during growth and development. Gen Comp Endocrinol 2015; 214:149-56. [PMID: 25072891 DOI: 10.1016/j.ygcen.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/24/2013] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/26/2023]
Abstract
Androgens, including testosterone (T) and androstenedione (A4), are essential for puberty, fertility and sexual functions. The biological activity of those hormones is mediated via the androgen receptor (AR). The regulation of androgen action in birds is poorly understood. Therefore, the present study analysed mRNA and protein expression of AR in the testes, plasma concentrations of the luteinizing hormone (LH), follicle-stimulating hormone (FSH), T, A4 and oestradiol (E2), as well as the levels of T, A4 and E2 in testicular homogenates of male turkeys (Meleagris gallopavo) at the age of 4, 8, 12, 16, 20, 24 and 28weeks. Plasma concentrations of LH and FSH, as well as plasma and testicular levels of T and A4 began to increase at 20weeks of age. The lowest plasma levels of E2 were noted at 20weeks relative to other growth stages. The 20th week of life seems to be the key phase in the development of the reproductive system of turkeys. The AR protein was found in the nuclei of testicular cells in all examined growth stages. Higher expression of AR protein in the testes beginning at 20weeks of age was accompanied by high plasma concentrations of LH and high plasma and testicular levels of androgens. This relationship seems to be necessary to regulate male sexual function.
Collapse
Affiliation(s)
- J Kiezun
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| | - A Leska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| | - B Kaminska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| | - J Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 5, 10-719 Olsztyn, Poland.
| | - L Dusza
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
5
|
Ford J, Carnes K, Hess RA. Ductuli efferentes of the male Golden Syrian hamster reproductive tract. Andrology 2014; 2:510-20. [PMID: 24677666 DOI: 10.1111/j.2047-2927.2014.00194.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 12/30/2022]
Abstract
Efferent ductules are responsible for the transportation of spermatozoa from the testis to the epididymis and their epithelium is responsible for the reabsorption of over 90% of the luminal fluid. The purpose of this research was to characterize the gross morphology and histology of efferent ductules in the male Golden Syrian hamster. The efferent ductules emerge from rete testis with a unique polarity at the apex or cephalic pole of the testis. The number of efferent ductules varied from 3 to 10 with an average of 6.0 and blind ending ducts were observed in approximately 56% of the males. The ductules merged into a single common duct prior to entering the caput epididymidis. The proximal efferent ductule lumen was wider than the distal (conus and common ducts), consistent with reabsorption of most of the luminal fluid, as was morphology of the ductal epithelium. Non-ciliated cells in the proximal region had prominent endocytic apparatuses, showing both coated pits and apical tubules in the apical cytoplasm. Large basolateral, intercellular spaces were also present in the epithelium of the proximal region. Distal non-ciliated cells had an abundance of large endosomes and lysosomal granules. Localisation of sodium/hydrogen exchanger-3 (NHE3; SLC9A3) and aquaporins 1 and 9 (AQP1, AQP9) along the microvillus border was also consistent with ion transport and fluid reabsorption by this epithelium. In comparison, the caput epididymidis epithelium expressed only AQP9 immunostaining. Another unusual feature of the hamster efferent ductules was the presence of glycogen aggregates in the basal cytoplasm of small groups of epithelial cells, but only in the proximal ducts near the rete testis. Androgen (AR), estrogen (ESR1 and ESR2) and vitamin D receptors (VDR) were also abundant in epithelial nuclei of proximal and distal efferent ductules. In comparison, caput epididymidis showed very little immunostaining for ESR1.
Collapse
Affiliation(s)
- J Ford
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
6
|
Oliveira AG, Aquino DJQ, Mahecha GAB, Oliveira CA. Involvement of the transepithelial calcium transport disruption and the formation of epididymal stones in roosters. Reproduction 2012; 143:835-44. [PMID: 22454531 DOI: 10.1530/rep-12-0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
Abstract
Epididymal lithiasis is a dysfunction of unknown origin characterized by the formation of calcium stones into the lumen of efferent ductules of roosters. Affected animals present an imbalance in the hormonal responsive systems that regulate the expression of proteins involved in the transepithelial calcium transport, as TRPV6, CaBP-D28K, NCX1, and PMCA. Because the efferent ductules are the major site of fluid and calcium reabsorption in excurrent ducts, it was hypothesized that impairment in local calcium homeostasis would lead to lithiasis. To test this hypothesis, we addressed the expression of these proteins in the epididymal region of affected animals. The present study focused on the investigation of the occurrence, tissue distribution, and physiological impact of the transepithelial calcium transport in roosters under normal and pathological conditions. The results showed that affected roosters presented a significant increase in TRPV6 and CaBP-D28k levels, whereas NCX1 and PMCA were not changed. Such alterations were more conspicuous in the proximal efferent ductules, in which was also observed accumulation of calcium within the epithelial cells. These findings provided the first evidences for the involvement of alteration in the expression of proteins essential for calcium reabsorption as a plausible mechanism for the formation of calcium stones within efferent ductules.
Collapse
Affiliation(s)
- André Gustavo Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | | | | | | |
Collapse
|