1
|
ProAKAP4 Concentration Is Related to Sperm Motility and Motile Sperm Subpopulations in Frozen-Thawed Horse Semen. Animals (Basel) 2022; 12:ani12233417. [PMID: 36496938 PMCID: PMC9738597 DOI: 10.3390/ani12233417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/10/2022] Open
Abstract
ProAKAP4 is the precursor of AKAP4 (A-kinase Anchor protein 4), the main structural protein of the fibrous sheath of sperm. The amount of proAKAP4 reflects the ability of spermatozoa to maintain the flagellum activity and functionality up to the site of fertilization and is positively correlated with progressive motility in several mammalian species. The aim of this study was to investigate the relationship between proAKAP4 concentration with horse sperm motility descriptors and spermatic motile subpopulations. For this purpose, a total of 48 ejaculates from 13 different stallions were analyzed. Spermatic motility descriptors were obtained by the CASA system, and four motile subpopulations (SP) with specific motility patterns were statistically identified. ProAKAP4 concentrations were evaluated by ELISA. The relationship between motility descriptors of sperm subpopulations and proAKAP4 concentrations was evaluated. Following a hierarchical cluster statistical analysis, ejaculates were divided into two groups according to their proAKAP4 concentrations, either having low proAKAP4 concentrations (5.06−35.61 ng/10M spz; n = 23) or high (39.92−82.23 ng/10M spz; n = 25) proAKAP4 concentrations (p < 0.001). ProAKAP4 concentrations were positively correlated (p < 0.05) with total and progressive motility, as well as with parameters of velocity. ProAKAP4 amount also showed a negative correlation (p < 0.05) with sperm motile subpopulation number 3, which was the subpopulation with the lowest velocity parameters. In conclusion, proAKAP4 concentration in stallion semen positively reflects sperm progressive motility with the functional velocity kinematic descriptors. Concentrations of proAKAP4 higher than 37.77 ng/10M spz were correlated with a very good quality frozen/thawed stallion semen.
Collapse
|
2
|
Carracedo S, Briand-Amirat L, Dordas-Perpinyà M, Ramos Escuredo Y, Delcombel R, Sergeant N, Delehedde M. ProAKAP4 protein marker: Towards a functional approach to male fertility. Anim Reprod Sci 2022; 247:107074. [DOI: 10.1016/j.anireprosci.2022.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
3
|
Maitan P, Bromfield EG, Stout TAE, Gadella BM, Leemans B. A stallion spermatozoon's journey through the mare's genital tract: In vivo and in vitro aspects of sperm capacitation. Anim Reprod Sci 2022; 246:106848. [PMID: 34556396 DOI: 10.1016/j.anireprosci.2021.106848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Conventional in vitro fertilization is not efficacious when working with equine gametes. Although stallion spermatozoa bind to the zona pellucida in vitro, these gametes fail to initiate the acrosome reaction in the vicinity of the oocyte and cannot, therefore, penetrate into the perivitelline space. Failure of sperm penetration most likely relates to the absence of optimized in vitro fertilization media containing molecules essential to support stallion sperm capacitation. In vivo, the female reproductive tract, especially the oviductal lumen, provides an environmental milieu that appropriately regulates interactions between the gametes and promotes fertilization. Identifying these 'fertilization supporting factors' would be a great contribution for development of equine in vitro fertilization media. In this review, a description of the current understanding of the interactions stallion spermatozoa undergo during passage through the female genital tract, and related specific molecular changes that occur at the sperm plasma membrane is provided. Understanding these molecular changes may hold essential clues to achieving successful in vitro fertilization with equine gametes.
Collapse
Affiliation(s)
- Paula Maitan
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Veterinary Sciences, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elizabeth G Bromfield
- Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Priority Research Centre for Reproductive Science, College of Engineering, Science and Environment, University of Newcastle, Australia
| | - Tom A E Stout
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Bart M Gadella
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Bart Leemans
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
4
|
Ojaghi M, Varghese J, Kastelic JP, Thundathil JC. Characterization of the Testis-Specific Angiotensin Converting Enzyme (tACE)-Interactome during Bovine Sperm Capacitation. Curr Issues Mol Biol 2022; 44:449-469. [PMID: 35723410 PMCID: PMC8928970 DOI: 10.3390/cimb44010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
A comprehensive understanding of molecular and biochemical changes during sperm capacitation is critical to the success of assisted reproductive technologies. We reported involvement of the testis-specific isoform of Angiotensin Converting Enzyme (tACE) in bovine sperm capacitation. The objective of this study was to characterize the tACE interactome in fresh and heparin-capacitated bovine sperm through immunoprecipitation coupled with mass spectrometry. These interactions were validated by co-localization of tACE with beta-tubulin as an identified interactome constituent. Although interactions between tACE and several proteins remained unchanged in fresh and capacitated sperm, mitochondrial aldehyde dehydrogenase 2 (ALDH2), inactive serine/threonine protein-kinase 3 (VRK3), tubulin-beta-4B chain (TUBB4B), and tubulin-alpha-8 chain (TUBA8) were recruited during capacitation, with implications for cytoskeletal and membrane reorganization, vesicle-mediated transport, GTP-binding, and redox regulation. A proposed tACE interactional network with identified interactome constituents was generated. Despite tACE function being integral to capacitation, the relevance of interactions with its binding partners during capacitation and subsequent events leading to fertilization remains to be elucidated.
Collapse
|
5
|
Merc V, Frolikova M, Komrskova K. Role of Integrins in Sperm Activation and Fertilization. Int J Mol Sci 2021; 22:11809. [PMID: 34769240 PMCID: PMC8584121 DOI: 10.3390/ijms222111809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
In mammals, integrins are heterodimeric transmembrane glycoproteins that represent a large group of cell adhesion receptors involved in cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrin receptors are an important part of signalization pathways and have an ability to transmit signals into and out of cells and participate in cell activation. In addition to somatic cells, integrins have also been detected on germ cells and are known to play a crucial role in complex gamete-specific physiological events, resulting in sperm-oocyte fusion. The main aim of this review is to summarize the current knowledge on integrins in reproduction and deliver novel perspectives and graphical interpretations presenting integrin subunits localization and their dynamic relocation during sperm maturation in comparison to the oocyte. A significant part of this review is devoted to discussing the existing view of the role of integrins during sperm migration through the female reproductive tract; oviductal reservoir formation; sperm maturation processes ensuing capacitation and the acrosome reaction, and their direct and indirect involvement in gamete membrane adhesion and fusion leading to fertilization.
Collapse
Affiliation(s)
- Veronika Merc
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.M.); (M.F.)
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| |
Collapse
|
6
|
Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells 2021; 10:cells10102770. [PMID: 34685749 PMCID: PMC8535139 DOI: 10.3390/cells10102770] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023] Open
Abstract
Genetically modified pigs have become valuable tools for generating advances in animal agriculture and human medicine. Importantly, in vitro production and manipulation of embryos is an essential step in the process of creating porcine models. As the in vitro environment is still suboptimal, it is imperative to examine the porcine embryo culture system from several angles to identify methods for improvement. Understanding metabolic characteristics of porcine embryos and considering comparisons with other mammalian species is useful for optimizing culture media formulations. Furthermore, stressors arising from the environment and maternal or paternal factors must be taken into consideration to produce healthy embryos in vitro. In this review, we progress stepwise through in vitro oocyte maturation, fertilization, and embryo culture in pigs to assess the status of current culture systems and address points where improvements can be made.
Collapse
Affiliation(s)
- Paula R. Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Karl C. Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lee D. Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
7
|
Bastan I, Akcay E. Quality assessment of frozen bull semen with the precursor A-kinase anchor protein 4 biomarker. Andrologia 2021; 53:e14164. [PMID: 34212411 DOI: 10.1111/and.14164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
In this study, the quality of frozen bull semen was evaluated with the proAKAP4 level test. Sixty straws of frozen bull semen from various batches (n = 30) belonging to six bulls were used in the current study. The frozen bull semen samples were analysed in terms of proAKAP4 levels, sperm morphology and sperm movement parameters at hour 0 and hour 3 after thawing. The semen samples were divided into three groups according to the proAKAP4 levels: low concentration (<25 ng/10x106 spermatozoa), moderate concentration (25 to 39 ng/10x106 spermatozoa) and high concentration (≥40 ng/10x106 spermatozoa). A positive correlation was found between the proAKAP4 level and total motility (TM3 ), progressive motility (PM3 ), VSL3 and VCL3 values obtained after the third-hour thermoresistance test (p < .05). There was a negative correlation between the percentage of sperm abnormal tail and the proAKAP4 level (p < .01). In addition, it was observed that the semen samples with proAKAP4 concentrations of 25 ng/106 spermatozoa and higher preserved the TM3 and PM3 motility characteristics. In conclusion, the proAKAP4 has the potential to become a biomarker protein to evaluate in the quality analysis of frozen-thawed semen.
Collapse
Affiliation(s)
- Ilktan Bastan
- Genetics and Embryo Technologies Application and Research Center, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ergun Akcay
- Department of Reproduction and Artificial Insemination, University of Ankara, Ankara, Turkey
| |
Collapse
|
8
|
Kato Y, Kumar S, Lessard C, Bailey JL. ACRBP (Sp32) is involved in priming sperm for the acrosome reaction and the binding of sperm to the zona pellucida in a porcine model. PLoS One 2021; 16:e0251973. [PMID: 34086710 PMCID: PMC8177411 DOI: 10.1371/journal.pone.0251973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
In boar sperm, we have previously shown that capacitation is associated with the appearance of the p32 tyrosine phosphoprotein complex. The principal tyrosine phosphoprotein involved in this complex is the acrosin-binding protein (ACRBP), which regulates the autoconversion of proacrosin to intermediate forms of acrosin in both boar and mouse sperm. However, the complete biological role of ACRBP has not yet been elucidated. In this study, we tested the hypothesis that tyrosine phophorylation and the presence of the ACRBP in the sperm head are largely necessary to induce capacitation, the acrosome reaction (AR) and sperm-zona pellucida (ZP) binding, all of which are necessary steps for fertilization. In vitro fertilization (IVF) was performed using matured porcine oocytes and pre-capacitated boar sperm cultured with anti-phosphotyrosine antibodies or antibodies against ACRBP. Anti-ACRBP antibodies reduced capacitation and spontaneous AR (P<0.05). Sperm-ZP binding declined in the presence of anti-phosphotyrosine or anti-ACRBP antibodies. The localisation of anti-ACRBP antibodies on the sperm head, reduced the ability of the sperm to undergo the AR in response to solubilized ZP or by inhibiting the sarco/endoplasmic reticulum Ca2+-ATPase. These results support our hypothesis that tyrosine phosphorylated proteins and ACRBP are present upon the sperm surface in order to participate in sperm-ZP binding, and that ACRBP upon the surface of the sperm head facilitates capacitation and the AR in the porcine.
Collapse
Affiliation(s)
- Yoku Kato
- Département des sciences animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, Canada
| | - Satheesh Kumar
- Département des sciences animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, Canada
| | - Christian Lessard
- Département des sciences animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, Canada
| | - Janice L Bailey
- Département des sciences animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, Canada
| |
Collapse
|
9
|
García-Martínez S, Gadea J, Coy P, Romar R. Addition of exogenous proteins detected in oviductal secretions to in vitro culture medium does not improve the efficiency of in vitro fertilization in pigs. Theriogenology 2020; 157:490-497. [PMID: 32898824 DOI: 10.1016/j.theriogenology.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
This work was designed to study whether HSP70-1A, HSP90α, ezrin or PDI4, proteins previously identified in porcine oviductal secretions, have a role in zona pellucida (ZP) resistance to enzymatic digestion, in vitro fertilization (IVF) and sperm viability. In vitro matured porcine cumulus oocyte complexes were denuded and i) incubated for 1 h in TALP medium supplemented or not with each exogenous oviductal protein and in presence or absence of heparin to assess ZP digestion time by pronase; and ii) inseminated with fresh ejaculated boar spermatozoa in medium supplemented or not with each exogenous oviductal protein to assess their effect on fertilization results. Finally, spermatozoa were incubated in Tyrode's medium (0, 1 and 20 h) supplemented or not with HSP-701A, HSP-90α or ezrin, to assess simultaneously sperm viability and acrosome status by means of flow cytometry. Although all proteins increased the ZP digestion time, this increase was lower than 1 min, being ezrin the protein with a stronger effect. Presence of heparin in the medium reinforced the ZP hardening effect of ezrin and HSP-701A up to one more min, but not HSP-90α nor PDI4. Sperm penetration, but not IVF efficiency, increased when gametes were cocultured in medium containing PDIA4 whereas sperm penetration and polyspermy rates decreased in presence of ezrin and HSP proteins. This reduction was not the result of a detrimental effect of proteins on sperm viability or acrosome reaction. In conclusion, addition of exogenous proteins detected in oviductal secretions to artificial media does not reproduce the effect of adding such secretions nor improve the final efficiency of the porcine IVF system.
Collapse
Affiliation(s)
- Soledad García-Martínez
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
10
|
Wu YQ, Rao M, Hu SF, Ke DD, Zhu CH, Xia W. Effect of transient scrotal hyperthermia on human sperm: an iTRAQ-based proteomic analysis. Reprod Biol Endocrinol 2020; 18:83. [PMID: 32787870 PMCID: PMC7422586 DOI: 10.1186/s12958-020-00640-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Through this prospective study, we aimed to explore the change of molecular modification after the transient scrotal hyperthermia on human sperm. METHODS Ten healthy subjects selected with strict screening criteria underwent testicular warming in a 43 °C water bath for 30 min a day for 10 consecutive days. Semen samples were collected 2 weeks before the first heat treatment and 6 weeks after the first heat treatment. Proteins from the samples were labeled with isobaric tags for relative and absolute quantitation and analyzed by two-dimensional liquid chromatography-tandem mass spectrometry. RESULTS In contrast to the control, of the 3446 proteins identified, 61 proteins were deregulated: 28 were up-regulated and 33 were down-regulated. Approximately 95% of the differentially expressed proteins were found to participate in spermatogenesis, fertilization, or other aspects of reproduction. In particular, the expression of sperm motility and energy metabolism-related proteins AKAP4, SPESP1, ODF1, ODF2, GAPDHS, and ACTRT2, validated by western blotting of the proteins obtained from human and mouse samples, tended to be reduced under scrotal hyperthermia. CONCLUSIONS The results indicated that the proteins AKAP4, ODF1, ODF2, GAPDHS, SPESP1, and ACTRT2, play an important role in the heat-induced reversible reduction in sperm concentration and motility and have the potential to be the biomarkers and clinical targets for scrotal heat treatment induced male infertility.
Collapse
Affiliation(s)
- Yan-Qing Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Meng Rao
- Department of reproduction and genetics, the first affiliated hospital of Kunming medical university, Kunming, People's Republic of China
| | - Shi-Fu Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dan-Dan Ke
- Department of Obstetrics and Gynecological Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chang-Hong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
11
|
Dutta S, Aoki K, Doungkamchan K, Tiemeyer M, Bovin N, Miller DJ. Sulfated Lewis A trisaccharide on oviduct membrane glycoproteins binds bovine sperm and lengthens sperm lifespan. J Biol Chem 2019; 294:13445-13463. [PMID: 31337705 DOI: 10.1074/jbc.ra119.007695] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/19/2019] [Indexed: 10/26/2022] Open
Abstract
A fraction of sperm deposited at mating or insemination reaches the oviduct isthmus, where sperm are retained and thereby form a reservoir. This reservoir delays capacitation, prevents polyspermy, selects a fertile population of sperm, and, foremost, increases sperm lifespan. The molecular interactions underlying the formation of a sperm reservoir are becoming clearer in mammals. Sperm lectins bind to oviductal glycans to form the reservoir. Herein, we found that the highest percentage of bovine sperm bound to the 3'-O-sulfated form of Lewis A (suLeA) trisaccharide and sialylated Lewis A and that fluoresceinated versions of each localized to receptors on the anterior head of the sperm. Following capacitation, binding to suLeA decreased significantly, a potential explanation for sperm release from the reservoir. MS and immunohistochemistry analyses indicated that suLeA motifs were present predominantly on O-linked glycans initiated by GalNAc residues, but no sialylated Lewis A was detected. To determine whether sperm binding to isolated suLeA in vitro could mimic in vivo sperm binding to oviduct cells and increase sperm longevity, we immobilized suLeA and incubated it with sperm. Using free-swimming sperm and sperm bound to immobilized laminin as controls, we observed that over 96 h, the viability of free-swimming sperm decreased to 10%, and that of sperm bound to immobilized laminin decreased to about 50%, whereas viability of sperm bound to immobilized suLeA was highest throughout the incubation and 60% at 96 h. These results indicate that bovine sperm binding to oviduct suLeA retains sperm for reservoir formation and extends sperm lifespan.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Kankanit Doungkamchan
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - David J Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
| |
Collapse
|
12
|
Blommaert D, Sergeant N, Delehedde M, Jouy N, Mitchell V, Franck T, Donnay I, Lejeune J, Serteyn D. Expression, localization, and concentration of A-kinase anchor protein 4 (AKAP4) and its precursor (proAKAP4) in equine semen: Promising marker correlated to the total and progressive motility in thawed spermatozoa. Theriogenology 2019; 131:52-60. [DOI: 10.1016/j.theriogenology.2019.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
|
13
|
Munuce MJ, Marini PE, Teijeiro JM. Expression profile and distribution of Annexin A1, A2 and A5 in human semen. Andrologia 2019; 51:e13224. [DOI: 10.1111/and.13224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/17/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- María José Munuce
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas; CONICET, Universidad Nacional de Rosario; Rosario Argentina
| | - Patricia Estela Marini
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas; CONICET, Universidad Nacional de Rosario; Rosario Argentina
- Consejo de Investigaciones de la Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET; Rosario Argentina
| | - Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas; CONICET, Universidad Nacional de Rosario; Rosario Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET; Rosario Argentina
| |
Collapse
|
14
|
Nixon B, Bernstein IR, Cafe SL, Delehedde M, Sergeant N, Anderson AL, Trigg NA, Eamens AL, Lord T, Dun MD, De Iuliis GN, Bromfield EG. A Kinase Anchor Protein 4 Is Vulnerable to Oxidative Adduction in Male Germ Cells. Front Cell Dev Biol 2019; 7:319. [PMID: 31921838 PMCID: PMC6933317 DOI: 10.3389/fcell.2019.00319] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is a leading causative agent in the defective sperm function associated with male infertility. Such stress commonly manifests via the accumulation of pathological levels of the electrophilic aldehyde, 4-hydroxynonenal (4HNE), generated as a result of lipid peroxidation. This highly reactive lipid aldehyde elicits a spectrum of cytotoxic lesions owing to its propensity to form stable adducts with biomolecules. Notably however, not all elements of the sperm proteome appear to display an equivalent vulnerability to 4HNE modification, with only a small number of putative targets having been identified to date. Here, we validate one such target of 4HNE adduction, A-Kinase Anchor Protein 4 (AKAP4); a major component of the sperm fibrous sheath responsible for regulating the signal transduction and metabolic pathways that support sperm motility and capacitation. Our data confirm that both the precursor (proAKAP4), and mature form of AKAP4, are conserved targets of 4HNE adduction in primary cultures of post-meiotic male germ cells (round spermatids) and in mature mouse and human spermatozoa. We further demonstrate that 4HNE treatment of round spermatids and mature spermatozoa results in a substantial reduction in the levels of both proAKAP4 and AKAP4 proteins. This response proved refractory to pharmacological inhibition of proteolysis, but coincided with an apparent increase in the degree of protein aggregation. Further, we demonstrate that 4HNE-mediated protein degradation and/or aggregation culminates in reduced levels of capacitation-associated phosphorylation in mature human spermatozoa, possibly due to dysregulation of the signaling framework assembled around the AKAP4 scaffold. Together, these findings suggest that AKAP4 plays an important role in the pathophysiological responses to 4HNE, thus strengthening the importance of AKAP4 as a biomarker of sperm quality, and providing the impetus for the design of an efficacious antioxidant-based intervention strategy to alleviate sperm dysfunction.
Collapse
Affiliation(s)
- Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Brett Nixon,
| | - Ilana R. Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Shenae L. Cafe
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | | | - Nicolas Sergeant
- SPQI – 4BioDx-Breeding Section, Lille, France
- University of Lille, INSERM UMRS, Lille, France
| | - Amanda L. Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Natalie A. Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrew L. Eamens
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Genes Encoding Mammalian Oviductal Proteins Involved in Fertilization are Subjected to Gene Death and Positive Selection. J Mol Evol 2018; 86:655-667. [PMID: 30456442 PMCID: PMC6267676 DOI: 10.1007/s00239-018-9878-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Oviductal proteins play an important role in mammalian fertilization, as proteins from seminal fluid. However, in contrast with the latter, their phylogenetic evolution has been poorly studied. Our objective was to study in 16 mammals the evolution of 16 genes that encode oviductal proteins involved in at least one of the following steps: (1) sperm–oviduct interaction, (2) acrosome reaction, and/or (3) sperm–zona pellucida interaction. Most genes were present in all studied mammals. However, some genes were lost along the evolution of mammals and found as pseudogenes: annexin A5 (ANXA5) and deleted in malignant brain tumor 1 (DMBT1) in tarsier; oviductin (OVGP1) in megabat; and probably progestagen-associated endometrial protein (PAEP) in tarsier, mouse, rat, rabbit, dolphin, and megabat; prostaglandin D2 synthase (PTGDS) in microbat; and plasminogen (PLG) in megabat. Four genes [ANXA1, ANXA4, ANXA5, and heat shock 70 kDa protein 5 (HSPA5)] showed branch-site positive selection, whereas for seven genes [ANXA2, lactotransferrin (LTF), OVGP1, PLG, S100 calcium-binding protein A11 (S100A11), Sperm adhesion molecule 1 (SPAM1), and osteopontin (SPP1)] branch-site model and model-site positive selection were observed. These results strongly suggest that genes encoding oviductal proteins that are known to be important for gamete fertilization are subjected to positive selection during evolution, as numerous genes encoding proteins from mammalian seminal fluid. This suggests that such a rapid evolution may have as a consequence that two isolated populations become separate species more rapidly.
Collapse
|
16
|
Jumeau F, Sigala J, Dossou-Gbete F, Frimat K, Barbotin AL, Buée L, Béhal H, Sergeant N, Mitchell V. A-kinase anchor protein 4 precursor (pro-AKAP4) in human spermatozoa. Andrology 2018; 6:854-859. [DOI: 10.1111/andr.12524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- F. Jumeau
- EA 4308 - GQG - Gametogenesis and Gamete Quality; University of Lille; Lille France
- CHU Lille; Reproductive Biology - Spermiology - CECOS Institute; Lille France
- INSERM, UMR-S 1172, Alzheimer & Tauopathies; CHU Lille; University of Lille; Lille France
| | - J. Sigala
- EA 4308 - GQG - Gametogenesis and Gamete Quality; University of Lille; Lille France
- CHU Lille; Reproductive Biology - Spermiology - CECOS Institute; Lille France
- INSERM, UMR-S 1172, Alzheimer & Tauopathies; CHU Lille; University of Lille; Lille France
| | - F. Dossou-Gbete
- EA 4308 - GQG - Gametogenesis and Gamete Quality; University of Lille; Lille France
- CHU Lille; Reproductive Biology - Spermiology - CECOS Institute; Lille France
- INSERM, UMR-S 1172, Alzheimer & Tauopathies; CHU Lille; University of Lille; Lille France
| | - K. Frimat
- EA 4308 - GQG - Gametogenesis and Gamete Quality; University of Lille; Lille France
- INSERM, UMR-S 1172, Alzheimer & Tauopathies; CHU Lille; University of Lille; Lille France
| | - A. L. Barbotin
- EA 4308 - GQG - Gametogenesis and Gamete Quality; University of Lille; Lille France
- CHU Lille; Reproductive Biology - Spermiology - CECOS Institute; Lille France
| | - L. Buée
- INSERM, UMR-S 1172, Alzheimer & Tauopathies; CHU Lille; University of Lille; Lille France
| | - H. Béhal
- CHU Lille; EA 2694 - Santé Publique: Épidémiologie et Qualité des Soins; University of Lille; Lille France
| | - N. Sergeant
- INSERM, UMR-S 1172, Alzheimer & Tauopathies; CHU Lille; University of Lille; Lille France
| | - V. Mitchell
- EA 4308 - GQG - Gametogenesis and Gamete Quality; University of Lille; Lille France
- CHU Lille; Reproductive Biology - Spermiology - CECOS Institute; Lille France
| |
Collapse
|
17
|
Xinhong L, Zhen L, Fu J, Wang L, Yang Q, Li P, Li Y. Quantitative proteomic profiling indicates the difference in reproductive efficiency between Meishan and Duroc boar spermatozoa. Theriogenology 2018; 116:71-82. [PMID: 29778923 DOI: 10.1016/j.theriogenology.2018.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 02/09/2023]
Abstract
The reproductive efficiency of Meishan pigs is higher than that of Duroc pigs, but the underlying molecular mechanism for this disparity remains unclear. No systematic quantitative proteomics studies, comparing global proteins in Meishan and Duroc boar spermatozoa have been reported. Therefore, we applied iTRAQ labeling coupled with mass spectrometry, and analyzed the differences in proteins between Meishan and Duroc sperm. In the present study, a total of 1597 proteins were quantified. Of these proteins, 190 showed statistically significant fold changes between Meishan and Duroc spermatozoa. Bioinformatics analysis revealed that these differentially abundant proteins were primarily involved in energy metabolism, sperm motility, capacitation and sperm-oocyte binding. Remarkably, SPAG6, ACR, LDHC, CALM, ACE and ENO1 which are positively related to high litter size, were more abundant in Meishan spermatozoa than in Duroc spermatozoa. Moreover, APOA1, NDUFS2 and RAB2A which are negatively related to farrowing rates, were less abundant in Meishan spermatozoa than in Duroc spermatozoa. Interestingly, essential enzymes in Glycolysis/Gluconeogenesis, such as HK1, ALDH2, LDHA and LDHC, were markedly up-regulated in Meishan spermatozoa compared to Duroc spermatozoa. In addition, we first demonstrated that the levels of protein phosphorylation in Meishan spermatozoa were higher than those in Duroc. Taken together, the physiologically and functionally differential proteins may be one main reason for explaining the high reproductive efficiency of Meishan boar.
Collapse
Affiliation(s)
- Li Xinhong
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Linqing Zhen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jieli Fu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lirui Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiangzhen Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peifei Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhua Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Roldán ML, Teijeiro JM, Ruiz Álvarez J, Marini PE. Sperm binding to porcine oviductal cells is mediated by SRCR domains contained in DMBT1. J Cell Biochem 2018; 119:3755-3762. [PMID: 29240248 DOI: 10.1002/jcb.26614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/07/2017] [Indexed: 11/10/2022]
Abstract
The oviduct is an organ in which a subpopulation of sperm is stored in a reservoir, preserving its fertilizing potential. In porcine, two oviductal proteins have been identified in relation to sperm binding, Annexin A2 and Deleted in Malignant Brain Tumor 1 (DMBT1). DMBT1 is a multifunctional, multidomain glycoprotein, and the characteristics of all of its domains, as well as its carbohydrates, make them candidates for sperm binding. In this work, we challenge sperm for binding to pig oviductal cells on primary culture, after treatment with antibodies specific for the different domains present in DMBT1. Only anti-SRCR antibodies produced inhibition of sperm binding to cells. Thus, SRCR is the main domain in DMBT1 promoted sperm binding to form the reservoir in the oviduct, and this function is probably elicited through the polypeptide itself.
Collapse
Affiliation(s)
- María Lorena Roldán
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Jimena Ruiz Álvarez
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Patricia Estela Marini
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina.,Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.,Consejo de Investigaciones de la Universidad Nacional de Rosario (CIUNR), Rosario, Argentina
| |
Collapse
|
19
|
Teijeiro JM, Marini PE, Bragado MJ, Garcia-Marin LJ. Protein kinase C activity in boar sperm. Andrology 2017; 5:381-391. [PMID: 28187502 DOI: 10.1111/andr.12312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/16/2022]
Abstract
Male germ cells undergo different processes within the female reproductive tract to successfully fertilize the oocyte. These processes are triggered by different extracellular stimuli leading to activation of protein phosphorylation. Protein kinase C (PKC) is a key regulatory enzyme in signal transduction mechanisms involved in many cellular processes. Studies in boar sperm demonstrated a role for PKC in the intracellular signaling involved in motility and cellular volume regulation. Experiments using phorbol 12-myristate 13-acetate (PMA) showed increases in the Serine/Threonine phosphorylation of substrates downstream of PKC in boar sperm. In order to gain knowledge about those cellular processes regulated by PKC, we evaluate the effects of PMA on boar sperm motility, lipid organization of plasma membrane, integrity of acrosome membrane and sperm agglutination. Also, we investigate the crosstalk between PKA and PKC intracellular pathways in spermatozoa from this species. The results presented here reveal a participation of PKC in sperm motility regulation and membrane fluidity changes, which is probably associated to acrosome reaction and to agglutination. Also, we show the existence of a hierarchy in the kinases pathway. Previous works on boar sperm suggest a pathway in which PKA is positioned upstream to PKC and this new results support such model.
Collapse
Affiliation(s)
- J M Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - P E Marini
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.,Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Rosario, Argentina.,Consejo de Investigaciones de la Universidad Nacional de Rosario, Rosario, Argentina
| | - M J Bragado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), School of Veterinary Medicine, University of Extremadura, Caceres, Spain
| | - L J Garcia-Marin
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), School of Veterinary Medicine, University of Extremadura, Caceres, Spain
| |
Collapse
|
20
|
Rizos D, Maillo V, Sánchez-Calabuig MJ, Lonergan P. The Consequences of Maternal-Embryonic Cross Talk During the Periconception Period on Subsequent Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:69-86. [PMID: 28864985 DOI: 10.1007/978-3-319-62414-3_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The periconception period comprises the final maturation of sperm and the processes of fertilization and early embryonic development, which take place in the oviduct. The final goal of these important events is to lead to establishment of pregnancy leading to the birth of healthy offspring. Studies in rodents and domestic animals have demonstrated that environmental conditions experienced during early development affect critical aspects of future growth, metabolism, gene expression, and physiology. Similarly, in vitro culture of embryos can be associated with changes in fetal growth, gene expression and regulation, and postnatal behavior.In the oviduct, the cross talk between the mother and gametes/embryo begins after ovulation, between the oocyte and the female reproductive tract, and continues with the sperm and the early embryo after successful fertilization. These signals are mainly the result of direct interaction of gametes and embryos with oviductal and endometrial cells, influencing the microenvironment at the specific location. Identifying and understanding the mechanisms involved in this cross talk during the critical period of early reproductive events leading to pregnancy establishment could potentially lead to improvements in current in vitro embryo production systems in domestic mammals and humans. In this review, we discuss current knowledge of the short- and long-term consequences of in vitro embryo production on embryo development.
Collapse
Affiliation(s)
- Dimitrios Rizos
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km. 5,9, 28040, Madrid, Spain.
| | - Veronica Maillo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km. 5,9, 28040, Madrid, Spain
| | - Maria-Jesús Sánchez-Calabuig
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km. 5,9, 28040, Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
21
|
Rahamim Ben-Navi L, Almog T, Yao Z, Seger R, Naor Z. A-Kinase Anchoring Protein 4 (AKAP4) is an ERK1/2 substrate and a switch molecule between cAMP/PKA and PKC/ERK1/2 in human spermatozoa. Sci Rep 2016; 6:37922. [PMID: 27901058 PMCID: PMC5128789 DOI: 10.1038/srep37922] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022] Open
Abstract
Mammalian spermatozoa undergo capacitation and acrosome reaction in order to fertilize the egg. The PKC-ERK1/2 pathway plays an important role in human spermatozoa motility, capacitation and the acrosome reaction. Here we demonstrate that ERK1/2 phosphorylates proAKAP4 on Thr265 in human spermatozoa in vitro and in vivo. Cyclic AMP (cAMP) had no effect on ERK1/2 activity in human spermatozoa, but stimulated the MAPK in mouse pituitary LβT2 gonadotrope cells. cAMP via PKA attenuates PKC-dependent ERK1/2 activation only in the presence of proAKAP4. St-HT31, which disrupts PKA-regulatory subunit II (PKA-RII) binding to AKAP abrogates the inhibitory effect of cAMP in human spermatozoa and in HEK293T cells expressing proAKAP4. In transfected HEK293T cells, PMA relocated proAKAP4, but not proAKAP4-T265A to the Golgi in an ERK1/2-dependnet manner. Similarly, AKAP4 is localized to the spermatozoa principal piece and is relocated to the mid-piece and the postacrosomal region by PMA. Furthermore, using capacitated sperm we found that cAMP reduced PMA-induced ERK1/2 activation and acrosome reaction. Thus, the physiological role of the negative crosstalk between the cAMP/PKA/AKAP4 and the PKC/ERK1/2 pathways is to regulate capacitation and acrosome reaction.
Collapse
Affiliation(s)
- Liat Rahamim Ben-Navi
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Tal Almog
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Zhong Yao
- Department of Biological Regulation, the Weizmann Institute of Science Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, the Weizmann Institute of Science Rehovot 76100, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
22
|
Li HM, Guo K, Yu XY, Yu Z, Xu P. Expression and clinical significance of A-kinase anchor protein 4 in lung adenocarcinoma tissue. Thorac Cancer 2015; 7:273-8. [PMID: 27148411 PMCID: PMC4846614 DOI: 10.1111/1759-7714.12324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The A-kinase anchor proteins (AKAP) are a growing family of scaffolding proteins involved in the occurrence, proliferation, and metastasis of tumors by controlling intracellular signals. In this study, the expression and significance of AKAP4 were analyzed in patients with lung adenocarcinoma and adjacent non-cancerous tissues. METHODS Using reverse transcriptase-polymerase chain reaction and Western blot, AKAP4 messenger ribonucleic acid (mRNA) and protein expression levels were measured in 108 cases of lung adenocarcinoma and adjacent non-cancerous tissues. RESULTS AKAP4 mRNA and protein were expressed in lung adenocarcinoma tissues, but not in adjacent non-cancerous tissues. The expression of AKAP4 mRNA and protein was closely associated with lymphatic metastasis (P < 0.05), but had no relationship with stage, differentiation degree, gender, age or smoking (P > 0.05). AKAP4 expression had an adverse effect on the overall survival rate (P < 0.05). CONCLUSION The expression of AKAP4 was high in lung adenocarcinoma tissue, which may be closely related to the lymphatic metastasis of lung adenocarcinoma. AKAP4 may be a novel lung adenocarcinoma molecule marker and a predictor of poor prognosis.
Collapse
Affiliation(s)
- Hong-Mei Li
- Cancer Center The Affiliated Hospital of Qingdao University Qingdao China
| | - Kang Guo
- Medical College Qingdao University Qingdao China
| | - Xiao-Yun Yu
- The Affiliated Hospital of Qingdao University Qingdao China
| | - Zhuang Yu
- Cancer Center The Affiliated Hospital of Qingdao University Qingdao China
| | - Ping Xu
- Medical College Qingdao University Qingdao China
| |
Collapse
|
23
|
Coy P, Yanagimachi R. The Common and Species-Specific Roles of Oviductal Proteins in Mammalian Fertilization and Embryo Development. Bioscience 2015. [DOI: 10.1093/biosci/biv119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Miller DJ. Regulation of Sperm Function by Oviduct Fluid and the Epithelium: Insight into the Role of Glycans. Reprod Domest Anim 2015; 50 Suppl 2:31-9. [DOI: 10.1111/rda.12570] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 01/18/2023]
Affiliation(s)
- DJ Miller
- Department of Animal Sciences; University of Illinois; Urbana-Champaign IL USA
| |
Collapse
|
25
|
Silva E, Kadirvel G, Jiang R, Bovin N, Miller D. Multiple proteins from ejaculated and epididymal porcine spermatozoa bind glycan motifs found in the oviduct. Andrology 2014; 2:763-71. [DOI: 10.1111/j.2047-2927.2014.00249.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/03/2014] [Accepted: 06/20/2014] [Indexed: 02/03/2023]
Affiliation(s)
- E. Silva
- Department of Animal Sciences; University of Illinois; Urbana IL USA
| | - G. Kadirvel
- Department of Animal Sciences; University of Illinois; Urbana IL USA
| | - R. Jiang
- College of Life Sciences; Zhejiang University; Hangzhou China
| | - N. Bovin
- Shemyakin Institute of Bioorganic Chemistry RAS; Moscow Russia
| | - D. Miller
- Department of Animal Sciences; University of Illinois; Urbana IL USA
| |
Collapse
|
26
|
Abstract
SummaryThe oviduct is a dynamic organ in which final gamete maturation, fertilization and early embryo development take place. It is considered to be a sterile site; however the mechanism for sterility maintenance is still unknown. S100A7 is an anti-microbial peptide that has been reported in human reproductive tissues such as prostate, testicle, ovary, normal cervical epithelium and sperm. The current work reports the presence of S100A7 in the Fallopian tube and its localization at the apical surface of epithelial cells. For comparison, porcine S100A7 was used for antibody development and search for peptide in reproductive tissues. Although present in boar seminal vesicles and seminal plasma, S100A7 was not detected on female porcine organs. Also, in contrast with the human protein, porcine S100A7 did not show anti-microbial activity under the conditions tested. Phylogenetic analyses showed high divergence of porcine S100A7 from human, primate, bovine, ovine and equine sequences, being the murine sequence at a most distant branch. The differences in sequence homology, Escherichia coli-cidal activity, detectable presence and localization of S100A7 from human and pig, suggest that there are possible different functions in each organism.
Collapse
|
27
|
Roldán ML, Marini PE. First evidence of the interaction between deleted in malignant brain tumor 1 and galectin-3 in the mammalian oviduct. Histochem Cell Biol 2013; 141:181-90. [PMID: 24065275 DOI: 10.1007/s00418-013-1145-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2013] [Indexed: 12/26/2022]
Abstract
The oviduct supports the transport and final maturation of gametes, and harbors fertilization and early embryo development. The oviductal epithelium is responsible for providing the correct environment for these processes. Deleted in malignant brain tumor 1 (DMBT1) is expressed by multiple organisms and several cell types, and the interaction of the rabbit ortholog of DMBT1 with galectin-3 (gal-3) modulates the polarity of epithelial cells. This interaction has not yet been shown in locations other than rabbit kidney and human-cultured endothelial cells. DMBT1 and gal-3 also protect epithelial layers from pathogens and trauma, and are innate immunity components. DMBT1 has been detected in the porcine oviduct, and gal-3 has been reported in the Fallopian tube and in the cow oviduct. Interaction between both proteins would show a probable physiological function in the female reproductive tract. This work describes the presence and co-localization of DMBT1 and gal-3 mainly in the apical region of the epithelial cells of the Fallopian tube and the porcine oviduct, and co-immunoprecipitation in membrane-enriched epithelial cell extracts from the porcine oviduct. The findings strongly support a functional interaction in the mammalian oviduct, suggestive of a role on epithelial protection and homeostasis, which might be related to epithelium-gamete interaction.
Collapse
Affiliation(s)
- M L Roldán
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | | |
Collapse
|
28
|
Ambruosi B, Accogli G, Douet C, Canepa S, Pascal G, Monget P, Moros C, Holmskov U, Mollenhauer J, Robbe-Masselot C, Vidal O, Desantis S, Goudet G. Deleted in malignant brain tumor 1 is secreted in the oviduct and involved in the mechanism of fertilization in equine and porcine species. Reproduction 2013; 146:119-33. [DOI: 10.1530/rep-13-0007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oviductal environment affects preparation of gametes for fertilization, fertilization itself, and subsequent embryonic development. The aim of this study was to evaluate the effect of oviductal fluid and the possible involvement of deleted in malignant brain tumor 1 (DMBT1) on IVF in porcine and equine species that represent divergent IVF models. We first performed IVF after pre-incubation of oocytes with or without oviductal fluid supplemented or not with antibodies directed against DMBT1. We showed that oviductal fluid induces an increase in the monospermic fertilization rate and that this effect is canceled by the addition of antibodies, in both porcine and equine species. Moreover, pre-incubation of oocytes with recombinant DMBT1 induces an increase in the monospermic fertilization rate in the pig, confirming an involvement of DMBT1 in the fertilization process. The presence of DMBT1 in the oviduct at different stages of the estrus cycle was shown by western blot and confirmed by immunohistochemical analysis of ampulla and isthmus regions. The presence of DMBT1 in cumulus–oocyte complexes was shown by western blot analysis, and the localization of DMBT1 in the zona pellucida and cytoplasm of equine and porcine oocytes was observed using immunofluorescence analysis and confocal microscopy. Moreover, we showed an interaction between DMBT1 and porcine spermatozoa using surface plasmon resonance studies. Finally, a bioinformatic and phylogenetic analysis allowed us to identify the DMBT1 protein as well as a DMBT1-like protein in several mammals. Our results strongly suggest an important role of DMBT1 in the process of fertilization.
Collapse
|
29
|
Kadirvel G, Machado SA, Korneli C, Collins E, Miller P, Bess KN, Aoki K, Tiemeyer M, Bovin N, Miller DJ. Porcine sperm bind to specific 6-sialylated biantennary glycans to form the oviduct reservoir. Biol Reprod 2012; 87:147. [PMID: 23115267 DOI: 10.1095/biolreprod.112.103879] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After mating, many female mammals store a subpopulation of sperm in the lower portion of the oviduct, forming a reservoir. The reservoir lengthens sperm lifespan, regulates sperm capacitation, controls polyspermy, and selects normal sperm. It is believed that sperm bind to glycans on the oviduct epithelium to form the reservoir, but the specific adhesion molecules that retain sperm are unclear. Herein, using a glycan array to test 377 glycans for their ability to bind porcine sperm, we found two glycan motifs in common among all glycans with sperm-binding ability: the Lewis X trisaccharide and biantennary structures containing a mannose core with 6-sialylated lactosamine at one or more termini. Binding to both motifs was specific; isomers of each motif did not bind sperm. Further work focused on sialylated lactosamine. Sialylated lactosamine was found abundantly on the apical side of epithelial cells collected from the oviduct isthmus, among N-linked and O-linked glycans. Sialylated lactosamine bound to the head of sperm, the region that interacts with the oviduct epithelium. After capacitation, sperm lost affinity for sialylated lactosamine. Receptor modification may contribute to release from the reservoir so that sperm can move to the site of fertilization. Sialylated lactosamine was required for sperm to bind oviduct cells. Simbucus nigra agglutinin or an antibody specific to sialylated lactosamine with a preference for Neu5Acalpha2-6Gal rather than Neu5Acalpha2-3Gal reduced sperm binding to oviduct isthmic cells, as did occupying putative receptors on sperm with sialylated biantennary glycans. These results demonstrate that sperm binding to oviduct 6-sialylated biantennary glycans is necessary for normal adhesion to the oviduct.
Collapse
Affiliation(s)
- Govindasamy Kadirvel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|