1
|
Rytkönen KT, Adossa N, Zúñiga Norman S, Lönnberg T, Poutanen M, Elo LL. Gene Regulatory Network Analysis of Decidual Stromal Cells and Natural Killer Cells. Reprod Sci 2024; 31:3159-3174. [PMID: 39090334 PMCID: PMC11438719 DOI: 10.1007/s43032-024-01653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Human reproductive success relies on the proper differentiation of the uterine endometrium to facilitate implantation, formation of the placenta, and pregnancy. This process involves two critical types of decidual uterine cells: endometrial/decidual stromal cells (dS) and uterine/decidual natural killer (dNK) cells. To better understand the transcription factors governing the in vivo functions of these cells, we analyzed single-cell transcriptomics data from first-trimester terminations of pregnancy, and for the first time conducted gene regulatory network analysis of dS and dNK cell subpopulations. Our analysis revealed stromal cell populations that corresponded to previously described in vitro decidualized cells and senescent decidual cells. We discovered new decidualization driving transcription factors of stromal cells for early pregnancy, including DDIT3 and BRF2, which regulate oxidative stress protection. For dNK cells, we identified transcription factors involved in the immunotolerant (dNK1) subpopulation, including IRX3 and RELB, which repress the NFKB pathway. In contrast, for the less immunotolerant (dNK3) population we predicted TBX21 (T-bet) and IRF2-mediated upregulation of the interferon pathway. To determine the clinical relevance of our findings, we tested the overrepresentation of the predicted transcription factors target genes among cell type-specific regulated genes from pregnancy disorders, such as recurrent pregnancy loss and preeclampsia. We observed that the predicted decidualized stromal and dNK1-specific transcription factor target genes were enriched with the genes downregulated in pregnancy disorders, whereas the predicted dNK3-specific targets were enriched with genes upregulated in pregnancy disorders. Our findings emphasize the importance of stress tolerance pathways in stromal cell decidualization and immunotolerance promoting regulators in dNK differentiation.
Collapse
Affiliation(s)
- Kalle T Rytkönen
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland.
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Nigatu Adossa
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
| | - Sebastián Zúñiga Norman
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Hai L, Maurya VK, DeMayo FJ, Lydon JP. Establishment of Murine Pregnancy Requires the Promyelocytic Leukemia Zinc Finger Transcription Factor. Int J Mol Sci 2024; 25:3451. [PMID: 38542422 PMCID: PMC10970820 DOI: 10.3390/ijms25063451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Using an established human primary cell culture model, we previously demonstrated that the promyelocytic leukemia zinc finger (PLZF) transcription factor is a direct target of the progesterone receptor (PGR) and is essential for progestin-dependent decidualization of human endometrial stromal cells (HESCs). These in vitro findings were supported by immunohistochemical analysis of human endometrial tissue biopsies, which showed that the strongest immunoreactivity for endometrial PLZF is detected during the progesterone (P4)-dominant secretory phase of the menstrual cycle. While these human studies provided critical clinical support for the important role of PLZF in P4-dependent HESC decidualization, functional validation in vivo was not possible due to the absence of suitable animal models. To address this deficiency, we recently generated a conditional knockout mouse model in which PLZF is ablated in PGR-positive cells of the mouse (Plzf d/d). The Plzf d/d female was phenotypically analyzed using immunoblotting, real-time PCR, and immunohistochemistry. Reproductive function was tested using the timed natural pregnancy model as well as the artificial decidual response assay. Even though ovarian activity is not affected, female Plzf d/d mice exhibit an infertility phenotype due to an inability of the embryo to implant into the Plzf d/d endometrium. Initial cellular and molecular phenotyping investigations reveal that the Plzf d/d endometrium is unable to develop a transient receptive state, which is reflected at the molecular level by a blunted response to P4 exposure with a concomitant unopposed response to 17-β estradiol. In addition to a defect in P4-dependent receptivity, the Plzf d/d endometrium fails to undergo decidualization in response to an artificial decidual stimulus, providing the in vivo validation for our earlier HESC culture findings. Collectively, our new Plzf d/d mouse model underscores the physiological importance of the PLZF transcription factor not only in endometrial stromal cell decidualization but also uterine receptivity, two uterine cellular processes that are indispensable for the establishment of pregnancy.
Collapse
Affiliation(s)
- Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| |
Collapse
|
3
|
Sirohi VK, Medrano TI, Kannan A, Bagchi IC, Cooke PS. Uterine-specific Ezh2 deletion enhances stromal cell senescence and impairs placentation, resulting in pregnancy loss. iScience 2023; 26:107028. [PMID: 37360688 PMCID: PMC10285549 DOI: 10.1016/j.isci.2023.107028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Maternal uterine remodeling facilitates embryo implantation, stromal cell decidualization and placentation, and perturbation of these processes may cause pregnancy loss. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that epigenetically represses gene transcription; loss of uterine EZH2 affects endometrial physiology and induces infertility. We utilized a uterine Ezh2 conditional knockout (cKO) mouse to determine EZH2's role in pregnancy progression. Despite normal fertilization and implantation, embryo resorption occurred mid-gestation in Ezh2cKO mice, accompanied by compromised decidualization and placentation. Western blot analysis revealed Ezh2-deficient stromal cells have reduced amounts of the histone methylation mark H3K27me3, causing upregulation of senescence markers p21 and p16 and indicating that enhanced stromal cell senescence likely impairs decidualization. Placentas from Ezh2cKO dams on gestation day (GD) 12 show architectural defects, including mislocalization of spongiotrophoblasts and reduced vascularization. In summary, uterine Ezh2 loss impairs decidualization, increases decidual senescence, and alters trophoblast differentiation, leading to pregnancy loss.
Collapse
Affiliation(s)
- Vijay K. Sirohi
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Theresa I. Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Mathew V, Mei A, Giwa H, Cheong A, Chander A, Zou A, Blanton RM, Kashpur O, Cui W, Slonim D, Mahmoud T, O'Tierney-Ginn P, Mager J, Draper I, Wallingford MC. hnRNPL expression dynamics in the embryo and placenta. Gene Expr Patterns 2023; 48:119319. [PMID: 37148985 PMCID: PMC10330435 DOI: 10.1016/j.gep.2023.119319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a conserved RNA binding protein (RBP) that plays an important role in the alternative splicing of gene transcripts, and thus in the generation of specific protein isoforms. Global deficiency in hnRNPL in mice results in preimplantation embryonic lethality at embryonic day (E) 3.5. To begin to understand the contribution of hnRNPL-regulated pathways in the normal development of the embryo and placenta, we determined hnRNPL expression profile and subcellular localization throughout development. Proteome and Western blot analyses were employed to determine hnRNPL abundance between E3.5 and E17.5. Histological analyses supported that the embryo and implantation site display distinct hnRNPL localization patterns. In the fully developed mouse placenta, nuclear hnRNPL was observed broadly in trophoblasts, whereas within the implantation site a discrete subset of cells showed hnRNPL outside the nucleus. In the first-trimester human placenta, hnRNPL was detected in the undifferentiated cytotrophoblasts, suggesting a role for this factor in trophoblast progenitors. Parallel in vitro studies utilizing Htr8 and Jeg3 cell lines confirmed expression of hnRNPL in cellular models of human trophoblasts. These studies [support] coordinated regulation of hnRNPL during the normal developmental program in the mammalian embryo and placenta.
Collapse
Affiliation(s)
- Vineetha Mathew
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Ariel Mei
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Hamida Giwa
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Agnes Cheong
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ashmita Chander
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Aaron Zou
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Olga Kashpur
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Donna Slonim
- Department of Computer Science, Tufts University, 177 College Avenue, Medford, MA, 02155, USA
| | - Taysir Mahmoud
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Perrie O'Tierney-Ginn
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Isabelle Draper
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Mary C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA; Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
5
|
Moldovan GE, Song Y, Kim TH, Su RW, Jeong JW, Gruzdev A, Spencer TE, Fazleabas AT. Notch effector recombination signal binding protein for immunoglobulin kappa J signaling is required for the initiation of endometrial stromal cell decidualization†. Biol Reprod 2022; 107:977-983. [PMID: 35835555 PMCID: PMC9562121 DOI: 10.1093/biolre/ioac140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
The Notch signaling pathway is required for reproductive success. This pathway activates its transcriptional effector, recombination signal binding protein for immunoglobulin kappa J (Rbpj), to induce transcription of its target genes. This signaling pathway is required for successful decidualization, implantation, and uterine repair following parturition. To identify the compartmental specific roles of the Notch signaling pathway in the establishment of pregnancy, we generated epithelial and decidual stromal cell specific knockouts of Rbpj utilizing lactoferrin iCre and Prl8A2 iCre, respectively. Both conditional knockout mouse models were fertile. The Rbpj epithelial knockout mice displayed 27% resorption sites at E15.5, but this did not significantly impact the number of live born pups compared with controls. In addition, the Rbpj epithelial knockout mice displayed increased estrogen signaling in their stromal compartment. Given that both mouse models exhibited fertility comparable to control animals, the epithelial and stromal specific nature of the iCre recombinases utilized, and previously published Rbpj total uterine knockout mouse models, we conclude that Notch effector Rbpj signaling is required at the initiation of pregnancy to support decidualization in stromal cells, but that Rbpj is not required in the epithelial compartment nor is it required for post-implantation pregnancy success.
Collapse
Affiliation(s)
- Genna E Moldovan
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Yong Song
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ren-Wei Su
- Department of Histology and Embryology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Artiom Gruzdev
- Knockout Mouse Core Facility, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Thomas E Spencer
- Divison of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
6
|
Lee SH, Lim CL, Shen W, Tan SMX, Woo ARE, Yap YHY, Sian CAS, Goh WWB, Yu WP, Li L, Lin VCL. Activation function 1 of progesterone receptor is required for progesterone antagonism of oestrogen action in the uterus. BMC Biol 2022; 20:222. [PMID: 36199058 PMCID: PMC9535881 DOI: 10.1186/s12915-022-01410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Progesterone receptor (PGR) is a master regulator of uterine function through antagonistic and synergistic interplays with oestrogen receptors. PGR action is primarily mediated by activation functions AF1 and AF2, but their physiological significance is unknown. RESULTS We report the first study of AF1 function in mice. The AF1 mutant mice are infertile with impaired implantation and decidualization. This is associated with a delay in the cessation of epithelial proliferation and in the initiation of stromal proliferation at preimplantation. Despite tissue selective effect on PGR target genes, AF1 mutations caused global loss of the antioestrogenic activity of progesterone in both pregnant and ovariectomized models. Importantly, the study provides evidence that PGR can exert an antioestrogenic effect by genomic inhibition of Esr1 and Greb1 expression. ChIP-Seq data mining reveals intermingled PGR and ESR1 binding on Esr1 and Greb1 gene enhancers. Chromatin conformation analysis shows reduced interactions in these genes' loci in the mutant, coinciding with their upregulations. CONCLUSION AF1 mediates genomic inhibition of ESR1 action globally whilst it also has tissue-selective effect on PGR target genes.
Collapse
Affiliation(s)
- Shi Hao Lee
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Chew Leng Lim
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wei Shen
- grid.35155.370000 0004 1790 4137College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Samuel Ming Xuan Tan
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Amanda Rui En Woo
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Yeannie H. Y. Yap
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore ,grid.459705.a0000 0004 0366 8575Present Address: Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor Malaysia
| | - Caitlyn Ang Su Sian
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wilson Wen Bin Goh
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wei-Ping Yu
- grid.185448.40000 0004 0637 0221Animal Gene Editing Laboratory (AGEL), Biological Resource Centre, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore ,grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore
| | - Li Li
- College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Valerie C. L. Lin
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| |
Collapse
|
7
|
Grund SC, Wu XX, Müller D, Wennemuth G, Grümmer R. Impact of endometrial claudin-3 deletion on murine implantation, decidualization and embryo development. Biol Reprod 2022; 107:984-997. [PMID: 35863769 DOI: 10.1093/biolre/ioac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
The composition of cell contacts in the endometrium plays an important role in the process of embryo implantation and the establishment of pregnancy. In previous studies, we showed an induction of the tight junction protein claudin-3 in the developing decidua from 6.5 dpc onwards. To evaluate the role if this specific claudin-3 distribution, we here evaluated the effect of an endometrial claudin-3 deletion in implantation and embryo development in claudin-3 knockout mice. Claudin-3 KO mice were fertile but revealed a slightly reduced amount of implantation sites as well as of litter size. Though implantation sites showed morphologically regularly developed embryos and deciduas, depth of ectoplacental cone invasion was reduced in tendency compared to controls. The weight of the implantation sites on 6.5 and 8.5 dpc as well as the weight of the embryos on 17.5 dpc, but not of the placentas, was significantly reduced in claudin-3 KO mice due to a maternal effect. This could be due to an impairment of decidualization as substantiated by a downregulation of the transcription of various decidua-associated genes in the early implantation sites of claudin-3 KO mice. The fact that claudin-3 KO mice are nevertheless fertile possibly may be compensated by the presence of other claudins like claudin-4 and claudin-10.
Collapse
Affiliation(s)
- Susanne C Grund
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Xin Xin Wu
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ruth Grümmer
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
8
|
Liu M, Deng W, Tang L, Liu M, Bao H, Guo C, Zhang C, Lu J, Wang H, Lu Z, Kong S. Menin directs regionalized decidual transformation through epigenetically setting PTX3 to balance FGF and BMP signaling. Nat Commun 2022; 13:1006. [PMID: 35194044 PMCID: PMC8864016 DOI: 10.1038/s41467-022-28657-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
During decidualization in rodents, uterine stroma undergoes extensive reprograming into distinct cells, forming the discrete regions defined as the primary decidual zone (PDZ), the secondary decidual zone (SDZ) and the layer of undifferentiated stromal cells respectively. Here we show that uterine deletion of Men1, a member of the histone H3K4 methyltransferase complex, disrupts the terminal differentiation of stroma, resulting in chaotic decidualization and pregnancy failure. Genome-wide epigenetic profile reveals that Men1 binding in chromatin recapitulates H3K4me3 distribution. Further transcriptomic investigation demonstrates that Men1 directly regulates the expression of PTX3, an extra-cellular trap for FGF2 in decidual cells. Decreased Ptx3 upon Men1 ablation leads to aberrant activation of ERK1/2 in the SDZ due to the unrestrained FGF2 signal emanated from undifferentiated stromal cells, which blunt BMP2 induction and decidualization. In brief, our study provides genetic and molecular mechanisms for epigenetic rewiring mediated decidual regionalization by Men1 and sheds new light on pregnancy maintenance. The decidualization of endometrial stroma is critical for pregnancy maintenance. Here the authors reveal that Menin ensures the expression of PTX3 through H3K4me3 modification, to balance the BMP and FGF signal in the decidua for normal pregnancy.
Collapse
Affiliation(s)
- Mengying Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lu Tang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meng Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chuanhui Guo
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Changxian Zhang
- Centre de Recherche en Cancérologie de Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Lyon, F-69000, France
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China. .,Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Kang J, Liu Y, Zhang Y, Yan W, Wu Y, Su R. The Influence of the Prolactins on the Development of the Uterus in Neonatal Mice. Front Vet Sci 2022; 9:818827. [PMID: 35252420 PMCID: PMC8891943 DOI: 10.3389/fvets.2022.818827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The endometrial gland is one of the most important components of the mammalian uterus. However, few studies have been conducted on the regulatory mechanisms of adenogenesis during the development of endometrium. In the present study, we detected the genes expression of 35 different prolactin family members (PRLs) together with the prolactin receptor (PRL-R) in the endometrium of neonatal mice along with the adenogenesis process, to address which prolactin-like genes play a key role during gland development in mice. We found that: (1) The expression of Prl1a1, Prl3d1, Prl5a1, Prl7a1, Prl7a2, Prl7d1, Prl8a6, Prl8a8, and Prl8a9 genes were significantly increased along with the development of uterine glands. Prl7c1 and Prl8a1 were observably up-regulated on Postnatal day 5 (PND5) when the uterine glandular bud invagination begins. Prl3a1, Prl3b1, and Prl7b1 suddenly increased significantly on PND9. But, Prl3c1 and Prl8a2 were markedly down-regulated on PND5 and the expression of Prl6a1 and Prlr were stable extremely. (2) After continuous injection of Progesterone (P4), a well-known method to suppress the endometrial adenogenesis, the expression of Prl1a1, Prl3d1, Prl5a1, Prl7a1, Prl7a2, Prl7d1, Prl8a6, Prl8a8, Prl8a9, and Prlr were suppressed on PND7. And on PND9, Prl1a1, Prl3d1, Prl8a6, Prl8a8, and Prl8a9 were significantly inhibited. (3) Further analysis of the epithelial and stroma showed that these PRLs were mainly expressed in the endometrial stroma of neonatal mice. Our results indicate that multiple PRLs are involved in uterine development and endometrial adenogenesis. Continued progesterone therapy may alter the expression pattern of these PRLs in endometrial stromal cells, thereby altering the interaction and communication between stroma and epithelium, and ultimately leading to complete suppression of endometrial adenogenesis.
Collapse
|
10
|
He JP, Tian Q, Zhu QY, Liu JL. Single-cell analysis of mouse uterus at the invasion phase of embryo implantation. Cell Biosci 2022; 12:13. [PMID: 35123575 PMCID: PMC8817544 DOI: 10.1186/s13578-022-00749-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background Embryo implantation into the uterus is a crucial step for human reproduction. A hypothesis has been proposed that the molecular circuit invented by trophoblasts for invasive embryo implantation during evolution might be misused by cancer cells to promote malignancy. Unfortunately, our current understanding of the molecular mechanism underlying embryo implantation is far from complete. Results Here we used the mouse as an animal model and generated a single-cell transcriptomic atlas of the embryo implantation site of mouse uterus at the invasion phase of embryo implantation on gestational day 6. We revealed 23 distinct cell clusters, including 5 stromal cell clusters, 2 epithelial cell clusters, 1 smooth muscle cell cluster, 2 pericyte clusters, 4 endothelial cell clusters, and 9 immune cell clusters. Through data analysis, we identified differentially expression changes in all uterine cell types upon embryo implantation. By integrated with single-cell RNA-seq data from E5.5 embryos, we predicted cell–cell crosstalk between trophoblasts and uterine cell types. Conclusions Our study provides a valuable resource for understanding of the molecular mechanism of embryo implantation. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00749-y.
Collapse
|
11
|
He JP, Tian Q, Zhu QY, Liu JL. Identification of Intercellular Crosstalk between Decidual Cells and Niche Cells in Mice. Int J Mol Sci 2021; 22:ijms22147696. [PMID: 34299317 PMCID: PMC8306874 DOI: 10.3390/ijms22147696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Decidualization is a crucial step for human reproduction, which is a prerequisite for embryo implantation, placentation and pregnancy maintenance. Despite rapid advances over recent years, the molecular mechanism underlying decidualization remains poorly understood. Here, we used the mouse as an animal model and generated a single-cell transcriptomic atlas of a mouse uterus during decidualization. By analyzing the undecidualized inter-implantation site of the uterus as a control, we were able to identify global gene expression changes associated with decidualization in each cell type. Additionally, we identified intercellular crosstalk between decidual cells and niche cells, including immune cells, endothelial cells and trophoblast cells. Our data provide a valuable resource for deciphering the molecular mechanism underlying decidualization.
Collapse
|
12
|
Sexually dimorphic effects of forkhead box a2 (FOXA2) and uterine glands on decidualization and fetoplacental development. Proc Natl Acad Sci U S A 2020; 117:23952-23959. [PMID: 32900950 DOI: 10.1073/pnas.2014272117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glands of the uterus are essential for pregnancy establishment. Forkhead box A2 (FOXA2) is expressed specifically in the glands of the uterus and a critical regulator of glandular epithelium (GE) differentiation, development, and function. Mice with a conditional deletion of FOXA2 in the adult uterus, created using the lactotransferrin iCre (Ltf-iCre) model, have a morphologically normal uterus with glands, but lack FOXA2-dependent GE-expressed genes, such as leukemia inhibitory factor (LIF). Adult FOXA2 conditional knockout (cKO; Ltf iCre/+ Foxa2 f/f ) mice are infertile due to defective embryo implantation arising from a lack of LIF, a critical implantation factor of uterine gland origin. However, intraperitoneal injections of LIF can initiate embryo implantation in the uterus of adult FOXA2 cKO mice with pregnancies maintained to term. Here, we tested the hypothesis that FOXA2-regulated genes in the uterine glands impact development of the decidua, placenta, and fetus. On gestational day 8.5, the antimesometrial and mesometrial decidua transcriptome was noticeably altered in LIF-replaced FOXA2 cKO mice. Viable fetuses were reduced in FOXA2 cKO mice on gestational days 12.5 and 17.5. Sex-dependent differences in fetal weight, placenta histoarchitecture, and the placenta and metrial gland transcriptome were observed between control and FOXA2 cKO mice. The transcriptome of the placenta with a female fetus was considerably more altered than the placenta with a male fetus in FOXA2 cKO dams. These studies reveal previously unrecognized sexually dimorphic effects of FOXA2 and uterine glands on fetoplacental development with potential impacts on offspring health into adulthood.
Collapse
|
13
|
Kang ML, Goo JTT, Lee DJK. CHOP Protocol: streamlining access to definitive intervention for major trauma victims. Singapore Med J 2020; 62:620-622. [PMID: 32728086 DOI: 10.11622/smedj.2020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Min Li Kang
- Department of Surgery, Khoo Teck Puat Hospital, Singapore
| | | | | |
Collapse
|
14
|
Gloux A, Duclos MJ, Brionne A, Bourin M, Nys Y, Réhault-Godbert S. Integrative analysis of transcriptomic data related to the liver of laying hens: from physiological basics to newly identified functions. BMC Genomics 2019; 20:821. [PMID: 31699050 PMCID: PMC6839265 DOI: 10.1186/s12864-019-6185-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND At sexual maturity, the liver of laying hens undergoes many metabolic changes to support vitellogenesis. In published transcriptomic approaches, hundreds of genes were reported to be overexpressed in laying hens and functional gene annotation using gene ontology tools have essentially revealed an enrichment in lipid and protein metabolisms. We reanalyzed some data from a previously published article comparing 38-week old versus 10-week old hens to give a more integrative view of the functions stimulated in the liver at sexual maturity and to move beyond current physiological knowledge. Functions were defined based on information available in Uniprot database and published literature. RESULTS Of the 516 genes previously shown to be overexpressed in the liver of laying hens, 475 were intracellular (1.23-50.72 fold changes), while only 36 were predicted to be secreted (1.35-66.93 fold changes) and 5 had no related information on their cellular location. Besides lipogenesis and protein metabolism, we demonstrated that the liver of laying hens overexpresses several clock genes (which supports the circadian control of liver metabolic functions) and was likely to be involved in a liver/brain/liver circuit (neurotransmitter transport), in thyroid and steroid hormones metabolisms. Many genes were associated with anatomical structure development, organ homeostasis but also regulation of blood pressure. As expected, several secreted proteins are incorporated in yolky follicles but we also evidenced that some proteins are likely participating in fertilization (ZP1, MFGE8, LINC00954, OVOCH1) and in thyroid hormone maturation (CPQ). We also proposed that secreted proteins (PHOSPHO1, FGF23, BMP7 but also vitamin-binding proteins) may contribute to the development of peripheral organs including the formation of medullar bones to provide labile calcium for eggshell formation. Thirteen genes are uniquely found in chicken/bird but not in human species, which strengthens that some of these genes may be specifically related to avian reproduction. CONCLUSIONS This study gives additional hypotheses on some molecular actors and mechanisms that are involved in basic physiological function of the liver at sexual maturity of hen. It also revealed some additional functions that accompany reproductive capacities of laying hens, and that are usually underestimated when using classical gene ontology approaches.
Collapse
Affiliation(s)
- Audrey Gloux
- BOA, INRA, Université de Tours, 37380, Nouzilly, France.
| | | | | | - Marie Bourin
- Institut Technique de l'Aviculture (ITAVI), Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Yves Nys
- BOA, INRA, Université de Tours, 37380, Nouzilly, France
| | | |
Collapse
|
15
|
Tal R, Shaikh S, Pallavi P, Tal A, López-Giráldez F, Lyu F, Fang YY, Chinchanikar S, Liu Y, Kliman HJ, Alderman M, Pluchino N, Kayani J, Mamillapalli R, Krause DS, Taylor HS. Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLoS Biol 2019; 17:e3000421. [PMID: 31513564 PMCID: PMC6742226 DOI: 10.1371/journal.pbio.3000421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Decidua is a transient uterine tissue shared by mammals with hemochorial placenta and is essential for pregnancy. The decidua is infiltrated by many immune cells promoting pregnancy. Adult bone marrow (BM)-derived cells (BMDCs) differentiate into rare populations of nonhematopoietic endometrial cells in the uterus. However, whether adult BMDCs become nonhematopoietic decidual cells and contribute functionally to pregnancy is unknown. Here, we show that pregnancy mobilizes mesenchymal stem cells (MSCs) to the circulation and that pregnancy induces considerable adult BMDCs recruitment to decidua, where some differentiate into nonhematopoietic prolactin-expressing decidual cells. To explore the functional importance of nonhematopoietic BMDCs to pregnancy, we used Homeobox a11 (Hoxa11)-deficient mice, having endometrial stromal-specific defects precluding decidualization and successful pregnancy. Hoxa11 expression in BM is restricted to nonhematopoietic cells. BM transplant (BMT) from wild-type (WT) to Hoxa11-/- mice results in stromal expansion, gland formation, and marked decidualization otherwise absent in Hoxa11-/- mice. Moreover, in Hoxa11+/- mice, which have increased pregnancy losses, BMT from WT donors leads to normalized uterine expression of numerous decidualization-related genes and rescue of pregnancy loss. Collectively, these findings reveal that adult BMDCs have a previously unrecognized nonhematopoietic physiologic contribution to decidual stroma, thereby playing important roles in decidualization and pregnancy.
Collapse
Affiliation(s)
- Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Shafiq Shaikh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Pallavi Pallavi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Aya Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Francesc López-Giráldez
- Yale Center for Genome Analysis (YCGA), Yale University, New Haven, Connecticut, United States of America
| | - Fang Lyu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Yuan-Yuan Fang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Shruti Chinchanikar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ying Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Harvey J. Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Myles Alderman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Nicola Pluchino
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jehanzeb Kayani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Diane S. Krause
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
16
|
Zhang Q, Hao J, Li G. Deletion of Prl7d1 causes placental defects at mid-pregnancy in mice. Mol Reprod Dev 2019; 86:696-713. [PMID: 31012985 DOI: 10.1002/mrd.23148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/16/2019] [Accepted: 03/29/2019] [Indexed: 12/29/2022]
Abstract
Prolactin family 7, subfamily d, member 1 (Prl7d1), a member of the expanding prolactin family, is mainly expressed in the placental junctional zone (including trophoblast giant cells and spongiotrophoblast cells) with peak expression observed at 12 days postcoitum (dpc) in mice. Previous studies have shown that PRL7D1 is a key mediator of angiogenesis in vitro; however, its physiological roles in placental development in vivo have not been characterized. To address this issue, we deleted Prl7d1 in mice and demonstrated that its absence results in reduced litter size and fertility. Histologically, Prl7d1 mutants exhibited striking placental abnormalities at 12.5 dpc, including a reduction in the proportion of labyrinth layers and a significant increase in decidual natural killer cells, glycogen trophoblasts, and trophoblast giant cells in the junctional zone. Moreover, placentas from Prl7d1-null mice displayed a thickened decidual spiral artery. Notably, these negative effects were more pronounced in male fetuses. Further RNA-sequencing analysis showed that Prl7d1 deletion results in significant differences in the placental transcriptome profile between the two sexes of fetuses. Together, this study demonstrates that Prl7d1 possesses antiangiogenic properties in deciduas and inhibits the development of junctional zone, which potentially alters the functional capacity of the placenta to support optimal fetal growth. Moreover, of note, the role of Prl7d1 in the placenta is regulated in a fetal sex-specific manner.
Collapse
Affiliation(s)
- Qiong Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jie Hao
- Experimental Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Christou-Kent M, Kherraf ZE, Amiri-Yekta A, Le Blévec E, Karaouzène T, Conne B, Escoffier J, Assou S, Guttin A, Lambert E, Martinez G, Boguenet M, Fourati Ben Mustapha S, Cedrin Durnerin I, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Coutton C, Thierry-Mieg N, Nef S, Bottari SP, Zouari R, Issartel JP, Ray PF, Arnoult C. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Mol Med 2019; 10:emmm.201708515. [PMID: 29661911 PMCID: PMC5938616 DOI: 10.15252/emmm.201708515] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The genetic causes of oocyte meiotic deficiency (OMD), a form of primary infertility characterised by the production of immature oocytes, remain largely unexplored. Using whole exome sequencing, we found that 26% of a cohort of 23 subjects with OMD harboured the same homozygous nonsense pathogenic mutation in PATL2, a gene encoding a putative RNA‐binding protein. Using Patl2 knockout mice, we confirmed that PATL2 deficiency disturbs oocyte maturation, since oocytes and zygotes exhibit morphological and developmental defects, respectively. PATL2's amphibian orthologue is involved in the regulation of oocyte mRNA as a partner of CPEB. However, Patl2's expression profile throughout oocyte development in mice, alongside colocalisation experiments with Cpeb1, Msy2 and Ddx6 (three oocyte RNA regulators) suggest an original role for Patl2 in mammals. Accordingly, transcriptomic analysis of oocytes from WT and Patl2−/− animals demonstrated that in the absence of Patl2, expression levels of a select number of highly relevant genes involved in oocyte maturation and early embryonic development are deregulated. In conclusion, PATL2 is a novel actor of mammalian oocyte maturation whose invalidation causes OMD in humans.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Zine-Eddine Kherraf
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Amir Amiri-Yekta
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Emilie Le Blévec
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Thomas Karaouzène
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Béatrice Conne
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jessica Escoffier
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Said Assou
- IRMB, INSERM U1183, CHRU Montpellier, Université Montpellier, Montpellier, France
| | - Audrey Guttin
- Grenoble Neuroscience Institute, INSERM 1216, Université Grenoble Alpes, Grenoble, France
| | - Emeline Lambert
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Guillaume Martinez
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,UM de Génétique Chromosomique, CHU de Grenoble, Grenoble, France
| | - Magalie Boguenet
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | | | - Isabelle Cedrin Durnerin
- Service de Médecine de la Reproduction, Centre Hospitalier Universitaire Jean Verdier, Assistance Publique - Hôpitaux de Paris, Bondy, France
| | - Lazhar Halouani
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Ouafi Marrakchi
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Mounir Makni
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Habib Latrous
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Mahmoud Kharouf
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Charles Coutton
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,UM de Génétique Chromosomique, CHU de Grenoble, Grenoble, France
| | | | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Serge P Bottari
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Jean Paul Issartel
- Grenoble Neuroscience Institute, INSERM 1216, Université Grenoble Alpes, Grenoble, France
| | - Pierre F Ray
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France
| | - Christophe Arnoult
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
18
|
Suzuki D, Morimoto H, Yoshimura K, Kono T, Ogawa H. The Differentiation Potency of Trophoblast Stem Cells from Mouse Androgenetic Embryos. Stem Cells Dev 2019; 28:290-302. [PMID: 30526365 DOI: 10.1089/scd.2018.0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In mice, trophoblast stem (TS) cells are derived from the polar trophectoderm of blastocysts. TS cells cultured in the presence of fibroblast growth factor 4 (Fgf4) are in an undifferentiated state and express undifferentiated marker genes such as Cdx2. After removing Fgf4 from the culture medium, TS cells drastically reduce the expression of undifferentiated marker genes, stop cell proliferation, and differentiate into all trophoblast cell subtypes. To clarify the roles of the parental genomes in placentation, we previously established TS cells from androgenetic embryos (AGTS cells). AGTS cells are in the undifferentiated state when cultured with Fgf4 and express undifferentiated marker genes. After removing Fgf4, AGTS cells differentiate into trophoblast giant cells (TGCs), but not into spongiotrophoblast cells, and some of the AGTS cells continue to proliferate. In this study, we investigated the differentiation potency of AGTS cells by analyzing the expression of undifferentiated marker genes and all trophoblast cell subtype-specific genes. After removing Fgf4, some undifferentiated marker genes (Cdx2, Eomes and Elf5) continued to be expressed. Interestingly, TGCs differentiated from AGTS cells also expressed Cdx2, but not Prl3d1. Moreover, the expression of Gcm1 and Synb was induced after the differentiation, indicating that AGTS cells preferentially differentiated into labyrinth progenitor cells. Cdx2 knockdown resulted in increased Prl3d1 expression, suggesting that Fgf4-independent Cdx2 expression inhibited the functional TGCs. Moreover, Fgf4-independent Cdx2 expression was activated by Gab1, one of the paternally expressed imprinted genes via the mitogen-activated protein kinase kinase (MEK)-extracellular signal regulated protein kinase (ERK) pathway. These results suggested that the paternal genome activates the MEK-ERK pathway without the Fgf4 signal, accelerates the differentiation into labyrinth progenitor cells and controls the function of TGCs.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiromu Morimoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kaoru Yoshimura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
19
|
Soares MJ, Iqbal K, Kozai K. Hypoxia and Placental Development. Birth Defects Res 2018; 109:1309-1329. [PMID: 29105383 DOI: 10.1002/bdr2.1135] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022]
Abstract
Hemochorial placentation is orchestrated through highly regulated temporal and spatial decisions governing the fate of trophoblast stem/progenitor cells. Trophoblast cell acquisition of specializations facilitating invasion and uterine spiral artery remodeling is a labile process, sensitive to the environment, and represents a process that is vulnerable to dysmorphogenesis in pathologic states. Hypoxia is a signal guiding placental development, and molecular mechanisms directing cellular adaptations to low oxygen tension are integral to trophoblast cell differentiation and placentation. Hypoxia can also be used as an experimental tool to investigate regulatory processes controlling hemochorial placentation. These developmental processes are conserved in mouse, rat, and human placentation. Consequently, elements of these developmental events can be modeled and hypotheses tested in trophoblast stem cells and in genetically manipulated rodents. Hypoxia is also a consequence of a failed placenta, yielding pathologies that can adversely affect maternal adjustments to pregnancy, fetal health, and susceptibility to adult disease. The capacity of the placenta for adaptation to environmental challenges highlights the importance of its plasticity in safeguarding a healthy pregnancy. Birth Defects Research 109:1309-1329, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas.,Fetal Health Research, Children's Research Institute, Children's Mercy, Kansas City, Missouri
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
20
|
Gong H, Chen Y, Xu J, Xie X, Yu D, Yang B, Kuang H. The regulation of ovary and conceptus on the uterine natural killer cells during early pregnancy. Reprod Biol Endocrinol 2017; 15:73. [PMID: 28874155 PMCID: PMC5585937 DOI: 10.1186/s12958-017-0290-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/25/2017] [Indexed: 01/28/2023] Open
Abstract
Uterine natural killer (uNK) cells are short-lived, terminally differentiated and the most abundant lymphocytes in the uterus which play a crucial role in the spiral arteriole modification and establishment of successful pregnancy. Dysregulation of uNK cells has been linked to gestational implications such as recurrent pregnancy loss, preeclampsia and fetal growth retardation. There is evidence showing that progesterone and estrogen can regulate the recruitment, proliferation, differentiation and function of uNK cells via direct action on intracellular nuclear receptors or through intermediary cells in the uterus during early pregnancy. As the deepening of related research in this field, the role of conceptus in such regulation has received extensive attention, it utilizes endocrine signaling (hCG), juxtacrine signaling (HLA-C, HLA-E, HLA-G) and paracrine signaling (cytokines) to facilitate the activities of uNK cells. In addition, under the influence of ovarian hormones, conceptus can increase expression of PIBF and HLA-G molecules to reduce cytotoxicity of uNK cells and promote angiogenesis. In this review, we aim to concentrate on the novel findings of ovarian hormones in the regulation of uNK cells, emphasize the regulatory role of conceptus on uNK cells and highlight the proposed issues for future research in the field.
Collapse
Affiliation(s)
- Han Gong
- 0000 0001 2182 8825grid.260463.5Department of Physiology and Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006 People’s Republic of China
- 0000 0001 2182 8825grid.260463.5Department of Clinic medicine, School of Queen Mary, Nanchang University, Nanchang, Jiangxi 330006 People’s Republic of China
| | - Yilu Chen
- 0000 0001 2182 8825grid.260463.5Department of Physiology and Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006 People’s Republic of China
| | - Jingjie Xu
- 0000 0001 2182 8825grid.260463.5Department of Physiology and Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006 People’s Republic of China
| | - Xingxing Xie
- 0000 0001 2182 8825grid.260463.5Department of Physiology and Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006 People’s Republic of China
| | - Dainan Yu
- 0000 0001 2182 8825grid.260463.5Department of Physiology and Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006 People’s Republic of China
| | - Bei Yang
- 0000 0001 2182 8825grid.260463.5Department of Physiology and Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006 People’s Republic of China
| | - Haibin Kuang
- 0000 0001 2182 8825grid.260463.5Department of Physiology and Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006 People’s Republic of China
- 0000 0001 2182 8825grid.260463.5Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006 People’s Republic of China
| |
Collapse
|
21
|
Maternal HtrA3 optimizes placental development to influence offspring birth weight and subsequent white fat gain in adulthood. Sci Rep 2017; 7:4627. [PMID: 28676687 PMCID: PMC5496872 DOI: 10.1038/s41598-017-04867-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
High temperature requirement factor A3 (HtrA3), a member of the HtrA protease family, is highly expressed in the developing placenta, including the maternal decidual cells in both mice and humans. In this study we deleted the HtrA3 gene in the mouse and crossed females carrying zero, one, or two HtrA3-expressing alleles with HtrA3+/− males to investigate the role of maternal vs fetal HtrA3 in placentation. Although HtrA3−/− mice were phenotypically normal and fertile, HtrA3 deletion in the mother resulted in intra-uterine growth restriction (IUGR). Disorganization of labyrinthine fetal capillaries was the major placental defect when HtrA3 was absent. The IUGR caused by maternal HtrA3 deletion, albeit being mild, significantly altered offspring growth trajectory long after birth. By 8 months of age, mice born to HtrA3-deficient mothers, independent of their own genotype, were significantly heavier and contained a larger mass of white fat. We further demonstrated that in women serum levels of HtrA3 during early pregnancy were significantly lower in IUGR pregnancies, establishing an association between lower HtrA3 levels and placental insufficiency in the human. This study thus revealed the importance of maternal HtrA3 in optimizing placental development and its long-term impact on the offspring well beyond in utero growth.
Collapse
|
22
|
Sun X, Deng W, Li Y, Tang S, Leishman E, Bradshaw HB, Dey SK. Sustained Endocannabinoid Signaling Compromises Decidual Function and Promotes Inflammation-induced Preterm Birth. J Biol Chem 2016; 291:8231-40. [PMID: 26900150 DOI: 10.1074/jbc.m115.707836] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 01/13/2023] Open
Abstract
Recent studies provide evidence that premature maternal decidual senescence resulting from heightened mTORC1 signaling is a cause of preterm birth (PTB). We show here that mice devoid of fatty acid amide hydrolase (FAAH) with elevated levels ofN-arachidonyl ethanolamide (anandamide), a major endocannabinoid lipid mediator, were more susceptible to PTB upon lipopolysaccharide (LPS) challenge. Anandamide is degraded by FAAH and primarily works by activating two G-protein-coupled receptors CB1 and CB2, encoded by Cnr1 and Cnr2, respectively. We found thatFaah(-/-)decidual cells progressively underwent premature senescence as marked by increased senescence-associated β-galactosidase (SA-β-Gal) staining and γH2AX-positive decidual cells. Interestingly, increased endocannabinoid signaling activated MAPK p38, but not p42/44 or mTORC1 signaling, inFaah(-/-)deciduae, and inhibition of p38 halted premature decidual senescence. We further showed that treatment of a long-acting anandamide in wild-type mice at midgestation triggered premature decidual senescence utilizing CB1, since administration of a CB1 antagonist greatly reduced the rate of PTB inFaah(-/-)females exposed to LPS. These results provide evidence that endocannabinoid signaling is critical in regulating decidual senescence and parturition timing. This study identifies a previously unidentified pathway in decidual senescence, which is independent of mTORC1 signaling.
Collapse
Affiliation(s)
- Xiaofei Sun
- From the Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| | - Wenbo Deng
- From the Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| | - Yingju Li
- From the Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| | - Shuang Tang
- From the Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, Indiana 47405
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, Indiana 47405
| | - Sudhansu K Dey
- From the Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| |
Collapse
|