1
|
Tan WLA, Hudson NJ, Porto Neto LR, Reverter A, Afonso J, Fortes MRS. An association weight matrix identified biological pathways associated with bull fertility traits in a multi-breed population. Anim Genet 2024; 55:495-510. [PMID: 38692842 DOI: 10.1111/age.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Using seven indicator traits, we investigated the genetic basis of bull fertility and predicted gene interactions from SNP associations. We used percent normal sperm as the key phenotype for the association weight matrix-partial correlation information theory (AWM-PCIT) approach. Beyond a simple list of candidate genes, AWM-PCIT predicts significant gene interactions and associations for the selected traits. These interactions formed a network of 537 genes: 38 genes were transcription cofactors, and 41 genes were transcription factors. The network displayed two distinct clusters, one with 294 genes and another with 243 genes. The network is enriched in fertility-associated pathways: steroid biosynthesis, p53 signalling, and the pentose phosphate pathway. Enrichment analysis also highlighted gene ontology terms associated with 'regulation of neurotransmitter secretion' and 'chromatin formation'. Our network recapitulates some genes previously implicated in another network built with lower-density genotypes. Sequence-level data also highlights additional candidate genes relevant to bull fertility, such as FOXO4, FOXP3, GATA1, CYP27B1, and EBP. A trio of regulatory genes-KDM5C, LRRK2, and PME-was deemed core to the network because of their overarching connections. This trio probably influences bull fertility through their interaction with genes, both known and unknown as to their role in male fertility. Future studies may target the trio and their target genes to enrich our understanding of male fertility further.
Collapse
Affiliation(s)
- Wei Liang Andre Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Nicholas James Hudson
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland, Australia
| | | | | | - Juliana Afonso
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Empresa Brasileira de Pesquisa Agropecuária, Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | |
Collapse
|
2
|
Chao CF, Pesch YY, Yu H, Wang C, Aristizabal MJ, Huan T, Tanentzapf G, Rideout E. An important role for triglyceride in regulating spermatogenesis. eLife 2024; 12:RP87523. [PMID: 38805376 PMCID: PMC11132686 DOI: 10.7554/elife.87523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Drosophila is a powerful model to study how lipids affect spermatogenesis. Yet, the contribution of neutral lipids, a major lipid group which resides in organelles called lipid droplets (LD), to sperm development is largely unknown. Emerging evidence suggests LD are present in the testis and that loss of neutral lipid- and LD-associated genes causes subfertility; however, key regulators of testis neutral lipids and LD remain unclear. Here, we show LD are present in early-stage somatic and germline cells within the Drosophila testis. We identified a role for triglyceride lipase brummer (bmm) in regulating testis LD, and found that whole-body loss of bmm leads to defects in sperm development. Importantly, these represent cell-autonomous roles for bmm in regulating testis LD and spermatogenesis. Because lipidomic analysis of bmm mutants revealed excess triglyceride accumulation, and spermatogenic defects in bmm mutants were rescued by genetically blocking triglyceride synthesis, our data suggest that bmm-mediated regulation of triglyceride influences sperm development. This identifies triglyceride as an important neutral lipid that contributes to Drosophila sperm development, and reveals a key role for bmm in regulating testis triglyceride levels during spermatogenesis.
Collapse
Affiliation(s)
- Charlotte F Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Yanina-Yasmin Pesch
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Huaxu Yu
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Chenjingyi Wang
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | | | - Tao Huan
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Elizabeth Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
3
|
Dong J, Tong X, Xu J, Pan M, Wang L, Xu F, Wang Y, Li L, Wang T. Metformin improves obesity-related oligoasthenospermia via regulating the expression of HSL in testis in mice. Eur J Pharmacol 2024; 968:176388. [PMID: 38367685 DOI: 10.1016/j.ejphar.2024.176388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Researches have proposed that obesity might contribute to development of oligoasthenospermia. This study was performed to confirm whether obesity contributes to oligoasthenospermia as well as the underlying mechanisms in mice fed with a high fat diet (HFD). Meanwhile, the actions of metformin, a drug of well-known weight-lowering effect, on sperm quality in obese mice were investigated. Our results showed that HFD feeding reduced sperm quality and steroid hormone levels in mice, associated with disruptions in testicular histomorphology and spermatogenesis. Moreover, obesity increased sperm apoptosis. These effects could be prevented by metformin treatment in HFD-fed mice. Mechanistically, an increasement in lipid contents associated with decreased hormone-sensitive lipase (HSL) protein expression in testes in HFD-fed mice was observed, which could be improved by metformin treatment. Then, the model of TM4 mouse Sertoli cells stimulated with palmitic acid (PA) was used to investigate the potential effect of lipid retention on testicular apoptosis and sperm quality reduction. In consistent, PA exposure elevated lipid contents as well as apoptosis in TM4 cells, which could also be improved by metformin treatment. Of note, the protein expression of HSL was reduced stimulated by PA in TM4 cells, also rescued by metformin. Then, anti-apoptosis effect of metformin would be lost with the deficiency of HSL. In summary, our study propose that obesity contributes to oligoasthenospermia by increasing sperm apoptosis induced by impaired lipid hydrolysis due to HSL down-regulation, which could be prevented with metformin treatment via regulating the expression of HSL in testis in mice.
Collapse
Affiliation(s)
- Jinhui Dong
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaohui Tong
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Xu
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Min Pan
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fei Xu
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yajuan Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Li Li
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Tongsheng Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
4
|
Zhang Y, Xie J, Ouyang Y, Li S, Sun Y, Tan W, Ren L, Zhou X. Adverse outcome pathways of PBDEs inducing male reproductive toxicity. ENVIRONMENTAL RESEARCH 2024; 240:117598. [PMID: 37939807 DOI: 10.1016/j.envres.2023.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants, they are easily released into environment and causing adverse effects to the ecosystem and human health. This review aims to summarize the research status of PBDEs-induced male reproductive toxicity and its mechanisms at various levels such as molecular/cellular, tissue/organ and individual/population. The Adverse Outcome Pathways (AOPs) diagram showed that PBDEs-induced reactive oxygen species (ROS) production, disruptions of estrogen receptor-α (ERα) and antagonism of androgen receptor (AR) were defined as critical molecular initiating events (MIEs). They caused key events (KEs) at the molecular and cellular levels, including oxidative stress, increased DNA damage, damaging mitochondria, increased glycolipid levels and apoptosis, depletion of ectoplasmic specialization and decreased Leydig cells numbers. These in turn lead to followed KEs at the tissue or organ levels, such as the impaired spermatogenesis, impaired blood-testis barrier and reduced testosterone synthesis and function. As a result, reproductive system-related adverse outcomes (AOs) were reported, such as the decreased sperm quantity or quality, shorten male anogenital distance and cryptorchidism in individual and reduced reproduction of the population. This review assembled information on the mechanisms of male reproductive toxicity induced by PBDEs, and constructed a causal mechanism relationship diagram from different levels using the an AOP framework to provide theoretical basis for ecological risk assessment and environmental management of PBDEs. The AOP framework makes it possible to develop risk management strategies based on toxicity mechanisms and support for development of Integrated Approach to Testing and Assessment (IATA) which are available for regulatory purposes.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junhong Xie
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yixin Ouyang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Shuang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yulin Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Weilun Tan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Sarkar D, Midha P, Shanti SS, Singh SK. A comprehensive review on the decabromodiphenyl ether (BDE-209)-induced male reproductive toxicity: Evidences from rodent studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165938. [PMID: 37541514 DOI: 10.1016/j.scitotenv.2023.165938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants (BFRs), are employed in various manufactured products to prevent fires, slow down their spread and reduce the resulting damages. Decabromodiphenyl ether (BDE-209), an example of PBDEs, accounts for approximately 82 % of the total production of PBDEs. BDE-209 is a thyroid hormone (TH)-disrupting chemical owing to its structural similarity with TH. Currently, increase in the level of BDE-209 in biological samples has become a major issue because of its widespread use. BDE-209 causes male reproductive toxicity mainly via impairment of steroidogenesis, generation of oxidative stress (OS) and interference with germ cell dynamics. Further, exposure to this chemical can affect metabolic status, sperm concentration, epigenetic regulation of various developmental genes and integrity of blood-testis barrier in murine testis. However, the possible adverse effects of BDE-209 and its mechanism of action on the male reproductive health have not yet been critically evaluated. Hence, the present review article, with the help of available literature, aims to elucidate the reproductive toxicity of BDE-209 in relation to thyroid dysfunction in rodents. Further, several crucial pathways have been also highlighted in order to strengthen our knowledge on BDE-209-induced male reproductive toxicity. Data were extracted from scientific articles available in PubMed, Web of Science, and other databases. A thorough understanding of the risk assessment of BDE-209 exposure and mechanisms of its action is crucial for greater awareness of the potential threat of this BFR to preserve male fertility.
Collapse
Affiliation(s)
- Debarshi Sarkar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Parul Midha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Shashanka Sekhar Shanti
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Xue J, Li X, Liu J, Zhang Y, Sang Y, Zhou G, Ren L, Jing L, Shi Z, Wei J, Zhou X. Decabromodiphenyl ethane induces male reproductive toxicity by glycolipid metabolism imbalance and meiotic failure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114165. [PMID: 36228355 DOI: 10.1016/j.ecoenv.2022.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) is a typical flame retardant found in various electrical and textile items. DBDPE is abundantly available in the surrounding environment and wild animals based on its persistence and bioaccumulation. DBDPE has been shown to cause apoptosis in rat spermatogenic cells, resulting in reproductive toxicity. However, the toxicity of DBDPE on the male reproductive system and the potential mechanisms are still unclear. This study evaluated the effect of DBDPE on the reproductive system in male SD rats and demonstrated the potential mechanisms of reproductive toxicity. DBDPE (0, 5, 50, and 500 mg/kg/day) was administered via gavage to male SD rats for 28 days. DBDPE caused histopathological changes in the testis, reduced sperm quantity and motility, and raised the malformation rate in rats, according to the findings. Furthermore, it caused DNA damage to rat testicular cells. It inhibited the expressions of spermatogenesis-and oogenesis-specific helix-loop-helix transcription factor 1 (Sohlh1), piwi-like RNA-mediated gene silencing 2 (MILI), cyclin-dependent kinase 2 (CDK2), and CyclinA, resulting in meiotic failure, as well as the expressions of synaptonemal complex proteins 1 and 3 (SYCP1 and SYCP3), leading to chromosomal association disorder in meiosis and spermatocyte cycle arrest. Moreover, DBDPE induced glycolipid metabolism disorder and activated mitochondria-mediated apoptosis pathways in the testes of SD rats. The quantity and quality of sperm might be declining due to these factors. Our findings offer further evidence of the harmful impact of DBDPE on the male reproductive system.
Collapse
Affiliation(s)
- Jinglong Xue
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiangyang Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jianhui Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Yue Zhang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yujian Sang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guiqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing 100191, China
| | - Li Jing
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhixiong Shi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jialiu Wei
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Xianqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
7
|
Cloning and Molecular Characterization of HSL and Its Expression Pattern in HPG Axis and Testis during Different Stages in Bactrian Camel. Curr Issues Mol Biol 2022; 44:3779-3791. [PMID: 36005155 PMCID: PMC9406428 DOI: 10.3390/cimb44080259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is a key enzyme in animal fat metabolism and is involved in the rate-limiting step of catalyzing the decomposition of fat and cholesterol. It also plays an important regulatory role in maintaining seminiferous epithelial structure, androgen synthesis and primordial germ cell differentiation. We previously reported that HSL is involved the synthesis of steroids in Bactrian camels, although it is unclear what role it plays in testicular development. The present study was conducted to characterize the biological function and expression pattern of the HSL gene in the hypothalamic pituitary gonadal (HPG) axis and the development of testis in Bactrian camels. We analyzed cloning of the cDNA sequence of the HSL gene of Bactrian camels by RT-PCR, as well as the structural features of HSL proteins, using bioinformatics software, such as ProtParam, TMHMM, Signal P 4.1, SOPMA and MEGA 7.0. We used qRT-PCR, Western blotting and immunofluorescence staining to clarify the expression pattern of HSL in the HPG axis and testis of two-week-old (2W), two-year-old (2Y), four-year-old (4Y) and six-year-old (6Y) Bactrian camels. According to sequence analysis, the coding sequence (CDS) region of the HSL gene is 648 bp in length and encodes 204 amino acids. According to bioinformatics analysis, the nucleotide and amino acid sequence of Bactrian camel HSL are most similar to those of Camelus pacos and Camelusdromedarius, with the lowest sequence similarity with Mus musculus. In adult Bactrian camel HPG axis tissues, both HSL mRNA and protein expression were significantly higher in the testis than in other tissues (hypothalamus, pituitary and pineal tissues) (p < 0.05). The expression of mRNA in the testis increased with age and was the highest in six-year-old testis (p < 0.01). The protein expression levels of HSL in 2Y and 6Y testis were clearly higher than in 2W and 4Y testis tissues (p < 0.01). Immunofluorescence results indicate that the HSL protein was mainly localized in the germ cells, Sertoli cells and Leydig cells from Bactrian camel testis, and strong positive signals were detected in epididymal epithelial cells, basal cells, spermatocytes and smooth muscle cells, with partially expression in hypothalamic glial cells, pituitary suspensory cells and pineal cells. According to the results of gene ontology (GO) analysis enrichment, HSL indirectly regulates the anabolism of steroid hormones through interactions with various targets. Therefore, we conclude that the HSL gene may be associated with the development and reproduction of Bactrian camels in different stages of maturity, and these results will contribute to further understanding of the regulatory mechanisms of HSL in Bactrian camel reproduction.
Collapse
|
8
|
Zhang Y, Li X, Jing L, Zhou G, Sang Y, Gao L, Jiang S, Shi Z, Ge W, Sun Z, Zhou X. Decabromodiphenyl ether induces male reproductive toxicity by activating mitochondrial apoptotic pathway through glycolipid metabolism dysbiosis. CHEMOSPHERE 2021; 285:131512. [PMID: 34710963 DOI: 10.1016/j.chemosphere.2021.131512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Decabromodiphenyl ether (BDE-209), an extensively used flame retardant, exists widely in the environment. Although male reproductive toxicity induced by BDE-209 has been reported, its mechanisms remain unclear. To explore the role of glycolipid metabolism in male reproductive toxicity and the potential mechanisms, forty male SD rats were divided into four groups and given gavage with BDE-209 at 0, 5, 50, and 500 mg/kg/d for 28 days. In vitro, the spermatogenic cell lines GC-2spd cells were divided into four groups: the control group, 32 μg/mL BDE-209 group, 32 μg/mL BDE-209 + 0.4 μM Fatostatin (the inhibitor of SREBP-1) group, and 0.4 μM Fatostatin group. Our results showed that BDE-209 decreased sperm quality and quantity, which was correlated with glycolipid metabolism dysbiosis of testis. The levels of glucose, triglyceride, and total cholesterol were negatively correlated with sperm concentration, and triglyceride and total cholesterol levels were negatively correlated with sperm motility, while positively correlated with the sperm malformation rate. Moreover, BDE-209 exposure activated the glycolipid metabolism pathways (PPARγ/RXRα/SCAP/SREBP-1) and mitochondrial apoptotic pathway, thereby inducing the apoptosis of spermatogenic cells. In vitro, BDE-209 caused triglyceride and total cholesterol disorder and apoptosis of GC-2spd cells, the lipid metabolism pathways inhibitor fatostain downregulated the elevation of triglyceride and total cholesterol concentrations, and suppressed apoptosis and the activation of the mitochondrial apoptotic pathway in GC-2spd cells caused by BDE-209. Our results indicated that BDE-209 induced male reproductive toxicity by causing glycolipid metabolism dysbiosis of testis resulting in activating of the mitochondrial apoptotic pathway in spermatogenic cells. The study provides new insight into the mechanisms of male reproductive toxicity caused by BDE-209.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Shuqin Jiang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhixiong Shi
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Casado ME, Huerta L, Marcos-Díaz A, Ortiz AI, Kraemer FB, Lasunción MA, Busto R, Martín-Hidalgo A. Hormone-sensitive lipase deficiency affects the expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in cellular cholesterol uptake and efflux and disturbs fertility in mouse testis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159043. [PMID: 34461308 DOI: 10.1016/j.bbalip.2021.159043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Hormone-sensitive lipase (HSL) hydrolyse acylglycerols, cholesteryl and retinyl esters. HSL is a key lipase in mice testis, as HSL deficiency results in male sterility. The present work study the effects of the deficiency and lack of HSL on the localization and expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in uptake and efflux of cholesterol in mice testis, to determine the impact of HSL gene dosage on testis morphology, lipid homeostasis and fertility. The results of this work show that the lack of HSL in mice alters testis morphology and spermatogenesis, decreasing sperm counts, sperm motility and increasing the amount of Leydig cells and lipid droplets. They also show that there are differences in the localization of HSL, SR-BI, LDLr and ABCA1 in HSL+/+, HSL+/- and HSL-/- mice. The deficiency or lack of HSL has effects on protein and mRNA expression of genes involved in lipid metabolisms in mouse testis. HSL-/- testis have augmented expression of SR-BI, LDLr, ABCA1 and LXRβ, a critical sterol sensor that regulate multiple genes involved in lipid metabolism; whereas LDLr expression decreased in HSL+/- mice. Plin2, Abca1 and Ldlr mRNA levels increased; and LXRα (Nr1h3) and LXRβ (Nr1h2) decreased in testis from HSL-/- compared with HSL+/+; with no differences in Scarb1. Together these data suggest that HSL deficiency or lack in mice testis induces lipid homeostasis alterations that affect the cellular localization and expression of key receptors/transporter involved in cellular cholesterol uptake and efflux (SR-BI, LDRr, ABCA1); alters normal cellular function and impact fertility.
Collapse
Affiliation(s)
- María Emilia Casado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Lydia Huerta
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Ana Marcos-Díaz
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Ana Isabel Ortiz
- Unidad de Cirugía Experimental y Animalario, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain
| | - Fredric B Kraemer
- Division of Endocrinology, Stanford University, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Miguel Angel Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Antonia Martín-Hidalgo
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain.
| |
Collapse
|
10
|
Wang F, Meng TG, Li J, Hou Y, Luo SM, Schatten H, Sun QY, Ou XH. Mitochondrial Ca 2 + Is Related to Mitochondrial Activity and Dynamic Events in Mouse Oocytes. Front Cell Dev Biol 2020; 8:585932. [PMID: 33195238 PMCID: PMC7652752 DOI: 10.3389/fcell.2020.585932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial energy insufficiency is strongly associated with oocyte activation disorders. Ca2+, especially that in the mitochondrial matrix, plays a pivotal role in mitochondrial energy supplementation, but the underlying mechanisms are still only poorly understood. An encoded mitochondrial matrix Ca2+ probe (Mt-GCaMP6s) was introduced to observe mitochondrial Ca2+ ([Ca2+]m) dynamic changes during oocyte maturation and activation. We found that active mitochondria surrounding the nucleus showed a higher [Ca2+]m than those distributed in the cortex during oocyte maturation. During oocyte partheno-activation, the patterns of Ca2+ dynamic changes were synchronous in the cytoplasm and mitochondria. Such higher concentration of mitochondrial matrix Ca2+ was closely related to the distribution of mitochondrial calcium uptake (MICU) protein. We further showed that higher [Ca2+]m mitochondria around the chromosomes in oocytes might have a potential role in stimulating mitochondrial energy for calmodulin-responsive oocyte spindle formation, while synchronizing Ca2+ functions in the cytoplasm and nuclear area are important for oocyte activation.
Collapse
Affiliation(s)
- Feng Wang
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shi-Ming Luo
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
11
|
García MF, Nuñez Favre R, Stornelli MC, Rearte R, García Mitacek MC, de la Sota RL, Stornelli MA. Relationship between semen quality and seminal plasma cholesterol, triacylglycerols and proteins in the domestic cat. J Feline Med Surg 2020; 22:882-889. [PMID: 31782351 PMCID: PMC10814404 DOI: 10.1177/1098612x19889072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The current study aimed to evaluate the relationship between specific seminal plasma components - cholesterol (CHOL), triacylglycerols (TAG) and total protein (PROT) concentrations - and semen quality in cats. A further aim was to determine the relationship between specific seminal protein bands and semen quality. METHODS Thirteen toms, 2-5 years of age, were included. Semen collection was performed by electroejaculation every 4 weeks. Fifty-eight ejaculates were assessed for motility, velocity, volume, sperm concentration, total sperm count, viability, acrosome integrity, plasma membrane integrity and sperm morphology. Samples were divided into two groups: good semen quality (GSQ) and poor semen quality (PSQ). After evaluation, seminal plasma was separated from the sperm by centrifugation and stored at -20°C. CHOL, TAG and PROT concentrations were then assessed and seminal plasma protein profile was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). RESULTS Seminal plasma CHOL and TAG concentrations, motility, velocity, sperm concentration, total sperm count and sperm morphology were significantly higher in GSQ cats compared with PSQ cats (P <0.01). Moreover, seminal plasma SDS-PAGE analysis showed an identifiable extra band exclusively in the GSQ group. CONCLUSIONS AND RELEVANCE Data obtained in this study showed that seminal plasma CHOL and TAG concentrations and specific protein bands could be used to improve semen evaluation in toms. In this sense, the 14 kDa protein band could be a valuable marker for semen quality in the cat and should be further investigated. However, more studies are necessary to determine its relationship with fertility.
Collapse
Affiliation(s)
- María F García
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Argentina
- Animal Reproduction Service, Faculty of Veterinary Science, National University of La Plata, La Plata, Buenos Aires, Argentina
| | - Romina Nuñez Favre
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Argentina
- Animal Reproduction Service, Faculty of Veterinary Science, National University of La Plata, La Plata, Buenos Aires, Argentina
| | - María C Stornelli
- Animal Reproduction Service, Faculty of Veterinary Science, National University of La Plata, La Plata, Buenos Aires, Argentina
| | - Ramiro Rearte
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Argentina
- Epidemiology and Public Health, Faculty of Veterinary Science, National University of La Plata, La Plata, Buenos Aires, Argentina
| | - María C García Mitacek
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Argentina
- Animal Reproduction Service, Faculty of Veterinary Science, National University of La Plata, La Plata, Buenos Aires, Argentina
| | - Rodolfo L de la Sota
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Argentina
- Animal Reproduction Service, Faculty of Veterinary Science, National University of La Plata, La Plata, Buenos Aires, Argentina
| | - María A Stornelli
- Animal Reproduction Service, Faculty of Veterinary Science, National University of La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
12
|
Wang F, Li A, Meng TG, Wang LY, Wang LJ, Hou Y, Schatten H, Sun QY, Ou XH. Regulation of [Ca 2+] i oscillations and mitochondrial activity by various calcium transporters in mouse oocytes. Reprod Biol Endocrinol 2020; 18:87. [PMID: 32799904 PMCID: PMC7429721 DOI: 10.1186/s12958-020-00643-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Oocyte activation inefficiency is one of the reasons for female infertility and Ca2+ functions play a critical role in the regulation of oocyte activation. We used various inhibitors of Ca2+ channels located on the membrane, including sarcoplasmic/ endoplasmic reticulum Ca2+ATPases (SERCAs, the main Ca2+ pumps which decrease the intracellular Ca2+ level by refilling Ca2+ into the sarcoplasmic reticulum), transient receptor potential (TRP) ion channel subfamily member 7 (TRPM7, a Ca2+/Mg2+-permeable non-selective cation channel), T-type Ca2+ channels and calcium channel Orai1, to investigate their roles in [Ca2+]i oscillation patterns and mitochondrial membrane potential during oocyte activation by real-time recording. Our results showed that SERCAs, TRPM7 and T-type Ca2+ channels were important for initiation and maintenance of [Ca2+]i oscillations, which was required for mitochondrial membrane potential elevation during oocyte activation, as well as oocyte cytoskeleton stability and subsequent embryo development. Increasing the knowledge of calcium transport may provide a theoretical basis for improving oocyte activation in human assisted reproduction clinics.
Collapse
Affiliation(s)
- Feng Wang
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317 China
- grid.9227.e0000000119573309China State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ang Li
- grid.9227.e0000000119573309China State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Gang Meng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317 China
- grid.9227.e0000000119573309China State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Le-Yun Wang
- grid.9227.e0000000119573309China State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Li-Juan Wang
- grid.9227.e0000000119573309China State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yi Hou
- grid.9227.e0000000119573309China State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Heide Schatten
- grid.134936.a0000 0001 2162 3504Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211 USA
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317 China
- grid.9227.e0000000119573309China State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317 China
| |
Collapse
|
13
|
Wang F, Li A, Li QN, Fan LH, Wang ZB, Meng TG, Hou Y, Schatten H, Sun QY, Ou XH. Effects of mitochondria-associated Ca 2+ transporters suppression on oocyte activation. Cell Biochem Funct 2020; 39:248-257. [PMID: 32643225 DOI: 10.1002/cbf.3571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022]
Abstract
Oocyte activation deficiency leads to female infertility. [Ca2+ ]i oscillations are required for mitochondrial energy supplement transition from the resting to the excited state, but the underlying mechanisms are still very little known. Three mitochondrial Ca2+ channels, Mitochondria Calcium Uniporter (MCU), Na+ /Ca2+ Exchanger (NCLX) and Voltage-dependent Ca2+ Channel (VDAC), were deactivated by inhibitors RU360, CGP37157 and Erastin, respectively. Both Erastin and CGP37157 inhibited mitochondrial activity significantly while attenuating [Ca2+ ]i and [Ca2+ ]m oscillations, which caused developmental block of pronuclear formation. Thus, NCLX and VDAC are two mitochondria-associated Ca2+ transporter proteins regulating oocyte activation, which may be used as potential targets to treat female infertility. SIGNIFICANCE OF THE STUDY: NCLX and VDAC are two mitochondria-associated Ca2+ transporter proteins regulating oocyte activation.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
14
|
Effects of different transdermal penetration enhancers applied to herbal cake-partitioned moxibustion on liver lipids, HSL and HMG-CoA reductase in hyperlipidemia rabbits. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2020. [DOI: 10.1007/s11726-020-1174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Su S, Raouf B, He X, Cai N, Li X, Yu J, Li J, Yu F, Wang M, Tang Y. Genome Wide Analysis for Growth at Two Growth Stages in A New Fast-Growing Common Carp Strain (Cyprinus carpio L.). Sci Rep 2020; 10:7259. [PMID: 32350307 PMCID: PMC7190712 DOI: 10.1038/s41598-020-64037-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 04/08/2020] [Indexed: 12/30/2022] Open
Abstract
In order to identify candidate genes or loci associated with growth performance of the newly established common carp strain, Xinlong, we conducted a genome-wide association analysis using 2b-RAD technology on 123 individuals. We constructed two sets of libraries associated with growth-related parameters (weight, length, width and depth) measured at two different grow-out stages. Among the 413,059 SNPs identified using SOAP SNP calling, 147,131 were tested for GWAS after quality filtering. Finally, 39 overlapping SNPs, assigned to four genomic locations, were associated with growth traits in two stages. These loci were assigned to functional classes related to immune response, response to stress, neurogenesis, cholesterol metabolism and development, and proliferation and differentiation of cells. By overlapping results of Plink and EMMAX analyses, we identified three genes: TOX, PLK2 and CD163 (both methods P < 0.05). Our study results could be used for marker-assisted selection to further improve the growth of the Xinlong strain, and illustrate that largely different sets of genes drive the growth of carp in the early and late grow-out stages.
Collapse
Affiliation(s)
- Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China.
| | - Bouzoualegh Raouf
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Xinjin He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.,College of Animal science, Shanxi Agricultural University, Taigu, PR China
| | - Nana Cai
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Xinyuan Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Juhua Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - JianLin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Fan Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Meiyao Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China.
| |
Collapse
|
16
|
Hoa Chung L, Qi Y. Lipodystrophy - A Rare Condition with Serious Metabolic Abnormalities. Rare Dis 2020. [DOI: 10.5772/intechopen.88667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
17
|
Zhu W, Cheng X, Ren C, Chen J, Zhang Y, Chen Y, Jia X, Wang S, Sun Z, Zhang R, Zhang Z. Proteomic characterization and comparison of ram (Ovis aries) and buck (Capra hircus) spermatozoa proteome using a data independent acquisition mass spectometry (DIA-MS) approach. PLoS One 2020; 15:e0228656. [PMID: 32053710 PMCID: PMC7018057 DOI: 10.1371/journal.pone.0228656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fresh semen is most commonly used in an artificial insemination of small ruminants, because of low fertility rates of frozen sperm. Generally, when developing and applying assisted reproductive technologies, sheep and goats are classified as one species. In order to optimize sperm cryopreservation protocols in sheep and goat, differences in sperm proteomes between ram and buck are necessary to investigate, which may contribute to differences in function and fertility of spermatozoa. In the current work, a data-independent acquisition-mass spectrometry proteomic approach was used to characterize and make a comparison of ram (Ovis aries) and buck (Capra hircus) sperm proteomes. A total of 2,109 proteins were identified in ram and buck spermatozoa, with 238 differentially abundant proteins. Proteins identified in ram and buck spermatozoa are mainly involved in metabolic pathways for generation of energy and diminishing oxidative stress. Specifically, there are greater abundance of spermatozoa proteins related to the immune protective and capacity activities in ram, while protein that inhibit sperm capacitation shows greater abundance in buck. Our results not only provide novel insights into the characteristics and potential activities of spermatozoa proteins, but also expand the potential direction for sperm cryopreservation in ram and buck.
Collapse
Affiliation(s)
- Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Jiahong Chen
- New Rural Develop Research Institute, Anhui Agricultural University, Hefei, P. R. China
| | - Yan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Yale Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Xiaojiao Jia
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Shijia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Zhipeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Renzheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
18
|
Raviv S, Hantisteanu S, Sharon SM, Atzmon Y, Michaeli M, Shalom-Paz E. Lipid droplets in granulosa cells are correlated with reduced pregnancy rates. J Ovarian Res 2020; 13:4. [PMID: 31907049 PMCID: PMC6945749 DOI: 10.1186/s13048-019-0606-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lipids are an important source for energy production during oocyte maturation. The accumulation of intracellular lipids binds to proteins to form lipid droplets. This may lead to cellular lipotoxicity. The impact of lipotoxicity on cumulus and granulosa cells has been reported. This pilot study evaluated their correlation to oocyte and embryo quality. DESIGN Prospective case-control study. SETTING Referral IVF unit. PATIENTS Women younger than age 40, undergoing IVF with intracytoplasmic sperm injection. INTERVENTIONS 15 women with BMI > 30 (high BMI) and 26 women with BMI < 25 (low BMI) were enrolled. IVF outcomes were compared between groups based on BMI. Lipid content in cumulus and granulosa cells was evaluated using quantitative and descriptive methods. Lipid profile, hormonal profile and C-reactive protein were evaluated in blood and follicular fluid samples. Demographic and treatment data, as well as pregnancy rates were collected from electronic medical records. RESULTS Higher levels of LDL and CRP, slower cell division rate and lower embryo quality were found in the group with high BMI. There was no difference in pregnancy rates between groups. In light of these findings, treatment outcomes were reanalyzed according to patients who became pregnant and those who did not. We found that patients who conceived had significantly lower fat content in the granulosa cells, reflected by mean fluorescence intensity recorded by flow cytometry analysis (23,404 vs. 9370, P = 0.03). CONCLUSIONS BMI has no effect on lipid content in cumulus and granulosa cells, and does not affect likelihood of pregnancy. However, women who achieved pregnancy, regardless of their BMI, had lower lipid levels in their granulosa cells. This finding is important and further study is needed to evaluate lipid content in granulosa cells as a potential predictor of IVF treatment success.
Collapse
Affiliation(s)
- Shira Raviv
- In Vitro Fertilization Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Shay Hantisteanu
- Obstetrics, Fertility and Gynecology Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
| | - Shilhav Meisel Sharon
- Obstetrics, Fertility and Gynecology Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
| | - Yuval Atzmon
- In Vitro Fertilization Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Mediea Michaeli
- In Vitro Fertilization Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Einat Shalom-Paz
- In Vitro Fertilization Department, Hillel Yaffe Medical Center, Hadera, Israel.
| |
Collapse
|
19
|
Wang F, Ren X, Chen Z, Li X, Zhu H, Li S, Ou X, Zhang C, Zhang F, Zhu B. The N‐terminal His‐tag affects the triglyceride lipase activity of hormone‐sensitive lipase in testis. J Cell Biochem 2019; 120:13706-13716. [PMID: 30937958 DOI: 10.1002/jcb.28643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Feng Wang
- College of Life Sciences Capital Normal University Beijing China
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Xiao‐Fang Ren
- College of Life Sciences Capital Normal University Beijing China
| | - Zheng Chen
- College of Life Sciences Capital Normal University Beijing China
| | - Xiao‐Long Li
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Hai‐Jing Zhu
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Sen Li
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Xiang‐Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Cheng Zhang
- College of Life Sciences Capital Normal University Beijing China
| | - Fei‐Xiong Zhang
- College of Life Sciences Capital Normal University Beijing China
| | - Bao‐Chang Zhu
- College of Life Sciences Capital Normal University Beijing China
| |
Collapse
|
20
|
Sèdes L, Thirouard L, Maqdasy S, Garcia M, Caira F, Lobaccaro JMA, Beaudoin C, Volle DH. Cholesterol: A Gatekeeper of Male Fertility? Front Endocrinol (Lausanne) 2018; 9:369. [PMID: 30072948 PMCID: PMC6060264 DOI: 10.3389/fendo.2018.00369] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is essential for mammalian cell functions and integrity. It is an important structural component maintaining the permeability and fluidity of the cell membrane. The balance between synthesis and catabolism of cholesterol should be tightly regulated to ensure normal cellular processes. Male reproductive function has been demonstrated to be dependent on cholesterol homeostasis. Here we review data highlighting the impacts of cholesterol homeostasis on male fertility and the molecular mechanisms implicated through the signaling pathways of some nuclear receptors.
Collapse
|