1
|
Mirghanizadeh Bafghi SA, Fesahat F, Zare F, Imani M, Vahidi S, Ansariniya H, ZareHoroki A, Hadinedoushan H. The role of inflammasome dysregulation in obstructive and non-obstructive azoospermia: a comparative molecular analysis of blood, tissue, and seminal plasma. Front Immunol 2024; 15:1507885. [PMID: 39712014 PMCID: PMC11659152 DOI: 10.3389/fimmu.2024.1507885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Background To address knowledge gaps, this study aimed to investigate the involvement of inflammasomes in the etiology of azoospermia. This study focused on the gene expression of key inflammasome components, including NLR family pyrin domain containing 3 (NLRP-3), CASPASE-1, Interleukin-1β (IL-1β), Interleukin-18 (IL-18), NLR family CARD domain-containing protein 4/ice protease-activating factor (NLRC-4/IPAF), and Absent in melanoma 2 (AIM-2). Methods We analyzed gene expression in blood and testicular tissue from patients with obstructive azoospermia (OA) and non-obstructive azoospermia (NOA). Additionally, we compared IL-1β and IL-18 expression levels in seminal plasma samples using the Enzyme-Linked Immunosorbent Assay (ELISA) method. For comparison, blood samples from normospermic (NS) individuals were also genetically evaluated. Results Our results indicated significantly higher gene expression of inflammasome components in NOA patients than those in OA patients either in blood or in testicular tissue. Both azoospermic groups exhibited higher mRNA levels of inflammasome genes comparing with those from blood samples of NS men. Seminal plasma samples showed significantly increased levels of IL-1β and IL-18 in NOA patients compared to men with OA. The ROC curve analysis indicated strong and significant predictive power of IL-18, AIM-2 and NLRC-4/IPAF gene expression profiles between NOA vs. NS patients and NOA vs. OA. Conclusions Our findings highlight the role of hidden chronic inflammation in azoospermia, particularly within the NOA group. This study provides a foundation for further detailed research, which could aid in the development of diagnostic panels to differentiate between various azoospermic groups.
Collapse
Affiliation(s)
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Imani
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Serajoddin Vahidi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Ansariniya
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali ZareHoroki
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Hadinedoushan
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Liu H, Du X, Zhang Z, Ge K, Chen X, Losiewicz MD, Guo H, Zhang H. Co-exposure of microcystin and nitrite enhanced spermatogenic disorders: The role of mtROS-mediated pyroptosis and apoptosis. ENVIRONMENT INTERNATIONAL 2024; 188:108771. [PMID: 38805914 DOI: 10.1016/j.envint.2024.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Microcystins (MCs) and nitrites are coexisted in the environment and have reproductive toxicity. The combined toxic effect and mechanism of MCs and nitrite on spermatogenesis remain largely unclear. In the present study, co-exposure to microcystin-leucine arginine (MC-LR) and sodium nitrite (NaNO2) aggravated testicular damage of Balb/c mice and mitochondrial impairment of spermatogonia, Sertoli cells, and sperm. Furthermore, MC-LR and NaNO2 reduced sperm density with a synergistic effect. In addition, MC-LR and NaNO2 synergistically induced oxidative stress in the reproductive system by decreasing superoxide dismutase (SOD) activity and glutathione (GSH) levels and increasing levels of mitochondrial reactive oxygen species (mtROS) and reactive oxygen species (ROS). More importantly, mitoquidone mesylate (MitoQ), an inhibitor of mtROS, blocked MC-LR and NaNO2-induced spermatogonia and Sertoli cell apoptosis by inhibiting high expression of Bax, Fadd, Caspase-8, and cleaved-Caspase-3. On the other hand, MitoQ suppressed pyroptosis of Sertoli cells by inhibiting the expression of NLRP3, N-GSDMD, and cleaved-Caspase-1. Additionally, MitoQ alleviated co-exposure-induced sperm density reduction and organ index disorders in F1 generation mice. Together, co-exposure of MC-LR and NaNO2 can enhance spermatogenic disorders by mitochondrial oxidative impairment-mediated germ cell death. This study emphasizes the potential risks of MC-LR and NaNO2 on reproduction in realistic environments and highlights new insights into the cause and treatment of spermatogenic disorders.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Public Health, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
3
|
Ma C, Huang J, Jiang Y, Liu L, Wang N, Huang S, Li H, Zhang X, Wen S, Wang B, Yang S. Gasdermin D in macrophages drives orchitis by regulating inflammation and antigen presentation processes. EMBO Mol Med 2024; 16:361-385. [PMID: 38177538 PMCID: PMC10897472 DOI: 10.1038/s44321-023-00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammation in the testes induced by infection and autoimmunity contributes significantly to male infertility, a public health issue. Current therapies using antibiotics and broad-spectrum anti-inflammatory drugs are ineffective against non-bacterial orchitis and induce side effects. This highlights the need to explore the pathogenesis of orchitis and develop alternative therapeutic strategies. In this study, we demonstrated that Gasdermin D (GSDMD) was activated in the testes during uropathogenic Escherichia coli (UPEC)-induced acute orchitis, and that GSDMD in macrophages induced inflammation and affected spermatogenesis during acute and chronic orchitis. In testicular macrophages, GSDMD promoted inflammation and antigen presentation, thereby enhancing the T-cell response after orchitis. Furthermore, the pharmacological inhibition of GSDMD alleviated the symptoms of UPEC-induced acute orchitis. Collectively, these findings provide the first demonstration of GSDMD's role in driving orchitis and suggest that GSDMD may be a potential therapeutic target for treating orchitis.
Collapse
Affiliation(s)
- Chunmei Ma
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Jiajia Huang
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, 210023, Nanjing, China
| | - Yuying Jiang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Lu Liu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Na Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Shaoqiong Huang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Honghui Li
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Xiangyu Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Shuang Wen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, 210023, Nanjing, China.
| | - Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine,National Vaccine Innovation Platform, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
4
|
Minas A, Costa LVS, Miyazaki MA, Antoniassi MP. Insight toward inflammasome complex contribution to male infertility. Am J Reprod Immunol 2023; 90:e13734. [PMID: 37491934 DOI: 10.1111/aji.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023] Open
Abstract
During the last decades, a wide range of factors involved in the physiopathology of male infertility disease have been discussed. The inflammation role in some of the main infertility-related diseases has been studied, such as varicocele, spinal cord injury and obesity. Inflammation is the main response of the immune system to infection or cell damage, leading to intense inflammatory cytokine release during the loss of homeostasis. One of the first steps toward pro-inflammatory cytokines release is the recognition of dangerous signals by the immune cells, including pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). These molecules can activate an important multiprotein complex, called inflammasome. Although these complexes have been studied during the last decades, their participation in male infertility has gained attention recently. Considering the inflammasome complex's high potential to be targeted for drug therapy, this review tries to shed light on current literature. Therefore, in the current review paper, we aimed to discuss the inflammasome complex activation, involvement in different male infertility conditions, and localization in the male reproductive tract.
Collapse
Affiliation(s)
- Aram Minas
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| | - Lucas Vasconcelos Soares Costa
- Laboratory of Ontogeny of Lymphocytes, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Mika Alexia Miyazaki
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| | - Mariana Pereira Antoniassi
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| |
Collapse
|
5
|
Jiang Y, Yang X, Li L, Lv X, Wang R, Zhang H, Liu R. Identification and verification of potential biomarkers in sertoli cell-only syndrome via bioinformatics analysis. Sci Rep 2023; 13:12164. [PMID: 37500704 PMCID: PMC10374527 DOI: 10.1038/s41598-023-38947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Sertoli cell-only syndrome (SCOS), a severe testicular spermatogenic failure, is characterized by total absence of male germ cells. To better expand the understanding of the potential molecular mechanisms of SCOS, we used microarray datasets from the Gene Expression Omnibus (GEO) and ArrayExpress databases to determine the differentially expressed genes (DEGs). In addition, functional enrichment analysis including the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. Protein-protein interaction (PPI) networks, modules, and miRNA-mRNA regulatory networks were constructed and analyzed and the validation of hub genes was performed. A total of 601 shared DEGs were identified, including 416 down-regulated and 185 up-regulated genes. The findings of the enrichment analysis indicated that the shared DEGs were mostly enriched in sexual reproduction, reproductive process, male gamete generation, immune response, and immunity-related pathways. In addition, six hub genes (CCNA2, CCNB2, TOP2A, CDC20, BUB1, and BUB1B) were selected from the PPI network by using the cytoHubba and MCODE plug-ins. The expression levels of the hub genes were significantly decreased in patients with SCOS compared to that in normal spermatogenesis controls as indicated by the microarray data, single-cell transcriptomic data, and clinical sample levels. Furthermore, the potential miRNAs were predicted via the miRNA-mRNA network construction. These hub genes and miRNAs can be used as potential biomarkers that may be related to SCOS. However, it has not been proven that the differential expression of these biomarkers is the molecular pathogenesis mechanisms of SCOS. Our findings suggest that these biomarkers can be serve as clinical tool for diagnosis targets and may have some impact on the spermatogenesis of SCOS from a testicular germ cell perspective.
Collapse
Affiliation(s)
- Yuting Jiang
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Xiao Yang
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Linlin Li
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Xin Lv
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Ruixue Wang
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Hongguo Zhang
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China
| | - Ruizhi Liu
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
6
|
Peng M, Wang W, Zhu W, Bai Y, Ning N, Huang Q, Pang X, Zhou J, Zhang H, Zhao K. Zishen Yutai Pill improves sperm quality and reduces testicular inflammation in experimental varicocele rats. Heliyon 2023; 9:e17161. [PMID: 37484236 PMCID: PMC10361325 DOI: 10.1016/j.heliyon.2023.e17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Objective Zishen Yutai Pill (ZYP), containing 15 Chinese traditional medicine, is a safe and well quality-controlled TCM preparation with promising effects in many fields of reproduction. The current study was designed to investigate the therapeutic effects of ZYP on sperm quality and testis in varicocele (VC) rats. Materials and methods Male Wistar rats were randomly divided into four groups (n = 6), i.e., a sham group, a VC group, and VC groups treated with different dose of ZYP (1575 and 3150 mg/kg/d, respectively). The experimental VC model was established by partial ligation of left renal vein. Six weeks after model establishment, ZYP was orally administered once a day for the next 6 weeks. Parameters relating to testis and sperm quality were assessed. Hematoxylin-eosin staining was used to showed testicular tissue damage in experimental VC rats. Expressions of proteins relating to NLRP3 inflammasome pathways were determined using Western blot (WB). The mRNA expressions of relating genes were determined using quantitative real-time PCR (qRT-PCR) analysis. Results ZYP could significantly improve sperm motility and decrease sperm DNA fragmentation index in VC rats (P < 0.05). Hematoxylin-eosin (HE) staining showed that ZYP could alleviate testicular tissue damage caused by experimental varicocele in rats. Compared to the VC model, expressions of NLRP3, ASC, and caspase-1 in rats treated with ZYP were significantly down-regulated, as validated by both qRT-PCR and WB analysis (P < 0.05). Conclusions In brief, ZYP could improve sperm DNA integrity by inhibiting the NLRP3 inflammasome pathway and alleviating the chronic inflammation of testicular tissue induced by experimental varicocele in rats.
Collapse
Affiliation(s)
- Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Bai
- Hospital of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China
| | - Xiufei Pang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China
| | - Jiewen Zhou
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Hosseini E, Kohan-Ghadr HR, Bazrafkan M, Amorim CA, Askari M, Zakeri A, Mousavi SN, Kafaeinezhad R, Afradiasbagharani P, Esfandyari S, Nazari M. Rescuing fertility during COVID-19 infection: exploring potential pharmacological and natural therapeutic approaches for comorbidity, by focusing on NLRP3 inflammasome mechanism. J Assist Reprod Genet 2023; 40:1173-1185. [PMID: 36892705 PMCID: PMC9995769 DOI: 10.1007/s10815-023-02768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
The respiratory system was primarily considered the only organ affected by Coronavirus disease 2019 (COVID-19). As the pandemic continues, there is an increasing concern from the scientific community about the future effects of the virus on male and female reproductive organs, infertility, and, most significantly, its impact on the future generation. The general presumption is that if the primary clinical symptoms of COVID-19 are not controlled, we will face several challenges, including compromised infertility, infection-exposed cryopreserved germ cells or embryos, and health complications in future generations, likely connected to the COVID-19 infections of parents and ancestors. In this review article, we dedicatedly studied severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) virology, its receptors, and the effect of the virus to induce the activation of inflammasome as the main arm of the innate immune response. Among inflammasomes, nucleotide oligomerization domain-like receptor protein, pyrin domain containing 3 (NLRP3) inflammasome pathway activation is partly responsible for the inflicted damages in both COVID-19 infection and some reproductive disorders, so the main focus of the discussion is on NLRP3 inflammasome in the pathogenesis of COVID-19 infection alongside in the reproductive biology. In addition, the potential effects of the virus on male and female gonad functions were discussed, and we further explored the potential natural and pharmacological therapeutic approaches for comorbidity via NLRP3 inflammasome neutralization to develop a hypothesis for averting the long-term repercussions of COVID-19. Since activation of the NLRP3 inflammasome pathway contributes to the damage caused by COVID-19 infection and some reproductive disorders, NLRP3 inflammasome inhibitors have a great potential to be considered candidates for alleviating the pathological effects of the COVID-19 infection on the germ cells and reproductive tissues. This would impede the subsequent massive wave of infertility that may threaten the patients.
Collapse
Affiliation(s)
- Elham Hosseini
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Obstetrics and Gynecology, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI USA
| | - Mahshid Bazrafkan
- Reproductive Biotechnology Research Center, Avicenna Research Institute (ARI), ACECR, Tehran, Iran
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maryam Askari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Armin Zakeri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Neda Mousavi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Raheleh Kafaeinezhad
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | | | - Sahar Esfandyari
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Irandoost E, Najibi S, Talebbeigi S, Nassiri S. Focus on the role of NLRP3 inflammasome in the pathology of endometriosis: a review on molecular mechanisms and possible medical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:621-631. [PMID: 36542122 DOI: 10.1007/s00210-022-02365-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Endometriosis (EMS) is a gynecological disease that leads to pathological conditions, which are connected to the initiation of pro-inflammatory cytokine production. Inflammation plays a vital role in the pathogenesis of EMS. The activation and formation of cytoplasmic inflammasome complexes is considered an important step of inflammation and a key regulator of pyroptosis, a form of cell death. NLR family pyrin domain containing 3 (NLRP3) inflammasome complex modulates innate immune activity and inflammation. The NLRP3 inflammasome activates cysteine protease caspase-1, which produces active pro-inflammatory interleukins (ILs), including IL-1β and IL-18. The aim of this review article was to discuss the involvement of NLRP3 inflammasome assembly and its activation in the pathophysiology of EMS and target related pathways in designing appropriate therapeutic approaches. Dysregulation of sex hormone signaling pathways was associated with over-activation of the NLPR3 inflammasome. In this study, we demonstrated the involvement of NLRP3 inflammasome signaling pathways in the pathophysiology of EMS. The manuscript also discusses the beneficial effects of targeted therapy through synthetic inhibitors of NLRP3 signaling pathways to control EMS lesions.
Collapse
Affiliation(s)
- Elnaz Irandoost
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaparak Najibi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Talebbeigi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saina Nassiri
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Yang X, Liu P, Cui Y, Song M, Zhang X, Zhang C, Jiang Y, Li Y. T-2 Toxin Caused Mice Testicular Inflammation Injury via ROS-Mediated NLRP3 Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14043-14051. [PMID: 36260425 DOI: 10.1021/acs.jafc.2c05317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T-2 toxin treatment causes male reproduction system dysfunction, although the exact mechanism remains unclear. In this research, male Kunming mice and TM4 cells were treated with varying concentrations of the T-2 toxin for evaluating the adverse effect of T-2 toxin on male reproductive function. MCC950 or NAC was used to block NLRP3 inflammasome activation and eliminate reactive oxygen species (ROS) accumulation in the TM4 cell, respectively. The results showed that: (1) T-2 toxin caused testicular atrophy, destroyed the microstructure and ultrastructure of the testis, and caused sperm deformities; (2) T-2 toxin increased the content and gene expressions of TNF-α and IL-6 and decreased the IL-10 content and gene expression, causing testis and TM4 cell inflammatory injury; (3) T-2 toxin activated NLRP3 inflammasome in the testis and TM4 cells and caused ROS accumulation in the testis; (4) suppressing NLRP3 inflammasome activation using 20 nM MCC950 alleviated the TM4 cell inflammatory damage caused via the T-2 toxin; nevertheless, 20 nM MCC950 did not reduce ROS accumulation in TM4 cells; and (5) NAC relieved the inflammatory damage in TM4 cells by inhibiting NLRP3 inflammasome activation. Taken together, T-2 toxin caused testicular inflammation injury through ROS-mediated NLRP3 inflammasome activation, resulting in male reproductive dysfunction.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pengli Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Prokineticin 2/PROK2 and Male Infertility. Biomedicines 2022; 10:biomedicines10102389. [PMID: 36289651 PMCID: PMC9598863 DOI: 10.3390/biomedicines10102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Male infertility represents about 50% of the causes of infertility in couples. The diagnosis process represents an important procedure for defining, when possible, the causes and approaching treatments (pharmacological, surgical) aimed at overcoming the problem. Several scientific studies have set out to discover early and indicative markers capable of providing information on the biological origin of infertility and increase current knowledge in the context of new potential therapeutic approaches. The prokineticin system (PROK) consists of the prokineticin 1 (PROK1) and prokineticin 2 (PROK2) proteins. Through the activation of two G-protein receptors (PROKR1 and PROKR2) regulate a wide range of biological functions, including gastrointestinal motility, circadian rhythm regulation, neurogenesis, angiogenesis, pain perception, and mood regulation. Several studies have highlighted the crucial role of the PROK system in the development and maturation of both male and female human reproductive organs. Particularly in men, the PROK system represents a new system useful to clarify some aspects of testicular pathophysiology and provide new potential hypotheses for therapeutic intervention. This narrative review aims to illustrate the state of the art regarding, in particular, the role of PROK2 in male infertility.
Collapse
|
11
|
Mu Y, Yin TL, Zhang Y, Yang J, Wu YT. Diet-induced obesity impairs spermatogenesis: the critical role of NLRP3 in Sertoli cells. Inflamm Regen 2022; 42:24. [PMID: 35915511 PMCID: PMC9344614 DOI: 10.1186/s41232-022-00203-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Background Accumulating evidence indicates a key role of Sertoli cell (SC) malfunction in spermatogenesis impairment induced by obesity. Nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) is expressed in SCs, but the role of NLRP3 in the pathological process of obesity-induced male infertility remains unclear. Methods NLRP3-deficient mice were fed a high-fat diet for 24 weeks to establish obesity-related spermatogenesis impairment. In another set of experiments, a lentiviral vector containing a microRNA (miR)-451 inhibitor was injected into AMP-activated protein kinase α (AMPKα)-deficient mouse seminiferous tubules. Human testis samples were obtained by testicular puncture from men with obstructive azoospermia whose samples exhibited histologically normal spermatogenesis. Isolated human SCs were treated with palmitic acid (PA) to mimic obesity model in vitro. Results Increased NLRP3 expression was observed in the testes of obese rodents. NLRP3 was also upregulated in PA-treated human SCs. NLRP3 deficiency attenuated obesity-related male infertility. SC-derived NLRP3 promoted interleukin-1β (IL-1β) secretion to impair testosterone synthesis and sperm performance and increased matrix metalloproteinase-8 (MMP-8) expression to degrade occludin via activation of nuclear factor-kappa B (NF-κB). Increased miR-451 caused by obesity, decreased AMPKα expression and sequentially increased NADPH oxidase activity were responsible for the activation of NLRP3. miR-451 inhibition protected against obesity-related male infertility, and these protective effects were abolished by AMPKα deficiency in mice. Conclusions NLRP3 promoted obesity-related spermatogenesis impairment. Increased miR-451 expression, impaired AMPKα pathway and the subsequent ROS production were responsible for NLRP3 activation. Our study provides new insight into the mechanisms underlying obesity-associated male infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00203-z.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan-Ting Wu
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
12
|
Riviere E, Rossi SP, Tavalieri YE, Muñoz de Toro MM, Calandra RS, Mayerhofer A, Matzkin ME, Frungieri MB. Pleiotropic actions of melatonin in testicular peritubular myoid cells of immature Syrian hamsters. Biochim Biophys Acta Gen Subj 2022; 1866:130187. [PMID: 35691458 DOI: 10.1016/j.bbagen.2022.130187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Peritubular myoid cells are emerging as key regulators of testicular function in adulthood. However, little is known about the role of testicular peritubular myoid cells (TPMCs) in the development of the male gonad. We found that, compared to testes of young adult hamsters, gonads of 21 day-old animals show increased melatonin concentration, seminiferous tubular wall thickening and a heterogeneous packaging of its collagen fibers thus raising the question whether melatonin may be involved in the regulation of TPMCs. METHODS We established primary cultures of TPMCs from immature hamsters (ihaTPMCs), which we found express melatonergic receptors. RESULTS Exogeneous melatonin decreased the levels of inflammatory markers (NLRP3 inflammasome, IL1β) but increased the expression of cyclooxygenase 2 (COX2, key enzyme mediating prostaglandin synthesis) and of the glial cell line-derived neurotrophic factor (GDNF) in ihaTPMCs. Melatonin also stimulated ihaTPMCs proliferation and the expression of extracellular matrix proteins such as collagen type I and IV. Furthermore, collagen gel contraction assays revealed an enhanced ability of ihaTPMCs to contract in the presence of melatonin. CONCLUSION Melatonin regulates immune and inflammatory functions as well as contractile phenotype of the peritubular wall in the hamster testis. GENERAL SIGNIFICANCE If transferable to the in vivo situation, melatonin-dependent induction of ihaTPMCs to produce factors known to exert paracrine effects in other somatic cell populations of the gonad suggests that the influence of melatonin may go beyond the peritubular wall and indicates its contribution to testicular development and the establishment of a normal and sustainable spermatogenesis.
Collapse
Affiliation(s)
- Eugenia Riviere
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Ciudad de Buenos Aires C1428ADN, Argentina
| | - Soledad P Rossi
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; Cátedra de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Yamil E Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Mónica M Muñoz de Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Ciudad de Buenos Aires C1428ADN, Argentina
| | - Artur Mayerhofer
- Cell Biology, Anatomy III, Faculty of Medicine, Biomedical Center Munich (BMC), Ludwig-Maximilian-University (LMU), 82152 Martinsried, Germany
| | - María E Matzkin
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; Cátedra de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Mónica B Frungieri
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; Cátedra de Química, Ciclo Básico Común, Ciudad de Buenos Aires C1405CAE, Argentina.
| |
Collapse
|
13
|
The NLRP3 inflammasome: molecular activation and regulation in spermatogenesis and male infertility; a systematic review. Basic Clin Androl 2022; 32:8. [PMID: 35637440 PMCID: PMC9150048 DOI: 10.1186/s12610-022-00157-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background Infertility related to varicocele, infections, metabolic dysfunctions, oxidative stress and environmental toxicants is also associated with inflammatory processes that ultimately lead to the activation of the inflammasome pathway (IP). IP is classically activated by DAMPs, MAMPs or LAMPs, which stand for Damage-, Microbe- or Lifestyle-Associated Molecular Patterns, respectively. The most important player in IP activation is the NLRP3 (NOD[Nuclear oligomerization domain]-, LRR[Leucine rich repeat]- and pyrin domain-containing protein 3) which functions as an intracellular sensor of D/M/L-AMPs resulting in activation of caspase-1, promotion of apoptosis, pyroptosis and generation of inflammatory cytokines. This review addresses the question of whether IP activation might be associated with male infertility situations. Results & conclusions We conducted a systematic review of articles published in the Google Scholar, and PubMed databases through October 2021. It turns out that inflammasome activation and its consequences including cytokine storms, apoptosis and pyroptosis could be associated with the reduced sperm count as well as the structural and functional sperm defects recorded in several situations associated with male infertility suggesting that anti-inflammatory therapeutic strategies could be possibly considered to restore male fertility in future research.
Collapse
|
14
|
The Role of NLRP3 Inflammasome Activation and Oxidative Stress in Varicocele-Mediated Male Hypofertility. Int J Mol Sci 2022; 23:ijms23095233. [PMID: 35563625 PMCID: PMC9102453 DOI: 10.3390/ijms23095233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Varicocele (VC) is the most common abnormality identified in men evaluated for hypofertility. Increased levels of reactive oxygen species (ROS) and reduced antioxidants concentrations are key contributors in varicocele-mediated hypofertility. Moreover, inflammation and alterations in testicular immunity negatively impact male fertility. In particular, NLRP3 inflammasome activation was hypothesized to lead to seminal inflammation, in which the levels of specific cytokines, such as IL-1β and IL-18, are overexpressed. In this review, we described the role played by oxidative stress (OS), inflammation, and NLRP3 inflammasome activation in VC disease. The consequences of ROS overproduction in testis, including inflammation, lipid peroxidation, mitochondrial dysfunction, chromatin damage, and sperm DNA fragmentation, leading to abnormal testicular function and failed spermatogenesis, were highlighted. Finally, we described some therapeutic antioxidant strategies, with recognized beneficial effects in counteracting OS and inflammation in testes, as possible therapeutic drugs against varicocele-mediated hypofertility.
Collapse
|
15
|
Sano M, Komiyama H, Shinoda R, Ozawa R, Watanabe H, Karasawa T, Takahashi M, Torii Y, Iwata H, Kuwayama T, Shirasuna K. NLRP3 inflammasome is involved in testicular inflammation induced by lipopolysaccharide in mice. Am J Reprod Immunol 2022; 87:e13527. [PMID: 35148014 DOI: 10.1111/aji.13527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Systemic inflammation induced by infection, which is associated with testicular inflammation, predisposes males to subfertility. Recently, the nucleotide-binding oligomerization domain, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasome was identified as a key mediator of inflammation, and excessive activation of the NLRP3 inflammasome was shown to contribute to the pathogenesis of a wide variety of diseases. However, the mechanisms underlying infectious inflammation in the testis remain unclear. We investigated the effect of lipopolysaccharide (LPS)-induced systemic inflammation on the role of the NLRP3 inflammasome in murine testes. METHOD OF STUDY We performed in vivo and in vitro studies using an LPS-induced model of NLRP3 inflammasome activation and testicular inflammation. RESULTS Intraperitoneal administration of LPS significantly impaired sperm motility in the epididymis of wild type (WT) and NLRP3-knockout (KO) mice. LPS administration stimulated interleukin (IL)-1β production and secretion in the testes of WT mice, and these adverse effects were improved in the testes of NLRP3-KO mice. LPS administration also stimulated neutrophil infiltration as well as its chemoattractant C-C motif chemokine ligand 2 (CCL2) in WT testes, which were suppressed in NLRP3-KO testes. In in vitro cell culture, treatment with LPS and NLRP3 inflammasome activation significantly induced IL-1β and CCL2 secretion from WT but not NLRP3-KO testicular cells. CONCLUSIONS Taken together, our results suggest that testicular cells have the potential to secrete IL-1β and CCL2 in an NLRP3 inflammasome-dependent manner and that these cytokines from the testis may further exacerbate testicular function, resulting in subfertility during infectious diseases.
Collapse
Affiliation(s)
- Michiya Sano
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hiromu Komiyama
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Riina Shinoda
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Ren Ozawa
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hiroyuki Watanabe
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yasushi Torii
- Laboratory of Animal Health, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| |
Collapse
|
16
|
Lai J, Ji JM, Chen MYZ, Luo YP, Yu Y, Zhou G, Wei LL, Huang LS, Liu JC. Melatonin ameliorates bupivacaine-induced spinal neurotoxicity in rats by suppressing neuronal NLRP3 inflammasome activation. Neurosci Lett 2022; 772:136472. [PMID: 35065245 DOI: 10.1016/j.neulet.2022.136472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Bupivacaine is a common local anesthetic that causes neurotoxicity when used at clinical concentrations. Melatonin (MT), is a potent neuroprotective molecule. The study aimed to characterize the neuroprotective effects of MT on spinal neurotoxicity induced by bupivacaine in rats. It showed that bupivacaine, by intrathecal injection, induced spinal injury, and that the protein levels of Nod-like receptor protein 3 (NLRP3), cleaved caspase-1, and the N-terminal region of gasdermin D (GSDMD-N) were significantly increased. NLRP3 was expressed mainly in neurons and microglia. MT treatment ameliorated bupivacaine-induced spinal cord injury in rats by suppressing activation of neuronal NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Jian Lai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Jie-Mei Ji
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Mei-Yun-Zi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Yun-Peng Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Yue Yu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Gang Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Li-Ling Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Lan-Shan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Jing-Chen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China.
| |
Collapse
|
17
|
Bazrafkan M, Hosseini E, Nazari M, Amorim CA, Sadeghi MR. NLRP3 inflammasome: A joint, potential therapeutic target in management of COVID-19 and fertility problems. J Reprod Immunol 2021; 148:103427. [PMID: 34563758 PMCID: PMC8453780 DOI: 10.1016/j.jri.2021.103427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
To overcome COVID-19 long-term consequences, one possible approach is to control inflammasomes activation, because SARS-CoV-2 can induce humoral and cellular immune responses. In this opinion article we hypothesized that if it is proven with convincing and unmistakable evidence that firstly, SARS-CoV-2 can enter cells and damage them through its common receptors in the reproductive tissues, and secondly, inflammasome pathway activation is responsible for the damages caused, then the inflammasome inhibitors might be considered as suitable candidates in preventing the pathological effects on the germ cells and reproductive tissues and subsequent fertility.
Collapse
Affiliation(s)
- Mahshid Bazrafkan
- Reproductive Biotechnology Research Center, Avicenna Research Institute (ARI), ACECR, Tehran, Iran
| | - Elham Hosseini
- Department of Obstetrics and Gynecology, IVF Clinic, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Christiani Andrade Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute (ARI), ACECR, Tehran, Iran
| |
Collapse
|
18
|
Baker J, Meade A, Venditti C. Genes underlying the evolution of tetrapod testes size. BMC Biol 2021; 19:162. [PMID: 34407824 PMCID: PMC8375169 DOI: 10.1186/s12915-021-01107-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Testes vary widely in mass relative to body mass across species, but we know very little about which genes underlie and contribute to such variation. This is partly because evidence for which genes are implicated in testis size variation tends to come from investigations involving just one or a few species. Contemporary comparative phylogenetic methods provide an opportunity to test candidate genes for their role in phenotypic change at a macro-evolutionary scale-across species and over millions of years. Previous attempts to detect genotype-phenotype associations across species have been limited in that they can only detect where genes have driven directional selection (e.g. brain size increase). RESULTS Here, we introduce an approach that uses rates of evolutionary change to overcome this limitation to test whether any of twelve candidate genes have driven testis size evolution across tetrapod vertebrates-regardless of directionality. We do this by seeking a relationship between the rates of genetic and phenotypic evolution. Our results reveal five genes (Alkbh5, Dmrtb1, Pld6, Nlrp3, Sp4) that each have played unique and complex roles in tetrapod testis size diversity. In all five genes, we find strong significant associations between the rate of protein-coding substitutions and the rate of testis size evolution. Such an association has never, to our knowledge, been tested before for any gene or phenotype. CONCLUSIONS We describe a new approach to tackle one of the most fundamental questions in biology: how do individual genes give rise to biological diversity? The ability to detect genotype-phenotype associations that have acted across species has the potential to build a picture of how natural selection has sculpted phenotypic change over millions of years.
Collapse
Affiliation(s)
- Joanna Baker
- School of Biological Sciences, University of Reading, Reading, RG6 6BX, UK.
| | - Andrew Meade
- School of Biological Sciences, University of Reading, Reading, RG6 6BX, UK
| | - Chris Venditti
- School of Biological Sciences, University of Reading, Reading, RG6 6BX, UK.
| |
Collapse
|
19
|
Lahiri S, Aftab W, Walenta L, Strauss L, Poutanen M, Mayerhofer A, Imhof A. MALDI-IMS combined with shotgun proteomics identify and localize new factors in male infertility. Life Sci Alliance 2021; 4:4/3/e202000672. [PMID: 33408244 PMCID: PMC7812314 DOI: 10.26508/lsa.202000672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
In situ proteomics of male infertility. Spermatogenesis is a complex multi-step process involving intricate interactions between different cell types in the male testis. Disruption of these interactions results in infertility. Combination of shotgun tissue proteomics with MALDI imaging mass spectrometry is markedly potent in revealing topological maps of molecular processes within tissues. Here, we use a combinatorial approach on a characterized mouse model of hormone induced male infertility to uncover misregulated pathways. Comparative testicular proteome of wild-type and mice overexpressing human P450 aromatase (AROM+) with pathologically increased estrogen levels unravels gross dysregulation of spermatogenesis and emergence of pro-inflammatory pathways in AROM+ testis. In situ MS allowed us to localize misregulated proteins/peptides to defined regions within the testis. Results suggest that infertility is associated with substantial loss of proteomic heterogeneity, which define distinct stages of seminiferous tubuli in healthy animals. Importantly, considerable loss of mitochondrial factors, proteins associated with late stages of spermatogenesis and steroidogenic factors characterize AROM+ mice. Thus, the novel proteomic approach pinpoints in unprecedented ways the disruption of normal processes in testis and provides a signature for male infertility.
Collapse
Affiliation(s)
- Shibojyoti Lahiri
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Wasim Aftab
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Lena Walenta
- Biomedical Center, Cell Biology-Anatomy III, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Leena Strauss
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Artur Mayerhofer
- Biomedical Center, Cell Biology-Anatomy III, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Su Y, Zhang Y, Hu Z, He L, Wang W, Xu J, Fan Z, Liu C, Zhang H, Zhao K. Prokineticin 2 via Calcium-Sensing Receptor Activated NLRP3 Inflammasome Pathway in the Testicular Macrophages of Uropathogenic Escherichia coli-Induced Orchitis. Front Immunol 2020; 11:570872. [PMID: 33193351 PMCID: PMC7644440 DOI: 10.3389/fimmu.2020.570872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
Reproductive tract infections contribute to the development of testicular inflammatory lesions, leading to male infertility. Previous research shows that the activation of the NLRP3 inflammasome in orchitis promotes the secretion and maturation of IL-1β and, thus, decreases male fertility. The calcium-sensing receptor (CaSR) is closely related to the secretion of proinflammatory cytokines. An increase in the CaSR level promotes the assembly and activation of the NLRP3 inflammasome. However, the role of CaSRs in orchitis is unknown. We first constructed a uropathogenic Escherichia Coli (UPEC) rat orchitis model and then detected the expression of CaSR and NLRP3 inflammatory pathway proteins in testicular macrophages (TM) through RT-PCR and WB, calcium levels in TM through flow cytometry, and proinflammatory factor IL-1β through ELISA. In addition, testosterone levels in the serum samples were detected using liquid chromatography–mass spectrometry (LC-MS). Here, we show that CaSR upregulation after infection in TM in a rat model of UPEC induces the activation of the NLRP3 inflammasome pathway and thereby enhances IL-1β secretion and reduces the testosterone level in the blood. Moreover, CaSR inhibitors can alleviate inflammatory impairment. After UPEC challenge in vitro, CaSR promoted NLRP3 expression and released IL-1β cleaved from TM into the supernatant. Overall, elevated CaSR levels in TM in testes with UPEC-induced orchitis may impair testosterone synthesis through the activation of the NLRP3 pathway and PK2 is an upstream regulatory protein of CaSR. Our research further shows the underlying mechanisms of inflammation-related male infertility and provides anti-inflammatory therapeutic targets for male infertility.
Collapse
Affiliation(s)
- Yufang Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Palmitic Acid Targets Human Testicular Peritubular Cells and Causes a Pro-Inflammatory Response. J Clin Med 2020; 9:jcm9082655. [PMID: 32824411 PMCID: PMC7463762 DOI: 10.3390/jcm9082655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 11/18/2022] Open
Abstract
Palmitic acid (PA) is a major fatty acid, derived from diet and endogenous production, which is being linked to inflammation. While such actions of PA at the level of the testis remain difficult to examine, we reasoned that studies in human testicular cells may be instructive. Human testicular peritubular cells (HTPCs) can be isolated from men and cultured. They have contractile properties but also produce Interleukin 6 (IL6), express the inflammasome member NLRP3, and via glia cell line derived neurotrophic factor (GDNF), they contribute to the spermatogonial stem cell niche. We found that PA at 100 µM significantly increased the levels of IL6, while NLRP3 or the related Interleukin 1 beta (IL1beta) were not affected. The contractility marker calponin (CNN1) and the growth factor GDNF were likewise not affected. ELISA studies confirmed the stimulatory PA actions on IL6. Hence, PA derived from diet and/or endogenous sources may be able to foster a pro-inflammatory milieu in the testis. A possible link of these results to diet and high fat intake and obesity is indicated by the about 12-fold elevated testicular levels of IL6 in testes of obese rhesus monkeys (n = 3), fed with a Western Style diet. They had elevated 2–5-fold increased body fat and increased circulating triglyceride levels. Further consequences of PA and obesity for testicular functions remain to be evaluated.
Collapse
|
22
|
Baazm M, Ghafarizadeh AA, Noshad Kamran AR, Beyer C, Zendedel A. Presence of The NLRP3 Inflammasome Components in Semen of Varicocele Patients. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2020; 14:46-50. [PMID: 32112635 PMCID: PMC7139229 DOI: 10.22074/ijfs.2020.5734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
Background Varicocele is a common cause of male infertility with multifactorial etiology. Inflammation is a
characteristic pathological event that occurs in the testis tissue following the varicocele. The aim of this study was to
investigate expression of nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome components
and cytokines in semen of varicocele and control subjects. Materials and Methods In this case-control study, seminal plasma was collected from 32 varicocele patients (with
grades 2 and 3) and 20 fertile men as control group. Semen analysis was performed in all subjects. Concentrations
of interleukin-1b (IL-1b), IL-18 and caspase-1 in seminal plasma were measured by enzyme-linked immunosorbent
assay (ELISA). Apoptosis-associated speck-like protein containing a caspase activation and recruitment domain, in
addition to NALP3 were identified in seminal plasma by Western blot. Statistical significance between the mean
values was determined by student’s t test. Results According to our data, the level of IL-1b was significantly (P=0.03) increased in the seminal plasma of
varicocele patients, compared to the control subjects. We analyzed amount of IL-18 in the both groups. The level of
this interleukin was markedly (P=0.002) decreased in varicocele patients. No change was observed in the level of
caspase-1 in both groups. Western blot analysis revealed that apoptosis associated speck-like protein (ASC, P=0.0002)
and NLRP3 (P=0.005) were significantly elevated in the semen of varicocele patients. Conclusion This study provides the first evidence of activation of NLRP3 components in semen of men with varicocele.
Collapse
Affiliation(s)
- Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran. Electronic Address:
| | | | - Ali Reza Noshad Kamran
- Department of Urology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.,Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
de Rivero Vaccari JP. The Inflammasome in Reproductive Biology: A Promising Target for Novel Therapies. Front Endocrinol (Lausanne) 2020; 11:8. [PMID: 32047476 PMCID: PMC6997205 DOI: 10.3389/fendo.2020.00008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/07/2020] [Indexed: 12/03/2022] Open
Abstract
The inflammasome is a key regulator of innate immunity involved in the inflammatory response to infections as well as disease through the activation of caspase-1 and the processing of the inflammatory cytokines interleukin (IL)-1β and IL-18. Even though the inflammasome was first described in the context of infections, most research in recent years has focused on targeting the inflammasome as a therapeutic option in sterile inflammatory events. Recent evidence indicates a clear involvement of the inflammasome in Reproductive Biology such as infertility and preeclampsia. In this mini-review, I summarize the current findings on the inflammasome that have been described in the field of Reproductive Biology and highlight the potential that the inflammasome has as a novel therapeutic option in this field. The topics covered in this review as it pertains to the inflammasome field cover the literature published on male and female infertility, endometriosis, preeclampsia, placental inflammation, and reproductive senescence.
Collapse
Affiliation(s)
- Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL, United States
- InflamaCORE, LLC, Miami, FL, United States
- *Correspondence: Juan Pablo de Rivero Vaccari
| |
Collapse
|
24
|
Louvrier C, Assrawi E, El Khouri E, Melki I, Copin B, Bourrat E, Lachaume N, Cador-Rousseau B, Duquesnoy P, Piterboth W, Awad F, Jumeau C, Legendre M, Grateau G, Georgin-Lavialle S, Karabina SA, Amselem S, Giurgea I. NLRP3-associated autoinflammatory diseases: Phenotypic and molecular characteristics of germline versus somatic mutations. J Allergy Clin Immunol 2019; 145:1254-1261. [PMID: 31816408 DOI: 10.1016/j.jaci.2019.11.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND NLRP3-associated autoinflammatory diseases (NLRP3-AIDs) include conditions of various severities, due to germline or somatic mosaic NLRP3 mutations. OBJECTIVE To identify mosaic- versus germline-specific NLRP3 mutations' characteristics, we reinterpreted all the mutations reported in NLRP3-AIDs and performed an in-depth study of 3 novel patients. METHODS The pathogenicity of all reported mosaic/germline mutations was reassessed according to international recommendations and their location on the NLRP3 3-dimensional structure. Deep-targeted sequencing and NLRP3-inflammasome-activation assays were used to identify the disease-causing mutation in 3 patients. RESULTS We identified, in 3 patients, mosaic mutations affecting the same NLRP3 amino acid (Glu569). This residue belongs to 1 of the 2 mosaic mutational hot spots that face each other in the core of the NLRP3 ATPase domain. The review of the 90 NLRP3 mutations identified in 277 patients revealed that those hot spots account for 68.5% of patients (37 of 54) with mosaic mutations. Glu569 is affected in 22% of the patients (12 of 54) with mosaic mutations and in 0.4% of patients (1 of 223) with germline mutations. Only 8 of 90 mutations were found in mosaic and germinal states. All of the germline mutations were associated with a severe phenotype. These data suggest that mutations found only in mosaic state could be incompatible with life if present in germinal state. None of the 5 most frequent germline mutations was identified in mosaic state. Mutations found only in germinal state could, therefore, be asymptomatic in mosaic state. CONCLUSIONS The phenotypic spectrum of NLRP3-AIDs appears to be related to the germinal/mosaic status and localization of the underlying mutations.
Collapse
Affiliation(s)
- Camille Louvrier
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France; Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eman Assrawi
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France
| | - Elma El Khouri
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France
| | - Isabelle Melki
- Service de Pédiatrie Générale, Maladies Infectieuses et Médecine Interne Pédiatrique, Centre de Référence Rhumatismes et Auto-Immunité Systémique de l'Enfant, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Copin
- Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuelle Bourrat
- Service de Pédiatrie Générale, Maladies Infectieuses et Médecine Interne Pédiatrique, Centre de Référence Rhumatismes et Auto-Immunité Systémique de l'Enfant, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Noémie Lachaume
- Service de Pédiatrie Générale, Maladies Infectieuses et Médecine Interne Pédiatrique, Centre de Référence Rhumatismes et Auto-Immunité Systémique de l'Enfant, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Philippe Duquesnoy
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France
| | - William Piterboth
- Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fawaz Awad
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France
| | - Claire Jumeau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France
| | - Marie Legendre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France; Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gilles Grateau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France; Service de Médecine Interne, et Centre de Référence des Maladies Autoinflammatoires et des Amyloses Inflammatoires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Georgin-Lavialle
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France; Service de Médecine Interne, et Centre de Référence des Maladies Autoinflammatoires et des Amyloses Inflammatoires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sonia A Karabina
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France
| | - Serge Amselem
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France; Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Irina Giurgea
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), "Childhood genetic disorders", Paris, France; Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
25
|
Matzkin M, Valchi P, Riviere E, Rossi S, Tavalieri Y, Muñoz de Toro M, Mayerhofer A, Bartke A, Calandra R, Frungieri M. Aging in the Syrian hamster testis: Inflammatory-oxidative status and the impact of photoperiod. Exp Gerontol 2019; 124:110649. [DOI: 10.1016/j.exger.2019.110649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/30/2019] [Indexed: 12/16/2022]
|
26
|
Li Y, Su Y, Zhou T, Hu Z, Wei J, Wang W, Liu C, Zhang H, Zhao K. Activation of the NLRP3 Inflammasome Pathway by Prokineticin 2 in Testicular Macrophages of Uropathogenic Escherichia coli- Induced Orchitis. Front Immunol 2019; 10:1872. [PMID: 31474981 PMCID: PMC6702272 DOI: 10.3389/fimmu.2019.01872] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the reproductive tract are known to contribute to testicular inflammatory impairment, leading to an increase of pro-inflammatory cytokines such as IL-1β, and a decline in sperm quality. Prokineticin 2 (PK2), a secretory protein, is closely associated with the secretion of pro-inflammatory cytokines in inflamed tissue. It was reported that increased PK2 is related to the upregulation of IL-1β, but the underlying mechanism remains elusive. Here, we illustrated that PK2 was upregulated in testicular macrophages (TM) in a rat model of uropathogenic Escherichia coli (UPEC) infection, which induced the activation of the NLRP3 inflammasome pathway to boost IL-1β secretion. Administration of PK2 inhibitor alleviated the inflammatory damage and suppressed IL-1β secretion. Moreover, PK2 promoted NLRP3 expression and the release of cleaved IL-1β from TM to the supernatants after the challenge with UPEC in vitro. IL-1β in the supernatants affected Leydig cells by suppressing the expression of genes encoding for the enzymes P450scc and P450c17, which are involved in testosterone production. Overall, we revealed that increased PK2 levels in TM in UPEC-induced orchitis may impair testosterone synthesis via the activation of the NLRP3 pathway. Our study provides a new insight into the mechanisms underlying inflammation-associated male infertility and suggests an anti-inflammatory therapeutic target for male infertility.
Collapse
Affiliation(s)
- Ying Li
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Prenatal Diagnostic Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yufang Su
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan, China
| | - Zhiyong Hu
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajing Wei
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Family Planning Research Institute/Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Mayerhofer A. Peritubular cells of the human testis: prostaglandin E 2 and more. Andrology 2019; 8:898-902. [PMID: 31237067 DOI: 10.1111/andr.12669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Several layers of slender, smooth muscle-like, peritubular cells and extracellular matrix (ECM) form the peritubular compartment of the human testis. Peritubular cells are the least explored testicular cells. MATERIALS AND METHODS Human testicular peritubular cells (HTPCs) can be isolated from small testicular fragments of patients and studied in vitro. We have used this cellular model, in combination with human testicular samples, to examine how peritubular cells may contribute to male (in)fertility. RESULTS Human testicular peritubular cells (HTPCs) retain contractile abilities in vitro and secrete many proteins. Among them are factors, which serve intra-testicular roles, for example, glial cell line-derived neurotrophic factor (GDNF), thought to be important for the renewal of spermatogonial stem cells (SSCs). Studies in mutant mice indicated that peritubular cell-derived GDNF is crucial for lifelong spermatogenesis. Thus, peritubular cells are a functional part of the SSC niche. Peritubular cells of mice and men express androgen receptors (AR). In mouse peritubular cells, androgens enhanced GDNF production, but not in HTPCs. Rather, AR activation increased the levels of AR and smooth muscle proteins and thereby enhanced the smooth muscle-like phenotype. Following the lead of a proteomic analysis, which identified the key prostaglandin (PG)-synthesizing enzyme (PTGS1 = COX1), we found that HTPCs secrete PGE2 . COX1, and PGE2 receptors (EP1, 2, and 4) were identified in peritubular cells in situ, supporting in vivo relevance. In HTPCs, activation of EP1/4 increased GDNF and a smooth muscle protein. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID), which blocks PG synthesis. Added to HTPCs it reduced PGE2 and GDNF production and lowered smooth muscle protein levels. If applicable to the in vivo situation, the results suggest that ibuprofen and possibly other NSAIDs may impair important peritubular cell functions and consequently testicular functions. CONCLUSION The few examples highlighted, together with others not mentioned here, indicate that HTPCs provide an experimental window into the human testis.
Collapse
Affiliation(s)
- Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology - Anatomy III, Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany
| |
Collapse
|