1
|
Zhu C, Yang Q, Xu Q, Song Y, Tang C. The role of heart and neural crest derivatives-expressed protein factors in pregnancy. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167639. [PMID: 39725090 DOI: 10.1016/j.bbadis.2024.167639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Heart and neural crest derivatives-expressed protein 1 (HAND1) and Heart and neural crest derivatives-expressed protein 2 (HAND2), members of the Twist-family of basic Helix-Loop-Helix (bHLH) proteins, act as critical transcription factors that play a key role in various developmental processes, including placental development and fetal growth during pregnancy. This review aims to explore the current understanding of HAND1 and HAND2 in pregnant maintenance and their potential implications for maternal and fetal health. We will summarize the mechanisms of action of HAND1 and HAND2 in pregnancy, their expression regulation and association with pregnancy complications such as preterm birth and preeclampsia. Furthermore, we will discuss the potential therapeutic implications of targeting HAND1 and HAND2 in pregnancy-related disorders. This review highlights the importance of HAND1 and HAND2 in pregnancy and their potential as targets for future research and therapeutic interventions of gestational disorders.
Collapse
Affiliation(s)
- Chongying Zhu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Qiwei Yang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China, 200100
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yanhua Song
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
2
|
Zhang Y, Lu M, Han Y, Liu B, Zhao R, Liu P, Zhao H. Deciphering endometrial dysfunction in patients with uterine myoma using endometrial organoids: a pilot study. Reprod Biomed Online 2024; 49:104355. [PMID: 39303426 DOI: 10.1016/j.rbmo.2024.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 09/22/2024]
Abstract
RESEARCH QUESTION What influence does an intramural myoma have on the endometrium, and how is this mediated? DESIGN Endometrium was collected from 13 patients with non-cavity-distorting intramural myomas (diameter ≤4 cm; International Federation of Gynecology and Obstetrics type 4) and 13 patients without myomas undergoing hysterectomy for benign cervical diseases with a similar clinical baseline. Endometrial organoids were established in vitro and induced to reach the secretory phase by oestrogen and progesterone. Transcriptome sequencing was conducted on endometrial organoids in both untreated and secretory stages from three individuals with myomas and three control participants. Immunofluorescence and real-time quantitative PCR (RT-qPCR) were performed on endometrial organoids from another 10 myoma patients and 10 control patients for validation. RESULTS The data revealed abnormally increased hormone receptor (PGR) levels in the untreated endometrial organoids with myomas, resulting in potentially abnormal glandular and vascular development. The aberrant responses to oestrogen and progestogen prompted further investigation into the secretory phase. The secretory endometrial organoids with myomas exhibited greater changes in acetyl-α-tubulin, ODF2 and TPPP, demonstrating likely decreased cilia, and COL6A1, used as a marker for increased extracellular matrix (ECM) modelling. Both untreated and secretory endometrial organoids with myoma showed an up-regulation of genes and pathways related to ECM mechanotransduction. The expression pattern of receptivity-related genes was disturbed in endometrial organoids with myoma. CONCLUSIONS This study is the first to reveal that intramural myomas create an abnormal hormonal and mechanical environment in the untreated and secretory endometrial organoids. The intramural myomas negatively impacted gene expression relating to endometrial glands, blood vessels, cilia and ECM, indicating that intramural myomas impair endometrial decidualization and receptivity.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China.; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Minghui Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Yanli Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Boyang Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Rusong Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China.; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China..
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China..
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, China.; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China.; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China.; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China..
| |
Collapse
|
3
|
Stratopoulou CA, Rossi M, Beaussart C, Zipponi M, Camboni A, Donnez J, Dolmans MM. Generation of epithelial-stromal assembloids as an advanced in vitro model of impaired adenomyosis-related endometrial receptivity. Fertil Steril 2024:S0015-0282(24)01972-1. [PMID: 39197515 DOI: 10.1016/j.fertnstert.2024.08.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE To create a novel, more advanced in vitro model of human endometrium, using so-called assembloids, looking to explore endometrial receptivity in adenomyosis. DESIGN Evaluation of assembloid responsiveness to hormonal stimulation by immunohistochemistry, enzyme-linked immunosorbent assay, and scanning electron microscopy. SETTING University-based research unit in gynecology. PATIENT(S) Twelve women, six of whom were affected by adenomyosis. INTERVENTION(S) Organoids (in the form of glandular fragments) and stromal fibroblasts were collected from endometrial biopsies. The two populations were combined inside an extracellular matrix to create 3D assembloids, which were then exposed to hormonal stimulation (β-estradiol for 48 hours, followed by β-estradiol/progesterone/cyclic adenosine monophosphate for 72 hours) to mimic the window of implantation. MAIN OUTCOME MEASURE(S) Glycodelin, leukemia inhibitory factor (LIF), and homeobox A10 (HOXA10) expression, prolactin secretion, and pinopode development. RESULT(S) Endometrial organoids and stromal cells were successfully isolated from women with and without adenomyosis and combined to generate the assembloid model. On stimulation, assembloids from both groups acquired a more secretory phase-like phenotype, as demonstrated by histology, and were shown to be positive for glycodelin, LIF, and HOXA10 by immunohistochemistry. Adenomyotic assembloids expressed significantly lower levels of LIF and HOXA10 within the stromal compartment after stimulation than did healthy assembloids in the same condition. Enzyme-linked immunosorbent assay revealed prolactin secretion in vitro, showing an upward trend in hormonally treated assembloids from both healthy and affected women. By scanning electron microscopy, fully formed pinopodes were discerned on the epithelial surface of healthy assembloids after stimulation, but they were absent in case of adenomyosis. CONCLUSION(S) Primary assembloids can be generated from endometrial biopsies from both healthy subjects and women affected by adenomyosis. These assembloids are amenable to hormonal stimulation and mimic secretory phase-specific characteristics of endometrial tissue in vivo, including glycodelin, LIF, and HOXA10 expression, and pinopode formation. Assembloids from adenomyosis appear to be less sensitive to hormonal treatment, showing reduced expression of LIF and HOXA10 in the stromal compartment and failing to form pinopodes. All in all, endometrial assembloids may serve as an advanced preclinical model of adenomyosis-related impaired endometrial receptivity, opening up new horizons in understanding and treating the condition.
Collapse
Affiliation(s)
- Christina Anna Stratopoulou
- Gynecology Research Unit, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Margherita Rossi
- Gynecology Research Unit, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium; Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Chloé Beaussart
- Gynecology Research Unit, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Margherita Zipponi
- Gynecology Research Unit, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Camboni
- Gynecology Research Unit, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium; Anatomopathology Department, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Jacques Donnez
- Société de Recherche pour l'Infertilité, Brussels, Belgium; Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynecology Research Unit, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
4
|
Liu Y, Sun Y, Cheng S. Advances in the use of organoids in endometrial diseases. Int J Gynaecol Obstet 2024; 166:502-511. [PMID: 38391201 DOI: 10.1002/ijgo.15422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
The endometrium undergoes cyclical changes in response to hormones and there is a certain degree of heterogeneity among individuals. In vivo identification of the physiologic changes of the endometrium and the pathologic process of related diseases is challenging. There have been recent advances in the use of organoids that mimic the characteristics of the corresponding organs and the morphologic, functional, and personalized characteristics involved in different stages of diseases. In this paper, we discuss the process of creating endometrial organoids, cell sources, types of extracellular matrices, and their application in the study of physiologic endometrial states and various diseases.
Collapse
Affiliation(s)
- Yaofang Liu
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Sun
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shaolong Cheng
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Saadeldin IM, Ehab S, Noreldin AE, Swelum AAA, Bang S, Kim H, Yoon KY, Lee S, Cho J. Current strategies using 3D organoids to establish in vitro maternal-embryonic interaction. J Vet Sci 2024; 25:e40. [PMID: 38834510 PMCID: PMC11156602 DOI: 10.4142/jvs.24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 06/06/2024] Open
Abstract
IMPORTANCE The creation of robust maternal-embryonic interactions and implantation models is important for comprehending the early stages of embryonic development and reproductive disorders. Traditional two-dimensional (2D) cell culture systems often fail to accurately mimic the highly complex in vivo conditions. The employment of three-dimensional (3D) organoids has emerged as a promising strategy to overcome these limitations in recent years. The advancements in the field of organoid technology have opened new avenues for studying the physiology and diseases affecting female reproductive tract. OBSERVATIONS This review summarizes the current strategies and advancements in the field of 3D organoids to establish maternal-embryonic interaction and implantation models for use in research and personalized medicine in assisted reproductive technology. The concepts of endometrial organoids, menstrual blood flow organoids, placental trophoblast organoids, stem cell-derived blastoids, and in vitro-generated embryo models are discussed in detail. We show the incorportaion of organoid systems and microfluidic technology to enhance tissue performance and precise management of the cellular surroundings. CONCLUSIONS AND RELEVANCE This review provides insights into the future direction of modeling maternal-embryonic interaction research and its combination with other powerful technologies to interfere with this dialogue either by promoting or hindering it for improving fertility or methods for contraception, respectively. The merging of organoid systems with microfluidics facilitates the creation of sophisticated and functional organoid models, enhancing insights into organ development, disease mechanisms, and personalized medical investigations.
Collapse
Affiliation(s)
- Islam Mohamed Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Seif Ehab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 11341, Egypt
| | - Ahmed Elsayed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, the Scientific Campus, Damanhour 22511, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Hyejin Kim
- Division in Biomedical Art, Department of Fine Art, Incheon Catholic University Graduate School, Incheon 21986, Korea
| | - Ki Young Yoon
- Department of Companion Animal, Shingu College, Seongnam 13174, Korea
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Wei D, Su Y, Leung PCK, Li Y, Chen ZJ. Roles of bone morphogenetic proteins in endometrial remodeling during the human menstrual cycle and pregnancy. Hum Reprod Update 2024; 30:215-237. [PMID: 38037193 DOI: 10.1093/humupd/dmad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND During the human menstrual cycle and pregnancy, the endometrium undergoes a series of dynamic remodeling processes to adapt to physiological changes. Insufficient endometrial remodeling, characterized by inadequate endometrial proliferation, decidualization and spiral artery remodeling, is associated with infertility, endometriosis, dysfunctional uterine bleeding, and pregnancy-related complications such as preeclampsia and miscarriage. Bone morphogenetic proteins (BMPs), a subset of the transforming growth factor-β (TGF-β) superfamily, are multifunctional cytokines that regulate diverse cellular activities, such as differentiation, proliferation, apoptosis, and extracellular matrix synthesis, are now understood as integral to multiple reproductive processes in women. Investigations using human biological samples have shown that BMPs are essential for regulating human endometrial remodeling processes, including endometrial proliferation and decidualization. OBJECTIVE AND RATIONALE This review summarizes our current knowledge on the known pathophysiological roles of BMPs and their underlying molecular mechanisms in regulating human endometrial proliferation and decidualization, with the goal of promoting the development of innovative strategies for diagnosing, treating and preventing infertility and adverse pregnancy complications associated with dysregulated human endometrial remodeling. SEARCH METHODS A literature search for original articles published up to June 2023 was conducted in the PubMed, MEDLINE, and Google Scholar databases, identifying studies on the roles of BMPs in endometrial remodeling during the human menstrual cycle and pregnancy. Articles identified were restricted to English language full-text papers. OUTCOMES BMP ligands and receptors and their transduction molecules are expressed in the endometrium and at the maternal-fetal interface. Along with emerging technologies such as tissue microarrays, 3D organoid cultures and advanced single-cell transcriptomics, and given the clinical availability of recombinant human proteins and ongoing pharmaceutical development, it is now clear that BMPs exert multiple roles in regulating human endometrial remodeling and that these biomolecules (and their receptors) can be targeted for diagnostic and therapeutic purposes. Moreover, dysregulation of these ligands, their receptors, or signaling determinants can impact endometrial remodeling, contributing to infertility or pregnancy-related complications (e.g. preeclampsia and miscarriage). WIDER IMPLICATIONS Although further clinical trials are needed, recent advancements in the development of recombinant BMP ligands, synthetic BMP inhibitors, receptor antagonists, BMP ligand sequestration tools, and gene therapies have underscored the BMPs as candidate diagnostic biomarkers and positioned the BMP signaling pathway as a promising therapeutic target for addressing infertility and pregnancy complications related to dysregulated human endometrial remodeling.
Collapse
Affiliation(s)
- Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Yaxin Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| |
Collapse
|
7
|
He D, Song Y, Xiao H, Shi S, Song H, Cui T, Ni T, Wang J, Ren X, Wei A. Ligustilide enhances pregnancy outcomes via improvement of endometrial receptivity and promotion of endometrial angiogenesis in rats. J Nat Med 2024; 78:42-52. [PMID: 37698739 DOI: 10.1007/s11418-023-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
Ligustilide (LIG) is the main active ingredient of Angelica sinensis (Oliv.) Diels, which could promote focal angiogenesis to exert neuroprotection. However, there was no report that verified the exact effects of LIG on endometrial angiogenesis and the pregnancy outcomes. To explore the effects of LIG on low endometrial receptivity (LER) and angiogenesis, pregnancy rats were assigned into Control (saline treatment), LER (hydroxyurea-adrenaline treatment), LIG 20 mg/kg and LIG 40 mg/kg groups. Hematoxylin and eosin (H&E) staining was performed to evaluate endometrial morphology. Quantitative real-time PCR, immunofluorescence staining, western blot and immunohistochemistry staining were employed to assess the expression of endometrial receptivity factors and angiogenesis-related gene/protein, respectively. RNA sequencing was used to analyze the effects of LIG on LER caused by Kidney deficiency and blood stasis. We found that endometrial thickness and the implanted embryo number were substantially reduced in the hydroxyurea-adrenaline-treated pregnancy rats. At the same time, the gene and protein expressions of ERα, LIF, VEGFA and CD31 in the endometrium were markedly reduced, while the expressions of MUC1, E-cadherin were increased in the LER group. Administration of LIG raised the endometrial thickness and implanted embryos, as well as reversed the expressions of these factors. Collectively, our findings revealed that LIG could facilitate embryo implantation via recovery of the endometrium receptivity and promotion of endometrial angiogenesis.
Collapse
Affiliation(s)
- Dongjie He
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Yanli Song
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Huidongzi Xiao
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Shaoqi Shi
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Hongyan Song
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Tianwei Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Tingting Ni
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Wang
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xingxing Ren
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China.
| | - Aiwu Wei
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Parisi F, Fenizia C, Introini A, Zavatta A, Scaccabarozzi C, Biasin M, Savasi V. The pathophysiological role of estrogens in the initial stages of pregnancy: molecular mechanisms and clinical implications for pregnancy outcome from the periconceptional period to end of the first trimester. Hum Reprod Update 2023; 29:699-720. [PMID: 37353909 PMCID: PMC10628507 DOI: 10.1093/humupd/dmad016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/12/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Estrogens regulate disparate female physiological processes, thus ensuring reproduction. Altered estrogen levels and signaling have been associated with increased risks of pregnancy failure and complications, including hypertensive disorders and low birthweight babies. However, the role of estrogens in the periconceptional period and early pregnancy is still understudied. OBJECTIVE AND RATIONALE This review aims to summarize the current evidence on the role of maternal estrogens during the periconceptional period and the first trimester of pregnancies conceived naturally and following ART. Detailed molecular mechanisms and related clinical impacts are extensively described. SEARCH METHODS Data for this narrative review were independently identified by seven researchers on Pubmed and Embase databases. The following keywords were selected: 'estrogens' OR 'estrogen level(s)' OR 'serum estradiol' OR 'estradiol/estrogen concentration', AND 'early pregnancy' OR 'first trimester of pregnancy' OR 'preconceptional period' OR 'ART' OR 'In Vitro Fertilization (IVF)' OR 'Embryo Transfer' OR 'Frozen Embryo Transfer' OR 'oocyte donation' OR 'egg donation' OR 'miscarriage' OR 'pregnancy outcome' OR 'endometrium'. OUTCOMES During the periconceptional period (defined here as the critical time window starting 1 month before conception), estrogens play a crucial role in endometrial receptivity, through the activation of paracrine/autocrine signaling. A derailed estrogenic milieu within this period seems to be detrimental both in natural and ART-conceived pregnancies. Low estrogen levels are associated with non-conception cycles in natural pregnancies. On the other hand, excessive supraphysiologic estrogen concentrations at time of the LH peak correlate with lower live birth rates and higher risks of pregnancy complications. In early pregnancy, estrogen plays a massive role in placentation mainly by modulating angiogenic factor expression-and in the development of an immune-tolerant uterine micro-environment by remodeling the function of uterine natural killer and T-helper cells. Lower estrogen levels are thought to trigger abnormal placentation in naturally conceived pregnancies, whereas an estrogen excess seems to worsen pregnancy development and outcomes. WIDER IMPLICATIONS Most current evidence available endorses a relation between periconceptional and first trimester estrogen levels and pregnancy outcomes, further depicting an optimal concentration range to optimize pregnancy success. However, how estrogens co-operate with other factors in order to maintain a fine balance between local tolerance towards the developing fetus and immune responses to pathogens remains elusive. Further studies are highly warranted, also aiming to identify the determinants of estrogen response and biomarkers for personalized estrogen administration regimens in ART.
Collapse
Affiliation(s)
- F Parisi
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, Milan, via L. Castelvetro 32, Milan, Italy
| | - C Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, via F. Sforza 35, Milan 20122, Italy
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - A Introini
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Nobels väg 5, Stockholm, Sweden
| | - A Zavatta
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, Milan, via L. Castelvetro 32, Milan, Italy
| | - C Scaccabarozzi
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - M Biasin
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| | - V Savasi
- Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, University of Milan, Milan, via G.B. Grassi 74, Milan 20157, Italy
| |
Collapse
|
9
|
Rizo JA, Davenport KM, Winuthayanon W, Spencer TE, Kelleher AM. Estrogen receptor alpha regulates uterine epithelial lineage specification and homeostasis. iScience 2023; 26:107568. [PMID: 37622003 PMCID: PMC10445454 DOI: 10.1016/j.isci.2023.107568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Postnatal development of the uterus involves specification of undifferentiated epithelium into uterine-type epithelium. That specification is regulated by stromal-epithelial interactions as well as intrinsic cell-specific transcription factors and gene regulatory networks. This study utilized mouse genetic models of Esr1 deletion, endometrial epithelial organoids (EEO), and organoid-stromal co-cultures to decipher the role of Esr1 in uterine epithelial development. Organoids derived from wild-type (WT) mice developed a normal single layer of columnar epithelium. In contrast, EEO from Esr1 null mice developed a multilayered stratified squamous type of epithelium with basal cells. Co-culturing Esr1 null epithelium with WT uterine stromal fibroblasts inhibited basal cell development. Of note, estrogen treatment of EEO-stromal co-cultures and Esr1 conditional knockout mice increased basal epithelial cell markers. Collectively, these findings suggest that Esr1 regulates uterine epithelium lineage plasticity and homeostasis and loss of ESR1 promotes altered luminal-to-basal differentiation driven by ESR1-mediated paracrine factors from the stroma.
Collapse
Affiliation(s)
- Jason A. Rizo
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Wipawee Winuthayanon
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| | - Andrew M. Kelleher
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells 2023; 12:930. [PMID: 36980271 PMCID: PMC10047824 DOI: 10.3390/cells12060930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cellular models have created opportunities to explore the characteristics of human diseases through well-established protocols, while avoiding the ethical restrictions associated with post-mortem studies and the costs associated with researching animal models. The capability of cell reprogramming, such as induced pluripotent stem cells (iPSCs) technology, solved the complications associated with human embryonic stem cells (hESC) usage. Moreover, iPSCs made significant contributions for human medicine, such as in diagnosis, therapeutic and regenerative medicine. The two-dimensional (2D) models allowed for monolayer cellular culture in vitro; however, they were surpassed by the three-dimensional (3D) cell culture system. The 3D cell culture provides higher cell-cell contact and a multi-layered cell culture, which more closely respects cellular morphology and polarity. It is more tightly able to resemble conditions in vivo and a closer approach to the architecture of human tissues, such as human organoids. Organoids are 3D cellular structures that mimic the architecture and function of native tissues. They are generated in vitro from stem cells or differentiated cells, such as epithelial or neural cells, and are used to study organ development, disease modeling, and drug discovery. Organoids have become a powerful tool for understanding the cellular and molecular mechanisms underlying human physiology, providing new insights into the pathogenesis of cancer, metabolic diseases, and brain disorders. Although organoid technology is up-and-coming, it also has some limitations that require improvements.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Juárez-Barber E, Segura-Benítez M, Carbajo-García MC, Bas-Rivas A, Faus A, Vidal C, Giles J, Labarta E, Pellicer A, Cervelló I, Ferrero H. Extracellular vesicles secreted by adenomyosis endometrial organoids contain miRNAs involved in embryo implantation and pregnancy. Reprod Biomed Online 2023; 46:470-481. [PMID: 36697316 DOI: 10.1016/j.rbmo.2022.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
RESEARCH QUESTION Do extracellular vesicles secreted by the endometrium of women with adenomyosis contain miRNAs involved in adenomyosis-related infertility? DESIGN A descriptive study using organoids from eutopic endometrium of women with adenomyosis (n = 4) generated and differentiated to secretory and gestational phases, in which miRNA cargo from extracellular vesicles secreted by these differentiated organoids in each phase was analysed by next-generation sequencing. miRNAs in secretory-extracellular vesicles and gestational-extracellular vesicles were selected based on the counts per million. miRNAs target genes in each phase were obtained from miRNet and gene ontology was used for enrichment analysis. RESULTS miRNA sequencing identified 80 miRNAs in secretory-phase extracellular vesicles, including hsa-miR-21-5p, hsa-miR-24-3p, hsa-miR-26a-5p, hsa-miR-92a-3p, hsa-miR-92b-3p, hsa-miR-200c-3p and hsa-miR-423a-5p, related to adenomyosis pathogenesis and implantation failure. Further, 60 miRNAs were identified in gestational-phase extracellular vesicles, including hsa-miR-21-5p, hsa-miR-26a-5p, hsa-miR-30a-5p, hsa-miR-30c-5p, hsa-miR-222-3p and hsa-miR-423a-5p were associated with preeclampsia and miscarriage. Among the target genes of these miRNAs, PTEN, MDM4, PLAGL2 and CELF1, whose downregulation (P = 0.0003, P < 0.0001, P = 0.0002 and P = 0.0003, respectively) contributes to adenomyosis pathogenesis, and impaired early embryo development, leading to implantation failure and miscarriage, are highlihghted. Further, functional enrichment analyses of the target genes revealed their involvement in cell differentiation, proliferation, apoptosis, cell cycle regulation and response to extracellular stimuli. CONCLUSIONS Eutopic endometrium in secretory and gestational phase from women with adenomyosis releases extracellular vesicles containing miRNAs involved in adenomyosis progression, impaired embryo implantation and pregnancy complications.
Collapse
Affiliation(s)
- Elena Juárez-Barber
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, 46010 Valencia, Spain
| | - María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, 46010 Valencia, Spain
| | - Alba Bas-Rivas
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Carmen Vidal
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; IVI-RMA Valencia, 46015 Valencia, Spain
| | - Juan Giles
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; IVI-RMA Valencia, 46015 Valencia, Spain
| | - Elena Labarta
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; IVI-RMA Valencia, 46015 Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; IVI-RMA Rome, 00197 Rome, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
| |
Collapse
|
12
|
Tang S, Parks SE, Liao Z, Cope DI, Blutt SE, Monsivais D. Establishing 3D Endometrial Organoids from the Mouse Uterus. J Vis Exp 2023:10.3791/64448. [PMID: 36688555 PMCID: PMC10208800 DOI: 10.3791/64448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endometrial tissue lines the inner cavity of the uterus and is under the cyclical control of estrogen and progesterone. It is a tissue that is composed of luminal and glandular epithelium, a stromal compartment, a vascular network, and a complex immune cell population. Mouse models have been a powerful tool to study the endometrium, revealing critical mechanisms that control implantation, placentation, and cancer. The recent development of 3D endometrial organoid cultures presents a state-of-the-art model to dissect the signaling pathways that underlie endometrial biology. Establishing endometrial organoids from genetically engineered mouse models, analyzing their transcriptomes, and visualizing their morphology at a single-cell resolution are crucial tools for the study of endometrial diseases. This paper outlines methods to establish 3D cultures of endometrial epithelium from mice and describes techniques to quantify gene expression and analyze the histology of the organoids. The goal is to provide a resource that can be used to establish, culture, and study the gene expression and morphological characteristics of endometrial epithelial organoids.
Collapse
Affiliation(s)
- Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine; Center for Drug Discovery, Baylor College of Medicine
| | - Sydney E Parks
- Department of Pathology & Immunology, Baylor College of Medicine; Center for Drug Discovery, Baylor College of Medicine
| | - Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine; Center for Drug Discovery, Baylor College of Medicine
| | - Dominique I Cope
- Department of Pathology & Immunology, Baylor College of Medicine; Center for Drug Discovery, Baylor College of Medicine
| | - Sarah E Blutt
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine; Center for Drug Discovery, Baylor College of Medicine;
| |
Collapse
|
13
|
Cosme P, Rodríguez AB, Garrido M, Espino J. Coping with Oxidative Stress in Reproductive Pathophysiology and Assisted Reproduction: Melatonin as an Emerging Therapeutical Tool. Antioxidants (Basel) 2022; 12:antiox12010086. [PMID: 36670948 PMCID: PMC9854935 DOI: 10.3390/antiox12010086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Infertility is an increasing global public health concern with socio-psychological implications for affected couples. Remarkable advances in reproductive medicine have led to successful treatments such as assisted reproductive techniques (ART). However, the search for new therapeutic tools to improve ART success rates has become a research hotspot. In the last few years, pineal indolamine melatonin has been investigated for its powerful antioxidant properties and its role in reproductive physiology. It is considered a promising therapeutical agent to counteract the detrimental effects associated with oxidative stress in fertility treatments. The aim of the present narrative review was to summarize the current state of the art on the importance of melatonin in reproductive physiology and to provide a critical evaluation of the data available encompassing basic, translational and clinical studies on its potential use in ART to improve fertility success rates.
Collapse
Affiliation(s)
| | | | - María Garrido
- Correspondence: (M.G.); (J.E.); Tel.: +34-924289796 (M.G. & J.E.)
| | - Javier Espino
- Correspondence: (M.G.); (J.E.); Tel.: +34-924289796 (M.G. & J.E.)
| |
Collapse
|
14
|
Shapiro RL, DeLong K, Zulfiqar F, Carter D, Better M, Ensign LM. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Adv Drug Deliv Rev 2022; 191:114543. [PMID: 36208729 PMCID: PMC9940824 DOI: 10.1016/j.addr.2022.114543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
Vaginal drug delivery systems are often preferred for treating a variety of diseases and conditions of the female reproductive tract (FRT), as delivery can be more targeted with less systemic side effects. However, there are many anatomical and biological barriers to effective treatment via the vaginal route. Further, biocompatibility with the local tissue and microbial microenvironment is desired. A variety of in vitro and ex vivo models are described herein for evaluating the physicochemical properties and toxicity profile of vaginal drug delivery systems. Deciding whether to utilize organoids in vitro or fresh human cervicovaginal mucus ex vivo requires careful consideration of the intended use and the formulation characteristics. Optimally, in vitro and ex vivo experimentation will inform or predict in vivo performance, and examples are given that describe utilization of a range of methods from in vitro to in vivo. Lastly, we highlight more advanced model systems for other mucosa as inspiration for the future in model development for the FRT.
Collapse
Affiliation(s)
- Rachel L Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Departments of Gynecology and Obstetrics, Infectious Diseases, and Oncology, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
15
|
Endometrium as Control of Endometriosis in Experimental Research: Assessment of Sample Suitability. Diagnostics (Basel) 2022; 12:diagnostics12040970. [PMID: 35454018 PMCID: PMC9032605 DOI: 10.3390/diagnostics12040970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Endometriosis is a chronic gynecological disease that causes numerous severe symptoms in affected women. Revealing alterations of the molecular processes in ectopic endometrial tissue is the current policy for understanding the pathomechanisms and discovering potential novel therapeutic targets. Examining molecular processes of eutopic endometrium is likely to be a convenient method to compare it with the molecular alterations observed in ectopic tissues. The aim of the present study was to determine what proportion of the surgically resected eutopic endometrial samples is suitable for further experiments so that these can be comparable with endometriosis. Final hospital reports and histopathology reports of a 3-year-long period (1162 cases) were analysed. The application of a retrospective screening method promoted the categorization of these cases, and quantification of the categorized cases was accomplished. In addition, results obtained from cultured endometrium samples were also detailed. Only a small number of the harvested endometrial samples was suitable for further molecular analysis, while preoperative screening protocol could enlarge this fraction. Applying clinical and histopathological selection and exclusion criteria for tissue screening and histopathological examination of samples could ensure the comparability of healthy endometrium with endometriosis. The present study could be useful for researchers who intend to perform molecular experiments to compare endometriosis with the physiological processes of the endometrium.
Collapse
|
16
|
Establishment of Adenomyosis Organoids as a Preclinical Model to Study Infertility. J Pers Med 2022; 12:jpm12020219. [PMID: 35207707 PMCID: PMC8876865 DOI: 10.3390/jpm12020219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Adenomyosis is related to infertility and miscarriages, but so far there are no robust in vitro models that reproduce its pathological features to study the molecular mechanisms involved in this disease. Endometrial organoids are in vitro 3D models that recapitulate the native microenvironment and reproduce tissue characteristics that would allow the study of adenomyosis pathogenesis and related infertility disorders. In our study, human endometrial biopsies from adenomyosis (n = 6) and healthy women (n = 6) were recruited. Organoids were established and hormonally differentiated to recapitulate midsecretory and gestational endometrial phases. Physiological and pathological characteristics were evaluated by immunohistochemistry, immunofluorescence, qRT-PCR, and ELISA. Secretory and gestational organoids recapitulated in vivo glandular epithelial phenotype (pan-cytokeratin, Muc-1, PAS, Laminin, and Ki67) and secretory and gestational features (α-tubulin, SOX9, SPP1, PAEP, LIF, and 17βHSD2 expression and SPP1 secretion). Adenomyosis organoids showed higher expression of TGF-β2 and SMAD3 and increased gene expression of SPP1, PAEP, LIF, and 17βHSD2 compared with control organoids. Our results demonstrate that organoids derived from endometria of adenomyosis patients and differentiated to secretory and gestational phases recapitulate native endometrial-tissue-specific features and disease-specific traits. Adenomyosis-derived organoids are a promising in vitro preclinical model to study impaired implantation and pregnancy disorders in adenomyosis and enable personalized drug screening.
Collapse
|
17
|
Arbeláez-Gómez D, Benavides-López S, Giraldo-Agudelo MP, Guzmán-Álvarez JP, Ramirez-Mazo C, Gómez-Echavarría LM. A phenomenological-based model of the endometrial growth and shedding during the menstrual cycle. J Theor Biol 2022; 532:110922. [PMID: 34582826 DOI: 10.1016/j.jtbi.2021.110922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022]
Abstract
The human endometrium presents a remarkable growth dynamic with an outstanding regenerative capacity. This work aims to develop a phenomenological-based dynamic model to predict the volume changes in the functional layer of the endometrium in each phase of the menstrual cycle. This model considers changes in the endometrial tissue, the blood flow through the spiral arteries, the shedding of the endometrial cells, and the menstrual blood flow. The input variables are estrogen and progesterone; these hormone dynamics are taken from a pre-existing and validated model. Key parameters are modified in order to know their effect on the state variables. The model response was quantitatively assessed using the experimental data of the endometrial cycle reported in the literature. The proposed model provides a better insight into the interactions between ovarian hormones and the endometrial cycle by coupling both physiological processes.
Collapse
Affiliation(s)
- Daniela Arbeláez-Gómez
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| | - Santiago Benavides-López
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| | - Maria Paula Giraldo-Agudelo
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| | - Juan Pablo Guzmán-Álvarez
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| | - Carolina Ramirez-Mazo
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| | - Lina María Gómez-Echavarría
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| |
Collapse
|
18
|
Aleksejeva E, Zarovni N, Dissanayake K, Godakumara K, Vigano P, Fazeli A, Jaakma Ü, Salumets A. Extracellular vesicle research in reproductive science- Paving the way for clinical achievements. Biol Reprod 2022; 106:408-424. [PMID: 34982163 DOI: 10.1093/biolre/ioab245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian conception involves a multitude of reciprocal interactions via a molecular dialogue between mother and conceptus. Extracellular vesicles (EVs) are secreted membrane-encapsulated particles that mediate cell-to-cell communication in various contexts. EVs, which are present in seminal, follicular, oviductal, and endometrial fluids, as well as in embryo secretions, carry molecular constituents that impact gamete maturation, fertilization, early embryo development, and embryo-maternal communication. The distribution, concentration, and molecular cargo of EVs are regulated by steroid hormones and the health status of the tissue of origin, and thus are influenced by menstrual phase, stage of conception, and the presence of infertility-associated diseases. EVs have been recognized as a novel source of biomarkers and potential reproductive medicine therapeutics, particularly for assisted reproductive technology (ART). There are still many technological and scientific hindrances to be overcome before EVs can be used in clinical diagnostic and therapeutic ART applications. Issues to be resolved include the lack of standardized measurement protocols and an absence of absolute EV quantification technologies. Additionally, clinically suitable and robust EV isolation methods have yet to be developed. In this review, we provide an overview of EV-mediated interactions during the early stages of reproduction from gamete maturation to embryo implantation and then outline the technological progress that must be made for EV applications to be translated to clinical settings.
Collapse
Affiliation(s)
- Elina Aleksejeva
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Competence Centre on Health Technologies, 50411 Tartu, Estonia
| | | | - Keerthie Dissanayake
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Anatomy, Faculty of Medicine, University of Peradeniya, 20400 Peradeniya, Sri Lanka.,Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Paola Vigano
- Reproductive Sciences Laboratory, Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Anatomy, Faculty of Medicine, University of Peradeniya, 20400 Peradeniya, Sri Lanka.,Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, Medical School, University of Sheffield, S10 2TN Sheffield, UK
| | - Ülle Jaakma
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - Andres Salumets
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Competence Centre on Health Technologies, 50411 Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia.,Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden
| |
Collapse
|
19
|
Maru Y, Hippo Y. Two-Way Development of the Genetic Model for Endometrial Tumorigenesis in Mice: Current and Future Perspectives. Front Genet 2021; 12:798628. [PMID: 34956336 PMCID: PMC8696168 DOI: 10.3389/fgene.2021.798628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Endometrial cancer (EC) is the most common malignancy of the female reproductive tract worldwide. Although comprehensive genomic analyses of EC have already uncovered many recurrent genetic alterations and deregulated signaling pathways, its disease model has been limited in quantity and quality. Here, we review the current status of genetic models for EC in mice, which have been developed in two distinct ways at the level of organisms and cells. Accordingly, we first describe the in vivo model using genetic engineering. This approach has been applied to only a subset of genes, with a primary focus on Pten inactivation, given that PTEN is the most frequently altered gene in human EC. In these models, the tissue specificity in genetic engineering determined by the Cre transgenic line has been insufficient. Consequently, the molecular mechanisms underlying EC development remain poorly understood, and preclinical models are still limited in number. Recently, refined Cre transgenic mice have been created to address this issue. With highly specific gene recombination in the endometrial cell lineage, acceptable in vivo modeling of EC development is warranted using these Cre lines. Second, we illustrate an emerging cell-based model. This hybrid approach comprises ex vivo genetic engineering of organoids and in vivo tumor development in immunocompromised mice. Although only a few successful cases have been reported as proof of concept, this approach allows quick and comprehensive analysis, ensuring a high potential for reconstituting carcinogenesis. Hence, ex vivo/in vivo hybrid modeling of EC development and its comparison with corresponding in vivo models may dramatically accelerate EC research. Finally, we provide perspectives on future directions of EC modeling.
Collapse
Affiliation(s)
- Yoshiaki Maru
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
20
|
Burton GJ, Turco MY. Joan Hunt Senior award lecture: New tools to shed light on the 'black box' of pregnancy. Placenta 2021; 125:54-60. [PMID: 34952691 DOI: 10.1016/j.placenta.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023]
Abstract
Correct establishment of the placenta is critical to the success of a pregnancy, but many of the key events take place during or shortly after implantation and are inaccessible for study. This inaccessibility, coupled with the lack of a suitable preclinical animal model, means that knowledge of human early placental development and function is extremely limited. Hence, the first trimester is often referred to as the 'black box' of pregnancy. However, recent advances in the derivation of trophoblast stem cells and organoid cultures of the trophoblast and endometrium are opening new opportunities for basic and translational research, providing for the first time cells that faithfully replicate their tissue of origin and proliferate and differentiate in culture in a stable and reproducible manner. These cells are valuable new tools for investigating cell-lineage differentiation and maternal-fetal interactions, but become even more powerful when combined with advances in bioengineering, microfabrication and microfluidic technologies. Assembloids of the endometrium comprising various cell types as model systems to investigate events at implantation, and placentas-on-a-chip for the study of nutrient transfer or drug screening are just two examples. This is a rapidly advancing field that may usher in more personalised approaches to infertility and pregnancy complications. Many of the developments are still at the proof-of-principle phase, but with continued refinement they are likely to shed important light on events that are fundamental to our reproduction as individuals and as a species, yet for ethical reasons are hidden from view.
Collapse
Affiliation(s)
- Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Margherita Y Turco
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
21
|
Making More Womb: Clinical Perspectives Supporting the Development and Utilization of Mesenchymal Stem Cell Therapy for Endometrial Regeneration and Infertility. J Pers Med 2021; 11:jpm11121364. [PMID: 34945836 PMCID: PMC8707522 DOI: 10.3390/jpm11121364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
The uterus is a homeostatic organ, unwavering in the setting of monthly endometrial turnover, placental invasion, and parturition. In response to ovarian steroid hormones, the endometrium autologously prepares for embryo implantation and in its absence will shed and regenerate. Dysfunctional endometrial repair and regeneration may present clinically with infertility and abnormal menses. Asherman's syndrome is characterized by intrauterine adhesions and atrophic endometrium, which often impacts fertility. Clinical management of infertility associated with abnormal endometrium represents a significant challenge. Endometrial mesenchymal stem cells (MSC) occupy a perivascular niche and contain regenerative and immunomodulatory properties. Given these characteristics, mesenchymal stem cells of endometrial and non-endometrial origin (bone marrow, adipose, placental) have been investigated for therapeutic purposes. Local administration of human MSC in animal models of endometrial injury reduces collagen deposition, improves angiogenesis, decreases inflammation, and improves fertility. Small clinical studies of autologous MSC administration in infertile women with Asherman's Syndrome suggested their potential to restore endometrial function as evidenced by increased endometrial thickness, decreased adhesions, and fertility. The objective of this review is to highlight translational and clinical studies investigating the use of MSC for endometrial dysfunction and infertility and to summarize the current state of the art in this promising area.
Collapse
|
22
|
Comparison of Organoids from Menstrual Fluid and Hormone-Treated Endometrium: Novel Tools for Gynecological Research. J Pers Med 2021; 11:jpm11121314. [PMID: 34945786 PMCID: PMC8707872 DOI: 10.3390/jpm11121314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
Endometrial organoids (EMO) are an important tool for gynecological research but have been limited by generation from (1) invasively acquired tissues and thus advanced disease states and (2) from women who are not taking hormones, thus excluding 50% of the female reproductive-aged population. We sought to overcome these limitations by generating organoids from (1) menstrual fluid (MF; MFO) using a method that enables the concurrent isolation of menstrual fluid supernatant, stromal cells, and leukocytes and (2) from biopsies and hysterectomy samples from women taking hormonal medication (EMO-H). MF was collected in a menstrual cup for 4–6 h on day 2 of menstruation. Biopsies and hysterectomies were obtained during laparoscopic surgery. Organoids were generated from all sample types, with MFO and EMO-H showing similar cell proliferation rates, proportion and localization of the endometrial basalis epithelial marker, Stage Specific Embryonic Antigen-1 (SSEA-1), and gene expression profiles. Organoids from different disease states showed the moderate clustering of epithelial secretory and androgen receptor signaling genes. Thus, MFO and EMO-H are novel organoids that share similar features to EMO but with the advantage of (1) MFO being obtained non-invasively and (2) EMO-H being obtained from 50% of the women who are not currently being studied through standard methods. Thus, MFO and EMO-H are likely to prove to be invaluable tools for gynecological research, enabling the population-wide assessment of endometrial health and personalized medicine.
Collapse
|