1
|
Dahlen CR, Ramírez-Zamudio GD, Bochantin-Winders KA, Hurlbert JL, Crouse MS, McLean KJ, Diniz WJS, Amat S, Snider AP, Caton JS, Reynolds LP. International Symposium on Ruminant Physiology: Paternal Nutrient Supply: Impacts on Physiological and Whole Animal Outcomes in Offspring. J Dairy Sci 2024:S0022-0302(24)01425-5. [PMID: 39710267 DOI: 10.3168/jds.2024-25800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
Recent evidence suggests that environmental factors experienced by sires can be transmitted through the ejaculate (seminal plasma + sperm) into the female reproductive tract, influencing fertilization, embryo development, and postnatal offspring outcomes. This concept is termed paternal programming. In rodents, sire nutrition was shown to directly alter offspring outcomes through sperm epigenetic signatures, DNA damage/oxidative stress, cytokine profiles, and/or the seminal microbiome. Response variables impacted in rodent models, including adiposity, muscle mass, metabolic responses, and reproductive performance, could have major productivity and financial implications for producers if these paternal programming responses are also present in ruminant species. However, a paucity of data exist regarding paternal programming in ruminants. The limited data in the literature mainly point to alterations in sperm epigenome as a result of sire diet or environment. Global nutrition has been implicated in ruminant models to alter seminal cytokine profiles, which could subsequently alter the uterine environment and immune response to mating. Several reports indicate that embryo development and epigenetic signatures can be impacted by sire plane of nutrition and inclusion of specific feed ingredients into diets (polyunsaturated fatty acids, folic acid, and rumen protected methionine). Models of sheep nutrition indicate that addition of rumen protected methionine can impact DNA methylation and offspring performance characteristics extending to the F3 generation, and that divergent planes of sire nutrition can cause altered hormone profiles and insulin/glucose metabolism in offspring. There are almost unlimited opportunities for discovery in this area, but researchers are encouraged to target critical questions such as whether and the extent to which paternal programming effects are present in common management scenarios, the mechanisms by which paternal programming is inherited in ruminants, and whether the effects of paternal nutrition interact with those of maternal nutrition to influence offspring physiology, whole animal outcomes, and herd or flock productivity.
Collapse
Affiliation(s)
| | - Germán D Ramírez-Zamudio
- North Dakota State University, Fargo, ND, USA; University of São Paulo, Pirassununga, SP, Brazil
| | | | | | | | | | | | - Samat Amat
- North Dakota State University, Fargo, ND, USA
| | | | | | | |
Collapse
|
2
|
Li M, Lu Y, Gao Z, Yue D, Hong J, Wu J, Xi D, Deng W, Chong Y. Pan-Omics in Sheep: Unveiling Genetic Landscapes. Animals (Basel) 2024; 14:273. [PMID: 38254442 PMCID: PMC10812798 DOI: 10.3390/ani14020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Multi-omics-integrated analysis, known as panomics, represents an advanced methodology that harnesses various high-throughput technologies encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Sheep, playing a pivotal role in agricultural sectors due to their substantial economic importance, have witnessed remarkable advancements in genetic breeding through the amalgamation of multiomics analyses, particularly with the evolution of high-throughput technologies. This integrative approach has established a robust theoretical foundation, enabling a deeper understanding of sheep genetics and fostering improvements in breeding strategies. The comprehensive insights obtained through this approach shed light on diverse facets of sheep development, including growth, reproduction, disease resistance, and the quality of livestock products. This review primarily focuses on the application of principal omics analysis technologies in sheep, emphasizing correlation studies between multiomics data and specific traits such as meat quality, wool characteristics, and reproductive features. Additionally, this paper anticipates forthcoming trends and potential developments in this field.
Collapse
Affiliation(s)
- Mengfei Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Ying Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Zhendong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Dan Yue
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
- Faculty of Animal Science and Technology, Yuxi Agricultural Vocational and Technical College, Yuxi 653106, China
| | - Jieyun Hong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Jiao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Dongmei Xi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Yuqing Chong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| |
Collapse
|
3
|
Martin GB. Perspective: science and the future of livestock industries. Front Vet Sci 2024; 11:1359247. [PMID: 38282972 PMCID: PMC10808306 DOI: 10.3389/fvets.2024.1359247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Since the 1990s, livestock industries have been forced to respond to major pressures from society, particularly with respect to methane emissions and animal welfare. These challenges are exacerbated by the inevitability of global heating and the effects it will have on livestock productivity. The same challenges also led to questions about the value of animal-sourced foods for feeding the world. The industries and the research communities supporting them are meeting those challenges. For example, we can now envisage solutions to the ruminant methane problem and those solutions will also improve the efficiency of meat and milk production. Animal welfare is a complex mix of health, nutrition and management. With respect to health, the 'One Health' concept is offering better perspectives, and major diseases, such as helminth infection, compounded by resistance against medication, are being resolved through genetic selection. With respect to nutrition and stress, 'fetal programming' and the epigenetic mechanisms involved offer novel possibilities for improving productivity. Stress needs to be minimized, including stress caused by extreme weather events, and solutions are emerging through technology that reveals when animals are stressed, and through an understanding of the genes that control susceptibility to stress. Indeed, discoveries in the molecular biology of physiological processes will greatly accelerate genetic progress by contributing to genomic solutions. Overall, the global context is clear - animal-sourced food is an important contributor to the future of humanity, but the responses of livestock industries must involve local actions that are relevant to geographical and socio-economic constraints.
Collapse
Affiliation(s)
- Graeme B. Martin
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|