1
|
Aziz AUR, Geng C, Li W, Yu X, Qin KR, Wang H, Liu B. Doxorubicin Induces ER Calcium Release via Src in Rat Ovarian Follicles. Toxicol Sci 2018; 168:171-178. [DOI: 10.1093/toxsci/kfy284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aziz Ur Rehman Aziz
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Chunyang Geng
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Wang Li
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Xiaohui Yu
- Department of gynecology, Dalian Institute of Maternal and Child Health Care, Dalian 116024, P. R. China
| | - Kai-Rong Qin
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Hanqin Wang
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P. R. China
| | - Bo Liu
- Liaoning IC Technology Key Laboratory, School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
2
|
Anguita E, Villalobo A. Ca 2+ signaling and Src-kinases-controlled cellular functions. Arch Biochem Biophys 2018; 650:59-74. [DOI: 10.1016/j.abb.2018.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
|
3
|
Kuriyama S, Tamiya Y, Tanaka M. Spatiotemporal expression of UPK3B and its promoter activity during embryogenesis and spermatogenesis. Histochem Cell Biol 2016; 147:17-26. [PMID: 27577269 DOI: 10.1007/s00418-016-1486-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 01/14/2023]
Abstract
Uroplakin (Upk) 3 is one of the main structural components of the urothelium tissue. Although expression of UPK3B is seen in a wider variety of the tissues and organs than UPK3A, tissue-specific expression has not yet been analyzed. Here, we analyzed the Cre recombinase activity driven by the Upk3b promoter in transgenic mice and the endogenous localization of UPK3B. We generated Tg(Upk3b-Cre)/R26tdTomato mice by crossing ROSA26tm14(CAG-tdTomato) (R26tdTomato) mice with Tg(Upk3b-Cre) mice and investigated the spatiotemporal distribution of tdTomato in embryonic and adult mice. In embryos, we detected Cre recombinase activity in neural crest cells and the heart, liver, kidneys, and lungs. In adult mice, Cre recombinase activity was detected in male and female genital organs; however, the activity was absent in the bladder. Histological analyses revealed that both tdTomato and UPK3B were present in testicular and epididymal sperm; however, tdTomato was not present in the ductus epididymis, where the endogenous expression of UPK3B was detected. In female siblings, both tdTomato and UPK3B expressions were detected in the follicles of the ovary, whereas no tdTomato expression was found in the mucosal epithelium of the fallopian tubes, where the endogenous UPK3B was expressed. These data suggest that UPK3B may play a pivotal role in the maturation of gametes and gamete-delivery organs.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan.
| | - Yuutaro Tamiya
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan.,Department of Lifescience, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuenmachi, Akita City, Akita, 010-8502, Japan
| | - Masamitsu Tanaka
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan
| |
Collapse
|
4
|
Meng XQ, Dai YY, Jing LD, Bai J, Liu SZ, Zheng KG, Pan J. Subcellular localization of proline-rich tyrosine kinase 2 during oocyte fertilization and early-embryo development in mice. J Reprod Dev 2016; 62:351-8. [PMID: 27086609 PMCID: PMC5004790 DOI: 10.1262/jrd.2016-015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase, is a member of
the focal adhesion kinase family and is highly expressed in oocytes. Using a combination
of confocal microscopy and RNAi, we localized and studied the function of both Pyk2 and
tyrosine-phosphorylated Pyk2 (p-Pyk2) during mouse oocyte fertilization and early embryo
development. At the onset of fertilization, Pyk2 and p-Pyk2 were detected predominantly in
sperm heads and the oocyte cytoplasm. Upon formation of male and female pronuclei, Pyk2
and its activated form leave the cytoplasm and accumulate in the two pronuclei. We
detected Pyk2 in blastomere nuclei and found both Pyk2 and p-Pyk2 in the pre-blastula
cytoplasm. Pyk2 and its activated form then disappeared from the blastula nuclei and
localized to the perinuclear regions, where blastula cells come into contact with each
other. Pyk2 knockdown via microinjection of siRNA into the zygote did not inhibit early
embryo development. Our results suggest that Pyk2 plays multiple functional roles in mouse
oocyte fertilization as well as throughout early embryo development.
Collapse
Affiliation(s)
- Xiao-Qian Meng
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan 250014, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhang N, Yoon SY, Parys JB, Fissore RA. Effect of M-phase kinase phosphorylations on type 1 inositol 1,4,5-trisphosphate receptor-mediated Ca2+ responses in mouse eggs. Cell Calcium 2015; 58:476-88. [PMID: 26259730 DOI: 10.1016/j.ceca.2015.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/26/2022]
Abstract
The type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) mediates increases in the intracellular concentration of Ca(2+) ([Ca(2+)]i) during fertilization in mammalian eggs. The activity of IP3R1 is enhanced during oocyte maturation, and phosphorylations by M-phase kinases are thought to positively regulate the activity of IP3R1. Accordingly, we and others have found that IP3R1 is phosphorylated at S(421), T(799) (by Cdk1) and at S(436) (by ERK). Nevertheless, the effects of these phosphorylations on the function of the receptor and their impact on [Ca(2+)]i oscillations in eggs have not been clearly examined. To address this, we expressed in mouse oocytes an IP3R1 variant with the three indicated phosphorylation sites replaced by acidic residues, IIIE-IP3R1, such that it would act like a constitutively phosphorylated IP3R1, and examined [Ca(2+)]i parameters in response to stimuli. We found that overexpression of wild type (wt-IP3R1) or IIIE-IP3R1 in oocytes containing endogenous receptors caused dominant negative-like effects on Ca(2+) release and oscillations. Therefore, we first selectively removed the endogenous IP3R1, and subsequently expressed the exogenous receptors. We found that in response to injection of PLCζ cRNA, eggs without endogenous IP3R1 failed to mount persistent Ca(2+) oscillations, although expression of wt-IP3R1 restored their [Ca(2+)]i oscillatory activity. We also observed that the Ca(2+) oscillatory ability and the sensitivity to IP3 in eggs expressing IIIE-IP3R1 were greater than in those expressing wt-IP3R1. Lastly, we found that exogenous IP3R1s are resistant to downregulation and support longer oscillations and of higher amplitude. Altogether, our results show that phosphorylations by Cdk1 and MAPK enhance the activity of IP3R1, which is consistent with its maximal activity observed at the time of fertilization and the role of Ca(2+) release in egg activation.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul 135-081, Republic of Korea
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
6
|
Stith BJ. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 2015; 401:188-205. [PMID: 25748412 DOI: 10.1016/j.ydbio.2015.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG.
Collapse
Affiliation(s)
- Bradley J Stith
- University of Colorado Denver, Department of Integrative Biology, Campus Box 171, PO Box 173364, Denver, CO 80217-3364, United States.
| |
Collapse
|
7
|
Sato KI. Transmembrane signal transduction in oocyte maturation and fertilization: focusing on Xenopus laevis as a model animal. Int J Mol Sci 2014; 16:114-34. [PMID: 25546390 PMCID: PMC4307238 DOI: 10.3390/ijms16010114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
Fertilization is a cell biological phenomenon of crucial importance for the birth of new life in a variety of multicellular and sexual reproduction species such as algae, animal and plants. Fertilization involves a sequence of events, in which the female gamete "egg" and the male gamete "spermatozoon (sperm)" develop, acquire their functions, meet and fuse with each other, to initiate embryonic and zygotic development. Here, it will be briefly reviewed how oocyte cytoplasmic components are orchestrated to undergo hormone-induced oocyte maturation and sperm-induced activation of development. I then review how sperm-egg membrane interaction/fusion and activation of development in the fertilized egg are accomplished and regulated through egg coat- or egg plasma membrane-associated components, highlighting recent findings and future directions in the studies using Xenopus laevis as a model experimental animal.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
8
|
Kinsey WH. SRC-family tyrosine kinases in oogenesis, oocyte maturation and fertilization: an evolutionary perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:33-56. [PMID: 25030759 DOI: 10.1007/978-1-4939-0817-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oocyte is a highly specialized cell poised to respond to fertilization with a unique set of actions needed to recognize and incorporate a single sperm, complete meiosis, reprogram maternal and paternal genomes and assemble them into a unique zygotic genome, and finally initiate the mitotic cell cycle. Oocytes accomplish this diverse series of events through an array of signal transduction pathway components that include a characteristic collection of protein tyrosine kinases. The src-family protein kinases (SFKs) figure importantly in this signaling array and oocytes characteristically express certain SFKs at high levels to provide for the unique actions that the oocyte must perform. The SFKs typically exhibit a distinct pattern of subcellular localization in oocytes and perform critical functions in different subcellular compartments at different steps during oocyte maturation and fertilization. While many aspects of SFK signaling are conserved among oocytes from different species, significant differences exist in the extent to which src-family-mediated pathways are used by oocytes from species that fertilize externally vs those which are fertilized internally. The observation that several oocyte functions which require SFK signaling appear to represent common points of failure during assisted reproductive techniques in humans, highlights the importance of these signaling pathways for human reproductive health.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA,
| |
Collapse
|
9
|
Buschiazzo J, Ialy-Radio C, Auer J, Wolf JP, Serres C, Lefèvre B, Ziyyat A. Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization. PLoS One 2013; 8:e62919. [PMID: 23638166 PMCID: PMC3636221 DOI: 10.1371/journal.pone.0062919] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/29/2013] [Indexed: 11/18/2022] Open
Abstract
Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1) a decrease of the fertilization rate and index; and (2) a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol.
Collapse
Affiliation(s)
- Jorgelina Buschiazzo
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca, Argentina
| | - Come Ialy-Radio
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
| | - Jana Auer
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
| | - Jean-Philippe Wolf
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
- Service d’Histologie Embryologie Biologie de la Reproduction Hôpital Cochin, AP-HP, F75014 Paris, France
| | - Catherine Serres
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
| | - Brigitte Lefèvre
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
| | - Ahmed Ziyyat
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
| |
Collapse
|
10
|
McGinnis LK, Luo J, Kinsey WH. Protein tyrosine kinase signaling in the mouse oocyte cortex during sperm-egg interactions and anaphase resumption. Mol Reprod Dev 2013; 80:260-72. [PMID: 23401167 DOI: 10.1002/mrd.22160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
Fertilization triggers activation of a series of pre-programmed signal transduction pathways in the oocyte that establish a block to polyspermy, induce meiotic resumption, and initiate zygotic development. Fusion between sperm and oocyte results in rapid changes in oocyte intracellular free-calcium levels, which in turn activate multiple protein kinase cascades in the ooplasm. The present study examined the possibility that sperm-oocyte interaction involves localized activation of oocyte protein tyrosine kinases, which could provide an alternative signaling mechanism to that triggered by the fertilizing sperm. Confocal immunofluorescence analysis with antibodies to phosphotyrosine and phosphorylated protein tyrosine kinases allowed detection of minute signaling events localized to the site of sperm-oocyte interaction that were not amenable to biochemical analysis. The results provide evidence for localized accumulation of phosphotyrosine at the site of sperm contact, binding, or fusion, which suggests active protein tyrosine kinase signaling prior to and during sperm incorporation. The PYK2 kinase was found to be concentrated and activated at the site of sperm-oocyte interaction, and likely participates in this response. Widespread activation of PYK2 and FAK kinases was subsequently observed within the oocyte cortex, indicating that sperm incorporation is followed by more global signaling via these kinases during meiotic resumption. The results demonstrate an alternate signaling pathway triggered in mammalian oocytes by sperm contact, binding, or fusion with the oocyte.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
11
|
Kinsey WH. Intersecting roles of protein tyrosine kinase and calcium signaling during fertilization. Cell Calcium 2012. [PMID: 23201334 DOI: 10.1016/j.ceca.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The oocyte is a highly specialized cell that must respond to fertilization with a preprogrammed series of signal transduction events that establish a block to polyspermy, trigger resumption of the cell cycle and execution of a developmental program. The fertilization-induced calcium transient is a key signal that initiates the process of oocyte activation and studies over the last several years have examined the signaling pathways that act upstream and downstream of this calcium transient. Protein tyrosine kinase signaling was found to be an important component of the upstream pathways that stimulated calcium release at fertilization in oocytes from animals that fertilize externally, but a similar pathway has not been found in mammals which fertilize internally. The following review will examine the diversity of signaling in oocytes from marine invertebrates, amphibians, fish and mammals in an attempt to understand the basis for the observed differences. In addition to the pathways upstream of the fertilization-induced calcium transient, recent studies are beginning to unravel the role of protein tyrosine kinase signaling downstream of the calcium transient. The PYK2 kinase was found to respond to fertilization in the zebrafish system and seems to represent a novel component of the response of the oocyte to fertilization. The potential impact of impaired PTK signaling in oocyte quality will also be discussed.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
12
|
Miao YL, Williams CJ. Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Mol Reprod Dev 2012; 79:742-56. [PMID: 22888043 DOI: 10.1002/mrd.22078] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
Abstract
Calcium (Ca(2+) ) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca(2+) signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca(2+) sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca(2+) in many cell types and of the impact of cellular localization on Ca(2+) signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca(2+) is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca(2+) release and effectors of Ca(2+) signals. We then summarize studies exploring how Ca(2+) directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca(2+) signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe for future research.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
13
|
Zhang N, Wakai T, Fissore RA. Caffeine alleviates the deterioration of Ca(2+) release mechanisms and fragmentation of in vitro-aged mouse eggs. Mol Reprod Dev 2012; 78:684-701. [PMID: 22095868 DOI: 10.1002/mrd.21366] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The developmental competence of mammalian eggs is compromised by postovulatory aging. We and others have found that in these eggs, the intracellular calcium ([Ca(2+)](i)) responses required for egg activation and initiation of development are altered. Nevertheless, the mechanism(s) underlying this defective Ca(2+) release is not well known. Here, we investigated if the function of IP(3)R1, the major Ca(2+) release channel at fertilization, was undermined in in vitro-aged mouse eggs. We found that in aged eggs, IP(3)R1 displayed reduced function as many of the changes acquired during maturation that enhance IP(3)R1 Ca(2+) conductivity, such as phosphorylation, receptor reorganization and increased Ca(2+) store content ([Ca(2+)](ER)), were lost with increasing postovulatory time. IP(3)R1 fragmentation, possibly associated with the activation of caspase-3, was also observed in these eggs. Many of these changes were prevented when the postovulatory aging of eggs was carried out in the presence of caffeine, which minimized the decline in IP(3)R(1) function and maintained [Ca(2+)](ER) content. Caffeine also maintained mitochondrial membrane potential, as measured by JC-1 fluorescence. We therefore conclude that [Ca(2+)](i) responses in aged eggs are undermined by reduced IP(3)R1 sensitivity, decreased [Ca(2+)](ER) , and compromised mitochondrial function, and that addition of caffeine ameliorates most of these aging-associated changes. Understanding the molecular basis of the protective effects of caffeine will be useful in elucidating, and possibly reversing, the signaling pathway(s) compromised by in vitro culture of eggs.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
14
|
Wakai T, Vanderheyden V, Yoon SY, Cheon B, Zhang N, Parys JB, Fissore RA. Regulation of inositol 1,4,5-trisphosphate receptor function during mouse oocyte maturation. J Cell Physiol 2012; 227:705-17. [PMID: 21465476 DOI: 10.1002/jcp.22778] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
At the time of fertilization, an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) underlies egg activation and initiation of development in all species studied to date. The inositol 1,4,5-trisphosphate receptor (IP(3)R1), which is mostly located in the endoplasmic reticulum (ER) mediates the majority of this Ca(2+) release. The sensitivity of IP(3)R1, that is, its Ca(2+) releasing capability, is increased during oocyte maturation so that the optimum [Ca(2+)](i) response concurs with fertilization, which in mammals occurs at metaphase of second meiosis. Multiple IP(3)R1 modifications affect its sensitivity, including phosphorylation, sub-cellular localization, and ER Ca(2+) concentration ([Ca(2+)](ER)). Here, we evaluated using mouse oocytes how each of these factors affected IP(3)R1 sensitivity. The capacity for IP(3)-induced Ca(2+) release markedly increased at the germinal vesicle breakdown stage, although oocytes only acquire the ability to initiate fertilization-like oscillations at later stages of maturation. The increase in IP(3)R1 sensitivity was underpinned by an increase in [Ca(2+)](ER) and receptor phosphorylation(s) but not by changes in IP(3)R1 cellular distribution, as inhibition of the former factors reduced Ca(2+) release, whereas inhibition of the latter had no impact. Therefore, the results suggest that the regulation of [Ca(2+)](ER) and IP(3)R1 phosphorylation during maturation enhance IP(3)R1 sensitivity rendering oocytes competent to initiate oscillations at the expected time of fertilization. The temporal discrepancy between the initiation of changes in IP(3)R1 sensitivity and acquisition of mature oscillatory capacity suggest that other mechanisms that regulate Ca(2+) homeostasis also shape the pattern of oscillations in mammalian eggs.
Collapse
Affiliation(s)
- Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Hasan AKMM, Fukami Y, Sato KI. Gamete membrane microdomains and their associated molecules in fertilization signaling. Mol Reprod Dev 2011; 78:814-30. [PMID: 21688335 DOI: 10.1002/mrd.21336] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/15/2011] [Indexed: 12/19/2022]
Abstract
Fertilization is the fundamental system of biological reproduction in many organisms, including animals, plants, and algae. A growing body of knowledge has emerged to explain how fertilization and activation of development are accomplished. Studies on the molecular mechanisms of fertilization are in progress for a wide variety of multicellular organisms. In this review, we summarize recent findings and debates about the long-standing questions concerning fertilization: how egg and sperm become competent for their interaction with each other, how the binding and fusion of these gamete cells are made possible, and how the fertilized eggs initiate development to a newborn. We will focus on the structure and function of the membrane microdomains (MDs) of egg and sperm that may serve as a platform or signaling center for the aforementioned cellular functions. In particular, we provide evidence that MDs of eggs from the African clawed frog, Xenopus laevis, play a pivotal role in receiving extracellular signals from fertilizing sperm and then transmitting them to the egg cytoplasm, where the tyrosine kinase Src is present and responsible for the subsequent signaling events collectively called egg activation. The presence of a new signaling axis involving uroplakin III, an MD-associated transmembrane protein, and Src in this system will be highlighted and discussed.
Collapse
Affiliation(s)
- A K M Mahbub Hasan
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | | |
Collapse
|
16
|
McGinnis LK, Carroll DJ, Kinsey WH. Protein tyrosine kinase signaling during oocyte maturation and fertilization. Mol Reprod Dev 2011; 78:831-45. [PMID: 21681843 DOI: 10.1002/mrd.21326] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/30/2011] [Indexed: 11/11/2022]
Abstract
The oocyte is a highly specialized cell capable of accumulating and storing energy supplies as well as maternal transcripts and pre-positioned signal transduction components needed for zygotic development, undergoing meiosis under control of paracrine signals from the follicle, fusing with a single sperm during fertilization, and zygotic development. The oocyte accomplishes this diverse series of events by establishing an array of signal transduction pathway components that include a select collection of protein tyrosine kinases (PTKs) that are expressed at levels significantly higher than most other cell types. This array of PTKs includes cytosolic kinases such as SRC-family PTKs (FYN and YES), and FAK kinases, as well as FER. These kinases typically exhibit distinct patterns of localization and in some cases are translocated from one subcellular compartment to another during meiosis. Significant differences exist in the extent to which PTK-mediated pathways are used by oocytes from species that fertilize externally versus internally. The PTK activation profiles as well as calcium signaling pattern seems to correlate with the extent to which a rapid block to polyspermy is required by the biology of each species. Suppression of each of the SRC-family PTKs as well as FER kinase results in failure of meiotic maturation or zygote development, indicating that these PTKs are important for oocyte quality and developmental potential. Future studies will hopefully reveal the extent to which these factors impact clinical assisted reproductive techniques in domestic animals and humans.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
17
|
Levi M, Shalgi R. The role of Fyn kinase in the release from metaphase in mammalian oocytes. Mol Cell Endocrinol 2010; 314:228-33. [PMID: 19733625 DOI: 10.1016/j.mce.2009.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/30/2009] [Indexed: 01/06/2023]
Abstract
Meiosis in mammalian oocytes starts during embryonic life and arrests for the first time before birth, at prophase of the first meiotic division. The second meiotic arrest occurs after spindle formation at metaphase of the second meiotic division (MII) in selected oocytes designated for ovulation. The fertilizing spermatozoon induces the release from MII arrest only after the oocyte's spindle assembly checkpoint (SAC) was deactivated. Src family kinases (SFKs) are nine non-receptor protein tyrosine kinases that regulate many key cellular functions. Fyn is an SFK expressed in many cell types, including oocytes. Recent studies, including ours, imply a role for Fyn in exit from meiotic and mitotic metaphases. Other studies demonstrate that SFKs, particularly Fyn, are required for regulation of microtubules polymerization and spindle stabilization. Altogether, Fyn is suggested to play an essential role in signaling events that implicate SAC pathway and hence in regulating the exit from metaphase in oocytes and zygote.
Collapse
Affiliation(s)
- M Levi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | | |
Collapse
|
18
|
Lee B, Yoon SY, Malcuit C, Parys JB, Fissore RA. Inositol 1,4,5-trisphosphate receptor 1 degradation in mouse eggs and impact on [Ca2+]i oscillations. J Cell Physiol 2009; 222:238-47. [PMID: 19798695 DOI: 10.1002/jcp.21945] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The initiation of normal embryo development depends on the completion of all events of egg activation. In all species to date, egg activation requires an increase(s) in the intracellular concentration of calcium ([Ca(2+)](i)), which is almost entirely mediated by inositol 1,4,5-trisphosphate receptor 1 (IP(3)R1). In mammalian eggs, fertilization-induced [Ca(2+)](i) responses exhibit a periodic pattern that are called [Ca(2+)](i) oscillations. These [Ca(2+)](i) oscillations are robust at the beginning of fertilization, which occurs at the second metaphase of meiosis, but wane as zygotes approach the pronuclear stage, time after which in the mouse oscillations cease altogether. Underlying this change in frequency are cellular and biochemical changes associated with egg activation, including degradation of IP(3)R1, progression through the cell cycle, and reorganization of intracellular organelles. In this study, we investigated the system requirements for IP(3)R1 degradation and examined the impact of the IP(3)R1 levels on the pattern of [Ca(2+)](i) oscillations. Using microinjection of IP(3) and of its analogs and conditions that prevent the development of [Ca(2+)](i) oscillations, we show that IP(3)R1 degradation requires uniform and persistently elevated levels of IP(3). We also established that progressive degradation of the IP(3)R1 results in [Ca(2+)](i) oscillations with diminished periodicity while a near complete depletion of IP(3)R1s precludes the initiation of [Ca(2+)](i) oscillations. These results provide insights into the mechanism involved in the generation of [Ca(2+)](i) oscillations in mouse eggs.
Collapse
Affiliation(s)
- Bora Lee
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
19
|
Luo J, McGinnis LK, Kinsey WH. Fyn kinase activity is required for normal organization and functional polarity of the mouse oocyte cortex. Mol Reprod Dev 2009; 76:819-31. [PMID: 19363790 DOI: 10.1002/mrd.21034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of the present study was to determine whether Fyn kinase participated in signaling events during sperm-egg interactions, sperm incorporation, and meiosis II. The functional requirement of Fyn kinase activity in these events was tested through the use of the protein kinase inhibitor SKI-606 (Bosutinib) and by analysis of Fyn-null oocytes. Suppression of Fyn kinase signaling prior to fertilization caused disruption of the functional polarity of the oocyte with the result that sperm were able to fuse with the oocyte in the immediate vicinity of the meiotic spindle, a region that normally does not allow sperm fusion. The loss of functional polarity was accompanied by disruption of the microvilli and cortical granule-free zone that normally overlie the meiotic spindle. Changes in the distribution of cortical granules and filamentous actin provided further evidence of disorganization of the oocyte cortex. Rho B, a molecular marker for oocyte polarity, was unaffected by suppression of Fyn activity; however, the polarized association of Par-3 with the cortex overlying the meiotic spindle was completely disrupted. The defects in oocyte polarity in Fyn-null oocytes correlated with a failure of the MII chromosomes to maintain a position close to the oocyte cortex which seemed to underlie the above defects in oocyte polarity. This was associated with a delay in completion of meiosis II. Pronuclei, however, eventually formed and subsequent mitotic cleavages and blastocyst formation occurred normally.
Collapse
Affiliation(s)
- Jinping Luo
- Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
20
|
Tomashov-Matar R, Levi M, Shalgi R. The involvement of Src family kinases (SFKs) in the events leading to resumption of meiosis. Mol Cell Endocrinol 2008; 282:56-62. [PMID: 18166263 DOI: 10.1016/j.mce.2007.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovulated mammalian eggs remain arrested at the second meiotic metaphase (MII) until fertilization. The fertilizing spermatozoon initiates a sequence of biochemical events, collectively referred to as 'egg activation', which overcome this arrest. The initial observable change within the activated egg is a transient rise in intracellular Ca2+ concentration ([Ca2+]i) followed by cortical granule exocytosis (CGE) and resumption of the second meiotic division (RMII). To date, the mechanism by which the fertilizing spermatozoon activates the signaling pathways upstream to the Ca2+ release and the manner by which the signals downstream to Ca2+ release evoke RMII are not well documented. Protein tyrosine kinases (PTKs) were suggested as possible inducers of some aspects of egg activation. Src family kinases (SFKs) constitute a large family of evolutionarily conserved PTKs that mediate crucial biological functions. At present, the theory that one or more SFKs are necessary and sufficient for Ca2+ regulation at fertilization is documented in eggs of marine invertebrates. The mechanism leading to Ca2+ release during fertilization is less established in mammalian eggs. A controversy still exists as to whether SFKs within the mammalian egg are sufficient and/or necessary for Ca2+ release, or whether they play a role during egg activation via other signaling pathways. This article summarizes the possible signaling pathways involved upstream to Ca2+ release but focuses mainly on the involvement of SFKs downstream to Ca2+ release toward RMII, in invertebrate and vertebrate eggs.
Collapse
Affiliation(s)
- R Tomashov-Matar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | |
Collapse
|
21
|
Yoon SY, Fissore RA. Release of phospholipase C ζand [Ca2+]i oscillation-inducing activity during mammalian fertilization. Reproduction 2007; 134:695-704. [DOI: 10.1530/rep-07-0259] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During fertilization of mammalian eggs a factor from the sperm, the sperm factor (SF), is released into the ooplasm and induces persistent [Ca2+]ioscillations that are required for egg activation and embryo development. A sperm-specific phospholipase C (PLC), PLCz, is thought to be the SF. Here, we investigated whether the SF activity and PLCζare simultaneously and completely released into the ooplasm soon after sperm entry. To accomplish this, we enucleated sperm heads within 90 min of intracytoplasmic sperm injection (ICSI) and monitored the persistence of the [Ca2+]ioscillations in eggs in which the sperm had been withdrawn. We also stained the enucleatedsperm heads to ascertain the presence/absence of PLCζ. Our results show that by 90 min all the SF activity had been released from the sperm, as fertilized enucleated eggs oscillated as fertilized controls, even in cases in which oscillations were prolonged by arresting eggs at metaphase. In addition, we found that the released SF activity became associated with the pronucleus (PN), as induction of PN envelope breakdown evoked comparable [Ca2+]iresponses in enucleated and non-manipulated zygotes. Lastly, we found that PLCzlocalized to the equatorial area of bull sperm and to the post-acrosomal region of mouse sperm and that by 90 min after ICSI all the sperm’s PLCζimmunoreactivity was lost in both species. Altogether, our findings show that during fertilization the SF activity and PLCζimmunoreactivity are simultaneously released from the sperm, suggesting that PLCζmay be the only [Ca2+]ioscillation-inducing factor of mammalian sperm.
Collapse
|
22
|
Kurokawa M, Yoon SY, Alfandari D, Fukami K, Sato KI, Fissore RA. Proteolytic processing of phospholipase Czeta and [Ca2+]i oscillations during mammalian fertilization. Dev Biol 2007; 312:407-18. [PMID: 18028898 DOI: 10.1016/j.ydbio.2007.09.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/12/2007] [Accepted: 09/20/2007] [Indexed: 11/25/2022]
Abstract
Phospholipase Czeta (PLCzeta) is a sperm-specific PLC capable of causing repetitive intracellular Ca2+ ([Ca2+]i) release ([Ca2+]i oscillations) in mammalian eggs. Accumulating evidence suggests that PLCzeta is the sperm factor responsible for inducing egg activation. Nevertheless, some sperm fractions devoid of 72-kDa PLCzeta showed [Ca2+]i oscillation-inducing and PLCzeta-like PLC activity (Kurokawa et al., (2005) Dev. Biol. 285, 376-392). Here, we report that PLCzeta remains functional after proteolytic cleavage at the X-Y linker region. We found that N-terminal (33 and 37 kDa) and C-terminal fragments (27 kDa), presumably the result of PLCzeta cleavage at the X-Y linker region, were present in fresh sperm as well as in sperm extracts and remained associated as functional complexes. Protease V8 cleaved 72-kDa PLCzeta into 33/37 and 27 kDa fragments, while PLC activity and [Ca2+]i oscillation-inducing activity persisted until degradation of the fragments. Immunodepletion or affinity depletion of these fragments abolished PLC activity and [Ca2+]i oscillation-inducing activity from sperm extracts. Lastly, co-expression of cRNAs encoding residues 1-361 and 362-647 of mouse PLCzeta, mimicking cleavage at the X-Y linker region, induced [Ca2+]i oscillations and embryo development in mouse eggs. Our results support the hypothesis that PLCzeta is the sole mammalian sperm factor and that its linker region may have important regulatory functions during mammalian fertilization.
Collapse
Affiliation(s)
- Manabu Kurokawa
- Paige Laboratory, Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
23
|
Reut TM, Mattan L, Dafna T, Ruth KK, Ruth S. The role of Src family kinases in egg activation. Dev Biol 2007; 312:77-89. [PMID: 17949706 DOI: 10.1016/j.ydbio.2007.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 08/14/2007] [Accepted: 09/05/2007] [Indexed: 01/06/2023]
Abstract
The Src family kinases (SFKs) are believed to mediate some of the early events of egg activation at fertilization--intracellular Ca2+ increase and resumption of the second meiotic division (RMII). SFKs are both necessary and sufficient for triggering intracellular Ca2+ increase in eggs of sea urchin, sea star, Xenopus etc, but their role in mammalian eggs is not entirely determined. In this study we examined the involvement of SFKs in the events leading to Ca2+ increase in rat eggs and demonstrated their involvement in RMII. Microinjecting mRNAs of active forms of Fyn or c-Yes but not of c-Src, into ovulated eggs, triggered RMII without evoking Ca2+ increase. A specific SFKs inhibitor (SU6656) or dominant-negative (DN) forms of Fyn or c-Yes were unable to block Ca2+ oscillations rather, modulated them, in fertilized eggs or in parthenogenetically activated eggs. Moreover, inhibiting SFKs activity blocked RMII and decreased the level of cyclin B1 degradation. Our results imply participation of SFKs in the signal transduction pathway leading to egg activation, but not in the one leading to Ca2+ increase. We propose that SFKs act downstream to Ca2+ increase at the level of M-phase promoting factor (MPF).
Collapse
Affiliation(s)
- Tomashov-Matar Reut
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
24
|
McGinnis LK, Albertini DF, Kinsey WH. Localized activation of Src-family protein kinases in the mouse egg. Dev Biol 2007; 306:241-54. [PMID: 17449027 PMCID: PMC2694733 DOI: 10.1016/j.ydbio.2007.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/15/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
Recent studies in species that fertilize externally have demonstrated that fertilization triggers localized activation of Src-family protein kinases in the egg cortex. However, the requirement for Src-family kinases in activation of the mammalian egg is different from lower species and the objective of this study was to characterize changes in the distribution and activity of Src-family protein tyrosine kinases (PTKs) during zygotic development in the mouse. Immunofluorescence analysis of mouse oocytes and zygotes with an anti-phosphotyrosine antibody revealed that fertilization stimulated accumulation of P-Tyr-containing proteins in the egg cortex and that their abundance was elevated in the region overlying the MII spindle. In addition, the poles of the MII spindle exhibited elevated P-Tyr levels. As polar body extrusion progressed, P-Tyr-containing proteins were especially concentrated in the region of cortex adjacent to the maternal chromatin and the forming polar body. In contrast, P-Tyr labeling of the spindle poles eventually disappeared as meiosis II progressed to anaphase II. In approximately 24% of cases, the fertilizing sperm nucleus was associated with increased P-Tyr labeling in the overlying cortex and oolemma. To determine whether Src-family protein tyrosine kinases could be responsible for the observed changes in the distribution of P-Tyr containing proteins, an antibody to the activated form of Src-family PTKs was used to localize activated Src, Fyn or Yes. Activated Src-family kinases were found to be strongly associated with the meiotic spindle at all stages of meiosis II; however, no concentration of labeling was evident at the egg cortex. The absence of cortical Src-family PTK activity continued until the blastocyst stage when strong cortical activity became evident. At the pronuclear stage, activated Src-family PTKs became concentrated around the pronuclei in close association with the nuclear envelope. This pattern was unique to the earliest stages of development and disappeared by the eight cell stage. Functional studies using chemical inhibitors and a dominant-negative Fyn construct demonstrated that Src-family PTKs play an essential role in completion of meiosis II following fertilization and progression from the pronuclear stage into mitosis. These data suggest that while Src-family PTKs are not required for fertilization-induced calcium oscillations, they do play a critical role in development of the zygote. Furthermore, activation of these kinases in the mouse egg is limited to distinct regions and occurs at specific times after fertilization.
Collapse
Affiliation(s)
| | | | - William H. Kinsey
- To whom correspondence should be addressed: Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160. Tel.: 913-588-2721; Fax: 913-588-2710.
| |
Collapse
|
25
|
Lee B, Vermassen E, Yoon SY, Vanderheyden V, Ito J, Alfandari D, De Smedt H, Parys JB, Fissore RA. Phosphorylation of IP3R1 and the regulation of [Ca2+]i responses at fertilization: a role for the MAP kinase pathway. Development 2007; 133:4355-65. [PMID: 17038520 PMCID: PMC2909192 DOI: 10.1242/dev.02624] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A sperm-induced intracellular Ca2+ signal ([Ca2+]i) underlies the initiation of embryo development in most species studied to date. The inositol 1,4,5 trisphosphate receptor type 1 (IP3R1) in mammals, or its homologue in other species, is thought to mediate the majority of this Ca2+ release. IP3R1-mediated Ca2+ release is regulated during oocyte maturation such that it reaches maximal effectiveness at the time of fertilization, which, in mammalian eggs, occurs at the metaphase stage of the second meiosis (MII). Consistent with this, the [Ca2+]i oscillations associated with fertilization in these species occur most prominently during the MII stage. In this study, we have examined the molecular underpinnings of IP3R1 function in eggs. Using mouse and Xenopus eggs, we show that IP3R1 is phosphorylated during both maturation and the first cell cycle at a MPM2-detectable epitope(s), which is known to be a target of kinases controlling the cell cycle. In vitro phosphorylation studies reveal that MAPK/ERK2, one of the M-phase kinases, phosphorylates IP3R1 at at least one highly conserved site, and that its mutation abrogates IP3R1 phosphorylation in this domain. Our studies also found that activation of the MAPK/ERK pathway is required for the IP3R1 MPM2 reactivity observed in mouse eggs, and that eggs deprived of the MAPK/ERK pathway during maturation fail to mount normal [Ca2+]i oscillations in response to agonists and show compromised IP3R1 function. These findings identify IP3R1 phosphorylation by M-phase kinases as a regulatory mechanism of IP3R1 function in eggs that serves to optimize [Ca2+]i release at fertilization.
Collapse
Affiliation(s)
- Bora Lee
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Elke Vermassen
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Sook-Young Yoon
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Veerle Vanderheyden
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Junya Ito
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Dominique Alfandari
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Humbert De Smedt
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Jan B. Parys
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Rafael A. Fissore
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
- Author for correspondence ()
| |
Collapse
|
26
|
Malcuit C, Fissore RA. Activation of fertilized and nuclear transfer eggs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 591:117-31. [PMID: 17176559 DOI: 10.1007/978-0-387-37754-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In all animal species, initiation of embryonic development occurs shortly after the joining together of the gametes from each of the sexes. The first of these steps, referred to as "egg activation", is a series of molecular events that results in the syngamy of the two haploid genomes and the beginning of cellular divisions for the new diploid embryo. For many years it has been known that the incoming sperm drives this process, as an unfertilized egg will remain dormant until it can no longer sustain normal metabolic processes. Until recently, it was also believed that the sperm was the only cell capable of creating a viable embryo and offspring. Recent advances in cell biology have allowed researchers to not only understand the molecular mechanisms of egg activation, but to exploit the use of pharmacological agents to bypass sperm-induced egg activation for the creation of animals by somatic cell nuclear transfer. This chapter will focus on the molecular events of egg activation in mammals as they take place during fertilization, and will discuss how these mechanisms are successfully bypassed in processes such as somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Christopher Malcuit
- Department of Veterinary and Animal Sciences, Paige Laboratory, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
27
|
Meng L, Luo J, Li C, Kinsey WH. Role of Src homology 2 domain-mediated PTK signaling in mouse zygotic development. Reproduction 2006; 132:413-21. [PMID: 16940282 DOI: 10.1530/rep.1.01151] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fyn and other Src-family kinases play an essential role at several steps during egg activation following fertilization of externally fertilizing species, such as marine invertebrates, fish, and frogs. Recent studies demonstrate that the requirement for Src-family kinases in activation of the mammalian egg is different from lower species, and the objective of this study was to test the role of the Fyn kinase in the mouse egg activated by intracytoplasmic sperm injection (ICSI). An Src homology 2 (SH2) domain containing fusion protein was used to suppress Fyn function in the mouse zygote following ICSI. Eggs injected with the Fyn SH2 domain at an intracellular concentration of 4–8 μM exhibited reduced developmental potential with 100% of the zygotes being arrested following the first or the second cleavage. At higher concentrations, the protein blocked pronuclear congression and the zygotes remained at the pronuclear stage. The SH2 domain had no effect on sperm-induced calcium oscillations in distinct contrast to its effect on the eggs of lower species. The results indicate that the SH2 domain of Fyn kinase plays an important role in pronuclear congression as well as early cleavage events and that this effect appears not to involve disruption of calcium oscillations.
Collapse
Affiliation(s)
- Li Meng
- Center for Reproductive Sciences and Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Fertilization in all species studied to date induces an increase in the intracellular concentration of free calcium ions ([Ca2+]i) within the egg. In mammals, this [Ca2+]i signal is delivered in the form of long-lasting [Ca2+]i oscillations that begin shortly after fusion of the gametes and persist beyond the time of completion of meiosis. While not fully elucidated, recent evidence supports the notion that the sperm delivers into the ooplasm a trigger of oscillations, the so-called sperm factor (SF). The recent discovery that mammalian sperm harbor a specific phospholipase C (PLC), PLCzeta has consolidated this view. The fertilizing sperm, and presumably PLCzeta promote Ca2+ release in eggs via the production of inositol 1,4,5-trisphosphate (IP3), which binds and gates its receptor, the type-1 IP3 receptor, located on the endoplasmic reticulum, the Ca2+ store of the cell. Repetitive Ca2+ release in this manner results in a positive cumulative effect on downstream signaling molecules that are responsible for the completion of all the events comprising egg activation. This review will discuss recent advances in our understanding of how [Ca2+]i oscillations are initiated and regulated in mammals, highlight areas of discrepancies, and emphasize the need to better characterize the downstream molecular cascades that are dependent on [Ca2+]i oscillations and that may impact embryo development.
Collapse
Affiliation(s)
- Christopher Malcuit
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
29
|
Kurokawa M, Sato KI, Wu H, He C, Malcuit C, Black SJ, Fukami K, Fissore RA. Functional, biochemical, and chromatographic characterization of the complete [Ca2+]i oscillation-inducing activity of porcine sperm. Dev Biol 2006; 285:376-92. [PMID: 16098961 DOI: 10.1016/j.ydbio.2005.06.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 06/12/2005] [Accepted: 06/25/2005] [Indexed: 11/17/2022]
Abstract
A cytosolic sperm protein(s), referred to as sperm factor (SF), is delivered into eggs by the sperm during mammalian fertilization to induce repetitive increases in the intracellular concentration of free Ca2+ ([Ca2+]i) that are referred to as [Ca2+]i oscillations. [Ca2+]i oscillations are essential for egg activation and early embryonic development. Recent evidence shows that the novel sperm-specific phospholipase C (PLC), PLCzeta, may be the long sought after [Ca2+]i oscillation-inducing SF. Here, we demonstrate the complete extraction of SF from porcine sperm and show that regardless of the method of extraction a single molecule/complex appears to be responsible for the [Ca2+]i oscillation-inducing activity of these extracts. Consistent with this notion, all sperm fractions that induced [Ca2+]i oscillations, including FPLC-purified fractions, exhibited high in vitro PLC activity at basal Ca2+ levels (0.1-5 microM), a hallmark of PLCzeta. Notably, we detected immunoreactive 72-kDa PLCzeta in an inactive fraction, and several fractions capable of inducing oscillations were devoid of 72-kDa PLCzeta. Nonetheless, in the latter fractions, proteolytic fragments, presumably corresponding to cleaved forms of PLCzeta, were detected by immunoblotting. Therefore, our findings corroborate the hypothesis that a sperm-specific PLC is the main component of the [Ca2+]i oscillation-inducing activity of sperm but provide evidence that the presence of 72-kDa PLCzeta does not precisely correspond with the Ca2+ releasing activity of porcine sperm fractions.
Collapse
Affiliation(s)
- Manabu Kurokawa
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sato KI, Fukami Y, Stith BJ. Signal transduction pathways leading to Ca2+ release in a vertebrate model system: Lessons from Xenopus eggs. Semin Cell Dev Biol 2006; 17:285-92. [PMID: 16584903 DOI: 10.1016/j.semcdb.2006.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
At fertilization, eggs unite with sperm to initiate developmental programs that give rise to development of the embryo. Defining the molecular mechanism of this fundamental process at the beginning of life has been a key question in cell and developmental biology. In this review, we examine sperm-induced signal transduction events that lead to release of intracellular Ca(2+), a pivotal trigger of developmental activation, during fertilization in Xenopus laevis. Recent data demonstrate that metabolism of inositol 1,4,5-trisphosphate (IP(3)), a second messenger for Ca(2+) release, is carefully regulated and involves phospholipase C (PLC) and the tyrosine kinase Src. Roles of other potential regulators in this pathway, such as phosphatidylinositol 3-kinase, heterotrimeric GTP-binding protein, phospholipase D (PLD) and phosphatidic acid (PA) are also discussed. Finally, we address roles of egg lipid/membrane microdomains or 'rafts' as a platform for the sperm-egg membrane interaction and subsequent signaling events of egg activation.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Laboratory of Molecular Biology, The Research Center for Environmental Genomics, Kobe University, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
31
|
Lalancette C, Bordeleau LJ, Faure RL, Leclerc P. Bull testicular haploid germ cells express a messenger encoding for a truncated form of the protein tyrosine kinase HCK. Mol Reprod Dev 2006; 73:520-30. [PMID: 16432821 DOI: 10.1002/mrd.20422] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein tyrosine phosphorylation is a process that has been studied worldwide during sperm capacitation and acrosomal exocytosis events. Although few capacitation-induced phosphotyrosine-containing proteins have been identified, little is known about the tyrosine kinases directly involved in this post-translational modification. Different studies from our and other groups using tyrosine kinase inhibitors suggest the involvement of members of the family of src-related tyrosine kinases in the sperm capacitation associated increase in protein tyrosine phosphorylation. Using a molecular biology approach, we report for the first time messengers encoding for members from the src-related tyrosine kinase family in bovine spermatogenic cells. Degenerated primers were designed within a highly homologous region specific to the family of src tyrosine kinases, and RNAs coding for c-src, c-yes, lyn, lck, and hck were identified in bull testis and haploid germ cells by RT-PCR. We also report the presence of a messenger in haploid bull germ cells that could encode for a truncated isoform of the hck tyrosine kinase. This messenger was detected by screening of a haploid germ cells cDNA library using the RT-PCR product homologous to hck as a probe. The presence of this transcript in haploid germ cell RNA preparations was validated by RT-PCR, 3'RACE, 5'RACE as well as Northern blot. Such a truncated protein could function as an adaptor protein or as a competitive inhibitor in spermiogenesis or mature sperm functions.
Collapse
Affiliation(s)
- Claudia Lalancette
- Département d'Obstétrique/Gynécologie, Centre de Recherche en Biologie de la Reproduction, Université Laval and Endocrinologie de la Reproduction, Centre de recherche du CHUQ, Québec, Canada
| | | | | | | |
Collapse
|
32
|
Mahbub Hasan AKM, Sato KI, Sakakibara K, Ou Z, Iwasaki T, Ueda Y, Fukami Y. Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization. Dev Biol 2005; 286:483-92. [PMID: 16168405 DOI: 10.1016/j.ydbio.2005.08.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 08/05/2005] [Accepted: 08/12/2005] [Indexed: 10/25/2022]
Abstract
In a previous study, we identified Xenopus egg uroplakin III (xUPIII), a single-transmembrane protein that localized to lipid/membrane rafts and was tyrosine-phosphorylated upon fertilization. An antibody against the xUPIII extracellular domain abolishes fertilization, suggesting that xUPIII acts not only as tyrosine kinase substrate but also as a receptor for sperm. Previously, it has been shown that the protease cathepsin B can promote a transient Ca2+ release and egg activation as seen in fertilized eggs (Mizote, A., Okamoto, S., Iwao, Y., 1999. Activation of Xenopus eggs by proteases: possible involvement of a sperm protease in fertilization. Dev. Biol. 208, 79-92). Here, we show that activation of Xenopus eggs by cathepsin B is accompanied by tyrosine phosphorylation of egg-raft-associated Src, phospholipase Cgamma, and xUPIII. Cathepsin B also promotes a partial digestion of xUPIII both in vitro and in vivo. A synthetic xUPIII-GRR peptide, which contains a potential proteolytic site, inhibits the cathepsin-B-mediated proteolysis and tyrosine phosphorylation of xUPIII and egg activation. Importantly, this peptide also inhibits sperm-induced tyrosine phosphorylation of xUPIII and egg activation. Protease activity that digests xUPIII in an xUPIII-GRR peptide-sensitive manner is present in Xenopus sperm. Several protease inhibitors, which have been identified to be inhibitory toward Xenopus fertilization, are shown to inhibit sperm-induced tyrosine phosphorylation of xUPIII. Uroplakin Ib, a tetraspanin UP member, is found to be associated with xUPIII in egg rafts. Our results highlight novel mechanisms of fertilization signaling by which xUPIII serves as a potential target for sperm protease essential for fertilization.
Collapse
Affiliation(s)
- A K M Mahbub Hasan
- Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
O'Neill FJ, Gillett J, Foltz KR. Distinct roles for multiple Src family kinases at fertilization. J Cell Sci 2005; 117:6227-38. [PMID: 15564383 DOI: 10.1242/jcs.01547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Egg activation at fertilization requires the release of Ca2+ from the endoplasmic reticulum of the egg. Recent evidence indicates that Src family kinases (SFKs) function in the signaling pathway that initiates this Ca2+ release in the eggs of many deuterostomes. We have identified three SFKs expressed in starfish (Asterina miniata) eggs, designated AmSFK1, AmSFK2 and AmSFK3. Antibodies made against the unique domains of each AmSFK protein revealed that all three are expressed in eggs and localized primarily to the membrane fraction. Both AmSFK1 and AmSFK3 (but not AmSFK2) are necessary for egg activation, as determined by injection of starfish oocytes with dominant-interfering Src homology 2 (SH2) domains, which specifically delay and reduce the initial release of Ca2+ at fertilization. AmSFK3 exhibits a very rapid and transient kinase activity in response to fertilization, peaking at 30 seconds post sperm addition. AmSFK1 kinase activity also increases transiently at fertilization, but peaks later, at 2 minutes. These results indicate that there are multiple SFKs present in starfish eggs with distinct, perhaps sequential, signaling roles.
Collapse
Affiliation(s)
- Forest J O'Neill
- Department of Molecular, Cellular and Developmental Biology and the Marine Science Institute, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | |
Collapse
|
34
|
Kumar P, Meizel S. Nicotinic acetylcholine receptor subunits and associated proteins in human sperm. J Biol Chem 2005; 280:25928-35. [PMID: 15894803 DOI: 10.1074/jbc.m502435200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrated previously the involvement of a nicotinic acetylcholine receptor containing an alpha7 subunit in the human sperm acrosome reaction (a modified exocytotic event essential to fertilization). Here we report the presence in human sperm of alpha7, alpha9, alpha3, alpha5, and beta4 nicotinic acetylcholine receptor subunits and the following proteins known to be associated with the receptor in the somatic cell: rapsyn and the tyrosine kinases c-SRC and FYN. The alpha7 subunit appears to exist as a homomer in the posterior post-acrosomal and neck regions of sperm and is probably linked to the cytoskeleton via rapsyn. The alpha3, alpha5, and beta4 subunits are present in the sperm flagellar mid-piece of sperm and possibly exist as alpha3alpha5beta4 and/or alpha3beta4 channels. The alpha9 subunit is present in the sperm mid-piece. We detected the FYN and c-SRC tyrosine kinases in the flagellar mid-piece region. Both co-precipitated only with the nicotinic acetylcholine receptor beta4 subunit. Immunolocalization with a C-terminal SRC kinase antibody, which recognizes several members of SRC kinase family, detected a SRC kinase co-localized with the alpha7 subunit in the neck region of sperm. Immunoprecipitation studies with that antibody demonstrated that the alpha7 subunit is associated with a SRC kinase. Antagonists of tyrosine phosphorylation inhibited the acetylcholine-initiated acrosome reaction, suggesting the involvement of a SRC kinase in the acrosome reaction.
Collapse
Affiliation(s)
- Priyadarsini Kumar
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
35
|
Mehlmann LM, Jaffe LA. SH2 domain-mediated activation of an SRC family kinase is not required to initiate Ca2+ release at fertilization in mouse eggs. Reproduction 2005; 129:557-64. [PMID: 15855619 DOI: 10.1530/rep.1.00638] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SRC family kinases (SFKs) function in initiating Ca2+release at fertilization in several species in the vertebrate evolutionary line, but whether they play a similar role in mammalian fertilization has been uncertain. We investigated this question by first determining which SFK proteins are expressed in mouse eggs, and then measuring Ca2+release at fertilization in the presence of dominant negative inhibitors. FYN and YES proteins were found in mouse eggs, but other SFKs were not detected; based on this, we injected mouse eggs with a mixture of FYN and YES Src homology 2 (SH2) domains. These SH2 domains were effective inhibitors of Ca2+release at fertilization in starfish eggs, but did not inhibit Ca2+release at fertilization in mouse eggs. Thus the mechanism by which sperm initiate Ca2+release in mouse eggs does not depend on SH2 domain-mediated activation of an SFK. We also tested the small molecule SFK inhibitor SU6656, and found that it became compartmentalized in the egg cytoplasm, thus suggesting caution in the use of this inhibitor. Our findings indicate that although the initiation of Ca2+release at fertilization of mammalian eggs occurs by a pathway that has many similarities to that in evolutionarily earlier animal groups, the requirement for SH2 domain-mediated activation of an SFK is not conserved.
Collapse
Affiliation(s)
- Lisa M Mehlmann
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA.
| | | |
Collapse
|
36
|
Jellerette T, Kurokawa M, Lee B, Malcuit C, Yoon SY, Smyth J, Vermassen E, De Smedt H, Parys JB, Fissore RA. Cell cycle-coupled [Ca(2+)](i) oscillations in mouse zygotes and function of the inositol 1,4,5-trisphosphate receptor-1. Dev Biol 2004; 274:94-109. [PMID: 15355791 DOI: 10.1016/j.ydbio.2004.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 06/12/2004] [Accepted: 06/12/2004] [Indexed: 11/20/2022]
Abstract
Sperm entry in mammalian eggs initiates oscillations in the concentration of free calcium ([Ca(2+)](i)). In mouse eggs, oscillations start at metaphase II (MII) and conclude as the zygotes progress into interphase and commence pronuclear (PN) formation. The inositol 1,4,5-trisphosphate receptor (IP(3)R-1), which underlies the oscillations, undergoes degradation during this transition, suggesting that one or more of the eggs' Ca(2+)-releasing machinery components may be regulated in a cell cycle-dependent manner, thereby coordinating [Ca(2+)](i) responses with the cell cycle. To ascertain the site(s) of interaction, we initiated oscillations at different stages of the cell cycle in zygotes with different IP(3)R-1 mass. In addition to sperm, we used two other agonists: porcine sperm factor (pSF), which stimulates production of IP(3), and adenophostin A, a non-hydrolyzable analogue of IP(3). None of the agonists tested induced oscillations at interphase, suggesting that neither decreased IP(3)R-1 mass nor lack of production or excessive IP(3) degradation can account for the insensitivity to IP(3) at this stage. Moreover, the releasable Ca(2+) content of the stores did not change by interphase, but it did decrease by first mitosis. More importantly, experiments revealed that IP(3)R-1 sensitivity and possibly IP(3) binding were altered at interphase, and our data demonstrate stage-specific IP(3)R-1 phosphorylation by M-phase kinases. Accordingly, increasing the activity of M-phase kinases restored the oscillatory-permissive state in zygotes. We therefore propose that the restriction of oscillations in mouse zygotes to the metaphase stage may be coordinated at the level of IP(3)R-1 and that this involves cell cycle stage-specific receptor phosphorylation.
Collapse
Affiliation(s)
- Teru Jellerette
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Swann K, Larman MG, Saunders CM, Lai FA. The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLCzeta. Reproduction 2004; 127:431-9. [PMID: 15047934 DOI: 10.1530/rep.1.00169] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When sperm activate eggs at fertilization the signal for activation involves increases in the intracellular free Ca2+ concentration. In mammals the Ca2+ changes at fertilization consist of intracellular Ca2+ oscillations that are driven by the generation of inositol 1,4,5-trisphosphate (InsP3). It is not established how sperm trigger the increases in InsP3 and Ca2+ at fertilization. One theory suggests that sperm initiate signals to activate the egg by introducing a specific factor into the egg cytoplasm after membrane fusion. This theory has been mainly based upon the observation that injecting a cytosolic sperm protein factor into eggs can trigger the same pattern of Ca2+ oscillations induced by the sperm. We have recently shown that this soluble sperm factor protein is a novel form of phospholipase C (PLC), and it is referred to as PLCzeta(zeta). We describe the evidence that led to the identification of PLCzeta and discuss the issues relating to its potential role in fertilization.
Collapse
Affiliation(s)
- K Swann
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
38
|
Talmor-Cohen A, Tomashov-Matar R, Eliyahu E, Shapiro R, Shalgi R. Are Src family kinases involved in cell cycle resumption in rat eggs? Reproduction 2004; 127:455-63. [PMID: 15047936 DOI: 10.1530/rep.1.00104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The earliest visible indications for the transition to embryos in mammalian eggs, known as egg activation, are cortical granules exocytosis (CGE) and resumption of meiosis (RM); these events are triggered by the fertilizing spermatozoon through a series of Ca2+ transients. The pathways, within the egg, leading to the intracellular Ca2+ release and to the downstream cellular events, are currently under intensive investigation. The involvement of Src family kinases (SFKs) in Ca2+ release at fertilization is well supported in marine invertebrate eggs but not in mammalian eggs. In a previous study we have shown the expression and localization of Fyn, the first SFK member demonstrated in the mammalian egg. The purpose of the current study was to identify other common SFKs and resolve their function during activation of mammalian eggs. All three kinases examined: Fyn, c-Src and c-Yes are distributed throughout the egg cytoplasm. However, Fyn and c-Yes tend to concentrate at the egg cortex, though only Fyn is localized to the spindle as well. The different localizations of the various SFKs imply the possibility of their different functions within the egg. To examine whether SFKs participate in the signal transduction pathways during egg activation, we employed selective inhibitors of the SFKs activity (PP2 and SU6656). The results demonstrate that RM, which is triggered by Ca2+ elevation, is an SFK-dependent process, while CGE, triggered by either Ca2+ elevation or protein kinase C (PKC), is not. The possible involvement of SFKs in the signal transduction pathways that lead from the sperm-egg fusion site downstream of the Ca2+ release remains unclear.
Collapse
Affiliation(s)
- A Talmor-Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|