1
|
Gabagambi NP, Skorping A, Chacha M, Jonathan Kihedu K, Mennerat A. Life history shifts in an exploited African fish following invasion by a castrating parasite. Ecol Evol 2020; 10:13225-13235. [PMID: 33304532 PMCID: PMC7713912 DOI: 10.1002/ece3.6917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/19/2023] Open
Abstract
Evolutionary theory predicts that infection by a parasite that reduces future host survival or fecundity should select for increased investment in current reproduction. In this study, we use the cestode Ligula intestinalis and its intermediate fish host Engraulicypris sardella in Wissman Bay, Lake Nyasa (Tanzania), as a model system. Using data about infection of E. sardella fish hosts by L. intestinalis collected for a period of 10 years, we explored whether parasite infection affects the fecundity of the fish host E. sardella, and whether host reproductive investment has increased at the expense of somatic growth. We found that L. intestinalis had a strong negative effect on the fecundity of its intermediate fish host. For the noninfected fish, we observed an increase in relative gonadal weight at maturity over the study period, while size at maturity decreased. These findings suggest that the life history of E. sardella has been shifting toward earlier reproduction. Further studies are warranted to assess whether these changes reflect plastic or evolutionary responses. We also discuss the interaction between parasite and fishery-mediated selection as a possible explanation for the decline of E. sardella stock in the lake.
Collapse
Affiliation(s)
| | - Arne Skorping
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Mwita Chacha
- Department of Aquatic Sciences and Fisheries TechnologyCollege of Agricultural Sciences and Fisheries TechnologyUniversity of Dar es SalaamDar es SalaamTanzania
| | | | - Adele Mennerat
- Department of Biological SciencesUniversity of BergenBergenNorway
| |
Collapse
|
2
|
Nezhybová V, Reichard M, Methling C, Ondračková M. Limited impacts of chronic eye fluke infection on the reproductive success of a fish host. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractParasitic infections may affect the reproductive success of the host either directly, through behavioural modification, or indirectly, by altering their reproductive investment in response to infection. We determined the effects of infection with the eye fluke Diplostomum pseudospathaceum (Trematoda) on the reproductive traits of European bitterling (Rhodeus amarus, Cyprinidae), an intermediate fish host with a resource-based mating system. Male bitterling infected by Diplostomum exhibited a larger but less pronounced red eye spot (sexually selected signal) than control males, suggesting that infected males were less preferred by females. The frequency of female ovulation and number of offspring were comparable between the infected and the control group, although there was a 1–2 week delay in the peak of ovulation and offspring production in infected fish, which is known to coincide with higher juvenile mortality. Chronic eye fluke infection had minimal metabolic costs (measured as oxygen consumption) and, consistent with these results, reproductive activity did not differ between infected and control fish in an experimental test of intersexual selection. Overall, the impact of eye fluke infection on the reproduction of European bitterling was limited. We consider the potential effect of favourable conditions during experiments (abundant food, access to spawning substrate and lack of predators and co-infections) on experimental outcomes and recognize that the effects of chronic eye fluke infection in natural conditions might be more pronounced.
Collapse
Affiliation(s)
- Veronika Nezhybová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Caroline Methling
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Markéta Ondračková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
3
|
Lagrue C. Impacts of crustacean invasions on parasite dynamics in aquatic ecosystems: A plea for parasite-focused studies. Int J Parasitol Parasites Wildl 2017; 6:364-374. [PMID: 30951574 PMCID: PMC5715223 DOI: 10.1016/j.ijppaw.2017.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/31/2017] [Indexed: 11/23/2022]
Abstract
While there is considerable interest in, and good evidence for, the role that parasites play in biological invasions, the potential parallel effects of species introduction on parasite dynamics have clearly received less attention. Indeed, much effort has been focused on how parasites can facilitate or limit invasions, and positively or negatively impact native host species and recipient communities. Contrastingly, the potential consequences of biological invasions for the diversity and dynamics of both native and introduced parasites have been and are still mainly overlooked, although successful invasion by non-native host species may have large, contrasting and unpredictable effects on parasites. This review looks at the links between biological invasions and pathogens, and particularly at crustacean invasions in aquatic ecosystems and their potential effects on native and invasive parasites, and discusses what often remains unknown even from well-documented systems. Aquatic crustaceans are hosts to many parasites and are often invasive. Published studies show that crustacean invasion can have highly contrasting effects on parasite dynamics, even when invasive host and parasite species are phylogenetically close to their native counterparts. These effects seem to be dependent on multiple factors such as host suitability, parasite life-cycle or host-specific resistance to parasitic manipulation. Furthermore, introduced hosts can have drastically contrasting effects on parasite standing crop and transmission, two parameters that should be independently assessed before drawing any conclusion on the potential effects of novel hosts on parasites and the key processes influencing disease dynamics following biological invasions. I conclude by calling for greater recognition of biological invasions' effects on parasite dynamics, more parasite-focused studies and suggest some potential ways to assess these effects.
Collapse
|
4
|
Lagrue C, Presswell B, Dunckley N, Poulin R. The invasive cestode parasite Ligula from salmonids and bullies on the South Island, New Zealand. Parasitol Res 2017; 117:151-156. [DOI: 10.1007/s00436-017-5684-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/15/2017] [Indexed: 11/30/2022]
|
5
|
Sures B, Nachev M, Selbach C, Marcogliese DJ. Parasite responses to pollution: what we know and where we go in 'Environmental Parasitology'. Parasit Vectors 2017; 10:65. [PMID: 28166838 PMCID: PMC5294906 DOI: 10.1186/s13071-017-2001-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/24/2017] [Indexed: 01/13/2023] Open
Abstract
Environmental parasitology deals with the interactions between parasites and pollutants in the environment. Their sensitivity to pollutants and environmental disturbances makes many parasite taxa useful indicators of environmental health and anthropogenic impact. Over the last 20 years, three main research directions have been shown to be highly promising and relevant, namely parasites as accumulation indicators for selected pollutants, parasites as effect indicators, and the role of parasites interacting with established bioindicators. The current paper focuses on the potential use of parasites as indicators of environmental pollution and the interactions with their hosts. By reviewing some of the most recent findings in the field of environmental parasitology, we summarize the current state of the art and try to identify promising ideas for future research directions. In detail, we address the suitability of parasites as accumulation indicators and their possible application to demonstrate biological availability of pollutants; the role of parasites as pollutant sinks; the interaction between parasites and biomarkers focusing on combined effects of parasitism and pollution on the health of their hosts; and the use of parasites as indicators of contaminants and ecosystem health. Therefore, this review highlights the application of parasites as indicators at different biological scales, from the organismal to the ecosystem.
Collapse
Affiliation(s)
- Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141, Essen, Germany.,Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Milen Nachev
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141, Essen, Germany.
| | - Christian Selbach
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill Street, 7th floor, Montreal, QC, H2Y 2E7, Canada.,St. Andrews Biological Station, Fisheries and Oceans Canada, 531 Brandy Cove Road, St, Andrews, NB, E5B 2 L9, Canada
| |
Collapse
|
6
|
Sohn WM, Na BK, Jung SG, Kim KH. Mass Death of Predatory Carp, Chanodichthys erythropterus, Induced by Plerocercoid Larvae of Ligula intestinalis (Cestoda: Diphyllobothriidae). THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:363-8. [PMID: 27417095 PMCID: PMC4977791 DOI: 10.3347/kjp.2016.54.3.363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/10/2016] [Accepted: 05/14/2016] [Indexed: 11/23/2022]
Abstract
We describe here the mass death of predatory carp, Chanodichthys erythropterus, in Korea induced by plerocercoid larvae of Ligula intestinalis as a result of host manipulation. The carcasses of fish with ligulid larvae were first found in the river-edge areas of Chilgok-bo in Nakdong-gang (River), Korea at early February 2016. This ecological phenomena also occurred in the adjacent areas of 3 dams of Nakdong-gang, i.e., Gangjeong-bo, Dalseong-bo, and Hapcheon-Changnyeong-bo. Total 1,173 fish carcasses were collected from the 4 regions. To examine the cause of death, we captured 10 wondering carp in the river-edge areas of Hapcheon-Changnyeong-bo with a landing net. They were 24.0-28.5 cm in length and 147-257 g in weight, and had 2-11 plerocercoid larvae in the abdominal cavity. Their digestive organs were slender and empty, and reproductive organs were not observed at all. The plerocercoid larvae occupied almost all spaces of the abdominal cavity under the air bladders. The proportion of larvae per fish was 14.6-32.1% of body weight. The larvae were ivory-white, 21.5-63.0 cm long, and 6.0-13.8 g in weight. We suggest that the preference for the river-edge in infected fish during winter is a modified behavioral response by host manipulation of the tapeworm larvae. The life cycle of this tapeworm seems to be successfully continued as the infected fish can be easily eaten by avian definitive hosts.
Collapse
Affiliation(s)
- Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Soo Gun Jung
- Korea Federation for Environmental Movements in Daegu, Daegu 41259, Korea
| | - Koo Hwan Kim
- Nakdong River Integrated Operations Center, Korea Water Resources Corporation, Busan 49300, Korea
| |
Collapse
|
7
|
Rouis SO, Rouis AO, Dumont HJ, Magellan K, Arab A. Dynamics and effects of Ligula intestinalis (L.) infection in the native fish Barbus callensis Valenciennes, 1842 in Algeria. Acta Parasitol 2016; 61:307-18. [PMID: 27078654 DOI: 10.1515/ap-2016-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 12/04/2015] [Indexed: 11/15/2022]
Abstract
The dynamics of the emergence, duration, and decline phases in epizootic cycles are well known for humans and some crops, but they are poorly understood for host-parasite systems in the wild. Parasites may be particularly insidious as they are often introduced unintentionally, simultaneously with their hosts, and later transferred to species in the new location. Here we investigate the epizootic dynamics of the tapeworm Ligula intestinalis in the Hamiz reservoir, Algeria, and explore its effects on the cyprinid fish Barbus callensis. Regular sampling was conducted from October 2005 to February 2008 with intermittent surveys carried out until 2010. Five percent of the 566 specimens of B. callensis that were caught were infected, with the maximum number of parasites found in spring. There was no obvious difference in weight between uninfected fish and infected ones, and infection did not affect fish condition. However, infected fish were significantly longer than uninfected fish and had inhibited gonad development. The proportion of infected fish caught was significantly higher in year 1 and by the second winter, infection collapsed to zero. The Ligula infection thus appeared to have minimal ecological effects and be of a temporary nature, thus exhibiting an epizootic cycle. Taken together, our data indicates that this infection declined or even failed during our study period. Failure may be due to the specific genetic strain of Ligula, but invasive carp may also have been influential in both the introduction and subsequent decline of this parasite.
Collapse
|
8
|
Competition and Facilitation between a Disease and a Predator in a Stunted Prey Population. PLoS One 2015; 10:e0132251. [PMID: 26147293 PMCID: PMC4492505 DOI: 10.1371/journal.pone.0132251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/11/2015] [Indexed: 12/01/2022] Open
Abstract
The role of diseases and parasites has received relatively little attention in modelling ecological dynamics despite mounting evidence of their importance in structuring communities. In contrast to predators, parasites do not necessarily kill their host but instead they may change host life history. Here, we study the impact of a parasite that selectively infects juvenile prey individuals and prevents them from maturing into adults. The model is inspired by the Ligula intestinalis tape worm and its cyprinid fish host Rutilis rutilis. We demonstrate that the parasite can promote as well as demote the so-called stunting in its host population, that is, the accumulation of juvenile prey, which leads to strong exploitation competition and consequently to a bottleneck in maturation. If competition between infected and uninfected individuals is strong, stunting will be enhanced and bistability between a stunted and non-stunted prey population occurs. In this case, the disease competes with the predator of its host species, possibly leading to predator extinction. In contrast, if the competition between infected and uninfected individuals is weak, the stunting is relieved, and epi-zoonotic cycles will occur, with recurrent epidemic outbreaks. Here, the disease facilitates the predator, and predator density will be substantially increased. We discuss the implications of our results for the dynamics and structure of the natural Ligula-Roach system.
Collapse
|
9
|
Maas AK. Considerations and conditions involving protozoal inhabitation of the reptilian gastrointestinal tract. Vet Clin North Am Exot Anim Pract 2014; 17:263-97. [PMID: 24767746 DOI: 10.1016/j.cvex.2014.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In mammals, gastrointestinal protozoal organism inhabitation has been well studied, with hundreds of species defined as parasites. While the mammalian protozoal relationships have been identified and categorized by anatomy, tropism, pathogenicity, and life cycles, relatively few species of protozoal organism relationships have been categorized in reptiles. Species of parasites are still being segregated from each other, and conflicting information needs to be clarified to completely understand the data already available. This article presents the information available to help reptile practitioners make evidence-based decisions regarding both the determination of a pathologic parasitic condition and direct appropriate treatment of patients.
Collapse
Affiliation(s)
- Adolf K Maas
- ZooVet Consulting, PLLC, PO Box 1007, Bothell, WA 98041, USA.
| |
Collapse
|
10
|
Scharsack JP, Gossens A, Franke F, Kurtz J. Excretory products of the cestode, Schistocephalus solidus, modulate in vitro responses of leukocytes from its specific host, the three-spined stickleback (Gasterosteus aculeatus). FISH & SHELLFISH IMMUNOLOGY 2013; 35:1779-1787. [PMID: 24036333 DOI: 10.1016/j.fsi.2013.08.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/10/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Helminth parasites have evolved remarkable strategies to manipulate the immune system of their hosts. During infections of three-spined stickleback (Gasterosteus aculeatus) with the cestode Schistocephalus solidus prominent immunological changes occur, presumably due to manipulative activity of the parasite. We hypothesise that excretory/secretory products of the parasite are involved in the manipulation of the stickleback's immune system and that this may depend on the individual parasite and its origin. We therefore produced S. solidus conditioned cell culture media (SSCM) with parasites from different origins (Norway, Spain and Germany) and exposed head kidney leukocytes (HKL) from un-infected sticklebacks in cell cultures to SSCM. After in vitro culture, HKL were subjected to differential cell counts (granulocytes/lymphocytes) by means of flow cytometry. Leukocyte sub-populations were analysed for cell viability and changes in cell morphology. The respiratory burst activity was measured with a luminescence assay. Exposure of HKL to SSCM induced an up-regulation of respiratory burst activity after already 1 h, which was still elevated at 24 h, but which was in some cases significantly down-regulated after 96 h. Respiratory burst was positively correlated with the number of live granulocytes in the culture, suggesting that the respiratory burst activity was changed by SSCM effects on granulocyte viability. After 1 h and 24 h of HKL culture, no lymphocyte responses to SSCM were detectable, but after 96 h lymphocyte viability was significantly decreased with SSCM from Spanish S. solidus. In these cultures, residual lymphocytes increased in size, suggesting that cell death and activation might have occurred in parallel. The highest respiratory burst activity was induced by SSCM from Spanish parasites, in particular when they were grown in sympatric sticklebacks. The in vitro HKL responses to SSCM depended on the individual parasite and its population of origin, suggesting that in vivo, S. solidus excretory products are regulated individually, possibly to balance the interplay of each individual host-parasite pair.
Collapse
Affiliation(s)
- Jörn Peter Scharsack
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
11
|
Barber I. Sticklebacks as model hosts in ecological and evolutionary parasitology. Trends Parasitol 2013; 29:556-66. [PMID: 24145060 DOI: 10.1016/j.pt.2013.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 11/25/2022]
Abstract
The three-spined stickleback is a small teleost fish, native to coastal regions of the Northern Hemisphere, which has emerged as a key model organism in evolutionary biology and ecology. Sticklebacks possess a well-documented and experimentally amenable parasite fauna, and are well suited to both laboratory and field parasitological investigation. As a consequence, sticklebacks have been extensively used as model hosts in studies of host-parasite interactions, and these studies have provided considerable insight into the roles of parasites in ecology and evolutionary biology. In this review, I discuss key advances in our understanding of host-parasite interactions that have arisen from studies involving stickleback hosts, highlight areas of current research activity, and identify potentially promising areas for future research.
Collapse
Affiliation(s)
- Iain Barber
- Department of Biology, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
12
|
Pathways of cryptic invasion in a fish parasite traced using coalescent analysis and epidemiological survey. Biol Invasions 2013. [DOI: 10.1007/s10530-013-0418-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Oyoo-Okoth E, Admiraal W, Osano O, Kraak MHS, Were-Kogogo PJA, Gichuki J, Ngure V, Makwali J, Ogwai C. Dynamics of metal uptake and depuration in a parasitized cyprinid fish (Rastrineobola argentea). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:34-40. [PMID: 22885798 DOI: 10.1016/j.aquatox.2012.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
Infestation of fish by endoparasites may potentially influence metal uptake and elimination by the host. We quantified the metal uptake rate constant (k(u)) and efflux rate constants (k(e)) of radiolabeled Cd and Co in the cyprinid fish Rastrineobola argentea experimentally infected with the parasite Ligula intestinalis. During 24h, the accumulation of Cd and Co increased linearly with no evident steady state in uninfected fish, infected fish and in the parasite. Following aqueous exposures, the k(u) for Cd in parasites was about 3× higher than that of infected fish and 6× higher than for the uninfected fish. The k(u) for Co was up to 15× higher in the parasites than that of infected fish and 7.5× higher than for the uninfected fish. The k(e) for excretion of Cd were consistently higher for the uninfected fish than for the infected fish and also higher for uninfected fish than the parasite. The k(e) for Co for the uninfected fish was 1.4-2.0× lower than in the infected fish, but higher for parasites compared to uninfected fish (1.3-2.3×). Pulse-chase feeding experiments with radiolabeled copepods showed that Cd assimilation efficiency from food was higher in infected fish, while Co was assimilated more effectively by uninfected fish. The observed differences in metal dynamics between infected and uninfected R. argentea in the laboratory concord with differences in metal concentrations measured in natural populations in Lake Victoria. Our findings provide evidence that L. intestinalis infection enhances Cd accumulation, but depletes the essential Co in the cyprinid fish R. argentea. We conclude that the combined stress of parasites and pollution changes metal risks to fish hosts in a metal specific manner.
Collapse
Affiliation(s)
- Elijah Oyoo-Okoth
- Division of Environmental Health, School of Environmental Studies, Moi University, Eldoret, Kenya.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kroupova H, Trubiroha A, Wuertz S, Frank SN, Sures B, Kloas W. Nutritional status and gene expression along the somatotropic axis in roach (Rutilus rutilus) infected with the tapeworm Ligula intestinalis. Gen Comp Endocrinol 2012; 177:270-7. [PMID: 22542897 DOI: 10.1016/j.ygcen.2012.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/16/2012] [Accepted: 04/10/2012] [Indexed: 12/23/2022]
Abstract
The tapeworm Ligula intestinalis inhibits gametogenesis of its fish host, the roach (Rutilus rutilus). We investigated whether L. intestinalis infection makes significant demands on nutritional resources and consequently manipulates the endocrine somatotropic axis of roach. Two groups of naturally infected and uninfected roach were studied: a field group (natural feeding) and a laboratory group (ad libitum food supply). In females, no significant impact of parasitization on storage substrates (glycogen, lipids, and protein) was detected, whereas in males, either lipid content of the liver (field group) or lipid of the muscle and glycogen of the liver (laboratory group) were slightly decreased. Except for the females of the field group, higher mRNA expression of growth hormone (gh) in the pituitary of infected fish was observed. Furthermore, the expression of hypophyseal somatolactin α and β (slα, slβ) was up-regulated in infected females of the field and laboratory group, respectively. In liver and muscle, mRNA expression of insulin-like growth factors (igf1, igf2) and igf receptor (igfr) remained either unchanged or were up-regulated with infection. Parasitization showed inconsistent effects on gh receptor 1 (ghr1) expression in liver and muscle, whereas ghr2 mRNA was mostly not influenced by infection. In general, the expression profile of genes involved in the somatotropic axis as well as the content of storage substances in infected roach did not resemble that of food-deprived fish either under natural or ad libitum feeding. In conclusion, the present study does not indicate starvation of L. intestinalis infected roach, and it is suggested that the inhibition of reproduction attenuated the nutritional demand of parasitization.
Collapse
Affiliation(s)
- H Kroupova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, CZ-38925 Vodnany, Czech Republic.
| | | | | | | | | | | |
Collapse
|
15
|
Hadou-Sanoun G, Arab A, Lek-Ang S, Lek S. [Impact of Ligula intestinalis (L.1758) (Cestode), on the growth of Barbus setivimensis (Cyprinidae) in a lake system in Algeria]. C R Biol 2012; 335:300-9. [PMID: 22578576 DOI: 10.1016/j.crvi.2012.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022]
Abstract
The Algerian freshwater fish fauna is mainly represented by the Cyprinidae family, in particular, the genus Barbus. This is represented only by natural populations of the subgenus Barbus. The systematic, based mainly on the methods of biometrics, is quite different from one author to another. However, two nominal species are usually cited: Barbus callensis (Valenciennes, 1842), which is limited to the region of El Kala (eastern Algeria) and Barbus setivimensis (Valenciennes, 1842) in other parts of the North. During the ecological study of this fauna, many individuals were found infested with the tapeworm Ligula intestinalis (Linné, 1758), which led us to study the effect of this parasite on B. setivimensis using the ecological parasites' index (prevalence, abundance and parasite intensity) and to focus on the impact of the parasite on the growth of fish. Tapeworm L. intestinalis presents a wide geographical distribution and a complex lifecycle to multiple hosts: the cycle starts in the body of birds. The life expectancy in the major host is a maximum of 5 days, but in this time, they will lay a multitude of eggs. These eggs are passed into water via the faeces of the bird. Once in the aquatic medium, they hatch and are eaten by a wide range of copepod zooplankton (first intermediate host). The cycle continues when fish (second intermediate host) ingests the copepod. The worm then burrows through the gut wall and continues to develop in the fish's body cavity. The cycle is then complete when the bird (final host) eats the tapeworm-hosting fish. We studied the effects of diet, the hosting period, the habitat on the prevalence, abundance and intensity of the parasitic larvae plerocercoid L. intestinalis and the parasiting effect on the Cyprinids fishs of the genus Barbus in the Keddara dam (Boumerdes, Algeria) during one year. Although L. intestinalis was recorded in several host fish, the available data on the parameters of parasitism are limited and no studies are reported on B. setivimensis. In this study, a total of 613 individuals were sampled and checked on the presence of L. intestinalis plerocercoid stages. Only 64 were infested. The value of the prevalence was 10.44% and the average intensity was 1.89 parasites (average two parasites per infested fish). The infection rate is high during the autumn and low during the spring season. The latter corresponds with the breeding period.
Collapse
Affiliation(s)
- Ghania Hadou-Sanoun
- USTHB, faculté des sciences biologiques, laboratoire dynamique et biodiversité, BP 32, El Alia, Alger, Algérie.
| | | | | | | |
Collapse
|
16
|
Shao YT, Tseng YC, Trombley S, Hwang PP, Schmitz M, Borg B. Schistocephalus solidus infections increase gonadotropins and gonadotropin releasing hormone (GnRH3) mRNA levels in the three-spined stickleback, Gasterosteus aculeatus. Parasitol Int 2012; 61:470-4. [PMID: 22484129 DOI: 10.1016/j.parint.2012.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Parasites often impair the reproduction of their hosts, one well known case being the cestode Schistocephalus solidus which is a common parasite in three-spined sticklebacks, Gasterosteus aculeatus. One of the possible ways that this could be exerted is by suppression on the brain-pituitary-gonadal (BPG) axis. In this study, mRNA levels of FSH-β and LH-β and of GnRH2 (cGnRH II) and GnRH3 (sGnRH) were measured via Q-PCR in infected and uninfected fish sampled from the field a few weeks before the onset of breeding. The pituitary mRNA levels of both FSH-β and LH-β were higher in infected males than in uninfected males. Also in females, FSH-β mRNA levels were higher in infected individuals than in others, whereas there was no significant difference found in LH-β expression. Brain mRNA levels of GnRH3 were higher in infected fish than in uninfected fish in both sexes, but no difference was found in GnRH2 mRNA levels. Thus, infection by S. solidus was able to alter the expressions not only of gonadotropins (GtHs), but also of GnRH which has not been observed previously. However, the effects are opposite to what should be expected if the parasite suppressed reproduction via actions on the brain-pituitary level. The gonads are perhaps more likely to be impaired by the parasites in other ways, and changed feedbacks on the BPG axis could then lead to the increases in GtHs and GnRH.
Collapse
Affiliation(s)
- Yi Ta Shao
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Host switch and infestation by Ligula intestinalis L. in a silver bream (Blicca bjoerkna L.) population. Parasitology 2012; 139:406-17. [PMID: 22217256 DOI: 10.1017/s003118201100206x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sampling of the fish community was carried out for 20 years in the Mirgenbach reservoir, in North-Eastern France. The prevalence and the mean intensity of Ligula intestinalis (Cestoda) were analysed in roach (Rutilus rutilus) and silver bream (Blicca bjoerkna) populations, the main two infected species. The aim of this study was to investigate the host switch from roach to silver bream and the consequences of L. intestinalis infestation in silver bream, which is an unusual host for this parasite as Ligula parasitism in silver bream appears to be rare. We analysed in detail the relationships between parasitism index (PI), gonadosomatic index (GSI), perivisceral fat abundance (PFA) and condition index (CI) in the silver bream population. In 1998, prevalence of L. intestinalis highlighted a clear host switch from roach to silver bream. In the silver bream population, young fish were the most severely infected and the impact of plerocercoids appeared to be different depending on the host sex. In male silver bream, plerocercoids drew energy from fat reserves even if GSI was also slightly impacted. On the contrary, in females energy was diverted from gonad maturation rather than from perivisceral fat reserves. No significant difference was observed in terms of CI in either sex.
Collapse
|
18
|
Macnab V, Scott AP, Katsiadaki I, Barber I. Variation in the reproductive potential of Schistocephalus infected male sticklebacks is associated with 11-ketotestosterone titre. Horm Behav 2011; 60:371-9. [PMID: 21781969 DOI: 10.1016/j.yhbeh.2011.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 11/19/2022]
Abstract
Parasites can impact host reproduction by interfering with host endocrine systems, but the adaptive nature of such effects is disputed. Schistocephalus solidus plerocercoids are parasites of three-spined sticklebacks Gasterosteus aculeatus that are often associated with impaired host reproduction. Here, we relate reproductive behavior and physiology to levels of the androgen 11-ketotestosterone (11KT) in naturally infected and non-infected male sticklebacks from two UK populations. In one population infected males harbored heavy infections and showed uniformly reduced 11KT titres and kidney spiggin (nesting glue protein) content compared to non-infected fish. However in a second population infection levels were more variable and males with smaller infections recorded 11KT and spiggin titres that overlapped those of non-infected fish; among infected males from this population 11KT and kidney spiggin also both correlated negatively with infection severity. Male reproductive behavior correlated closely with 11KT titre in both populations, and infected males with high 11KT levels exhibited normal reproductive behavior. Our results suggest that Schistocephalus infection per se does not block reproductive development in male sticklebacks, and that some male fish may have the ability to breed whilst infected. Our results are not consistent with the hypothesis that Schistocephalus adaptively castrates male hosts via endocrine disruption; rather they support the hypothesis that reproductive disruption is a side effect of the energetic costs of infection.
Collapse
Affiliation(s)
- V Macnab
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| | | | | | | |
Collapse
|
19
|
Levin BA. Ontogenetic causes and mechanisms for formation of differences in number of fish scales. Russ J Dev Biol 2011. [DOI: 10.1134/s1062360411030106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Heins DC, Baker JA, Green DM. Processes Influencing the Duration and Decline of Epizootics in Schistocephalus solidus. J Parasitol 2011; 97:371-6. [DOI: 10.1645/ge-2699.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Inhibition of gametogenesis by the cestode Ligula intestinalis in roach (Rutilus rutilus) is attenuated under laboratory conditions. Parasitology 2010; 138:648-59. [PMID: 21092374 DOI: 10.1017/s0031182010001514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reproductive parameters of Ligula intestinalis-infected roach (Rutilus rutilus) which were held under long-tem laboratory conditions with unlimited food supply were investigated. Although uninfected and infected roach showed no difference in condition factor and both groups deposited perivisceral fat, the gonadosomatic-index was significantly lower in infected female and male roach. Quantitative histological analysis revealed that gonad development was retarded upon parasitization in both genders. In contrast to the phenotype described in the field, infected females were able to recruit follicles into secondary growth, but a high percentage of secondary growth follicles underwent atresia. In both genders, the histological data corresponded well with reduced expression of pituitary gonadotropins and lowered plasma concentrations of sex steroids, as revealed by real-time RT-PCR and ELISA, respectively. Furthermore, a reduction of vitellogenin mRNA and modulated expression of sex steroid receptors in the liver was demonstrated. Like in the field, there was a significant adverse impact of L. intestinalis on host reproductive physiology which could not be related to parasite burden. Our results show, for the first time, that maintenance under laboratory conditions can not abolish the deleterious effect of L. intestinalis on gametogenesis in roach, and indicate a specific inhibition of host reproduction by endocrine disruption.
Collapse
|
22
|
Ligulaintestinalis infection is associated with alterations of both brain and gonad aromatase expression in roach (Rutilusrutilus). J Helminthol 2010; 85:339-44. [DOI: 10.1017/s0022149x10000660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractThe tapeworm Ligulaintestinalis commonly infests roach (Rutilusrutilus) and is responsible for the inhibition of gonad development. In order to better understand the effect of the plerocercoid on fish physiology, and to discriminate parasitization effects from those of endocrine-disrupting compounds (EDC), Cyp19b and Cyp19a aromatase expression was investigated by real-time quantitative polymerase chain reaction (PCR) in brain and gonads of ligulosed roach, caught from a reference site. Data were compared to reproductive and endocrine endpoints previously reported in a larger cohort study (including the sampled population of the present one), such as gonadosomatic index, Fulton index, gonadal histology, plasma sex steroid levels and brain aromatase activity. A decrease in Cyp19b expression in the brain of infected fish was demonstrated, in agreement with the reduction of aromatase activity previously described. In contrast, Cyp19a expression in the gonads appeared to be enhanced in ligulosed fish, in accordance with the presence of immature but differentiated sexual tissues. Together these results show that: (1) L. intestinalis infestation results in an alteration of aromatase expression which, in particular, may have profound effects on the fish brain; and (2) L. intestinalis infection must be considered as a major confounding factor in ecotoxicological studies using aromatase expression as an EDC biomarker. Moreover, the concordance between activity and expression – investigated for the first time in the same population – gives a functional relevance to the transcript aromatase dosage in the brain. Finally, quantitative PCR was confirmed as a sensitive approach, enabling aromatase status to be defined in the poorly developed gonads of ligulosed individuals.
Collapse
|
23
|
Geraudie P, Gerbron M, Hill E, Minier C. Roach (Rutilus rutilus) reproductive cycle: a study of biochemical and histological parameters in a low contaminated site. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:767-777. [PMID: 19680761 DOI: 10.1007/s10695-009-9351-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 07/29/2009] [Indexed: 05/28/2023]
Abstract
Fish reproduction is subjected to worrying trends in many aquatic environments. In this study, we report the absence of histological and biochemical alterations in fish sampled in a low contaminated site (characterised by the absence of detectable oestrogenic activity and mutagenicity in sediment extracts). A total of 474 roach (Rutilus rutilus) were monthly sampled during 18 months, and no intersex fish were recorded after careful histological examination, thus indicating that the incidence of this phenomenon may be very low under natural conditions. Furthermore, mean male plasma vitellogenin concentration was 24 ng ml(-1) and was only slightly elevated during the spawning period (up to 120 ng ml(-1)) indicating that these low values may be characteristic of a low contaminated site. Of the male roach, 45.3% were sampled, a sex-ratio that did not significantly deviated from the expected 1:1 ratio between male and female. Results also showed that natural conditions can greatly affect the reproductive cycle of roach. Gametogenesis showed a biphasic pattern with first gonad maturation between September and December and a final maturation occurring at the end of winter/early spring. Under decreasing temperatures, particularly below 6 degrees C, gametogenesis was stopped or even regressed with secondary oocytes becoming rare under histological observation. Conversely, elevated temperatures during the winter lead to an earlier gonad maturation.
Collapse
Affiliation(s)
- Perrine Geraudie
- Laboratory of Ecotoxicology, University of Le Havre, BP 540, 76058, Le Havre, France.
| | - Marie Gerbron
- Laboratory of Ecotoxicology, University of Le Havre, BP 540, 76058, Le Havre, France
| | - Elisabeth Hill
- Centre for Environmental Research, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Christophe Minier
- Laboratory of Ecotoxicology, University of Le Havre, BP 540, 76058, Le Havre, France
| |
Collapse
|
24
|
HEINS DAVIDC, BAKER JOHNA, TOUPS MELISSAA, BIRDEN EMILYL. Evolutionary significance of fecundity reduction in threespine stickleback infected by the diphyllobothriidean cestode Schistocephalus solidus. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01486.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Host mortality and variability in epizootics of Schistocephalus solidus infecting the threespine stickleback, Gasterosteus aculeatus. Parasitology 2010; 137:1681-6. [DOI: 10.1017/s003118201000048x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYAn analysis of the metrics of Schistocephalus solidus infection of the threespine stickleback, Gasterosteus aculeatus, in Walby Lake, Alaska, showed that an epizootic ended between 1996 and 1998 and another occurred between 1998 and 2003. The end of the first epizootic was associated with a crash in population size of the stickleback, which serves as the second intermediate host. The likely cause of the end of that epizootic is mass mortality of host fish over winter in 1996–1997. The deleterious impact of the parasite on host reproduction and increased host predation associated with parasitic manipulation of host behaviour and morphology to facilitate transmission might also have played a role, along with unknown environmental factors acting on heavily infected fish or fish in poor condition. The second epizootic was linked to relatively high levels of prevalence and mean intensity of infection, but parasite:host mass ratios were quite low at the peak and there were no apparent mass deaths of the host. A number of abiotic and biotic factors are likely to interact to contribute to the occurrence of epizootics in S. solidus, which appear to be unstable and variable. Epizootics appear to depend on particular and, at times, rare sets of circumstances.
Collapse
|
26
|
Trubiroha A, Kroupova H, Wuertz S, Frank SN, Sures B, Kloas W. Naturally-induced endocrine disruption by the parasite Ligula intestinalis (Cestoda) in roach (Rutilus rutilus). Gen Comp Endocrinol 2010; 166:234-40. [PMID: 19723526 DOI: 10.1016/j.ygcen.2009.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/18/2009] [Accepted: 08/22/2009] [Indexed: 11/29/2022]
Abstract
Fish represent the most frequently used vertebrate class for the investigation of endocrine disruption (ED) in wildlife. However, field studies are complicated by exposure scenarios involving a variety of anthropogenic and natural influences interfering with the endocrine system. One natural aspect rarely considered in ecotoxicological studies is how parasites modulate host physiology. Therefore, investigations were carried out to characterise the impacts of the parasitic tapeworm Ligula intestinalis on plasma sex steroid levels and expression of key genes associated with the reproduction in roach (Rutilus rutilus), a sentinel species for wildlife ED research. Parasitisation by L. intestinalis suppressed gonadal development in both genders of roach and analysis of plasma sex steroids revealed substantially lower levels of 17beta-oestradiol (E2) and 11-ketotestosterone (11-KT) in infected females as well as E2, 11-KT, and testosterone in infected males. Consistently, in both, infected females and males, expression of the oestrogen dependent genes such as vitellogenin and brain-type aromatase in liver and brain was reduced. Furthermore, parasitisation differentially modulated mRNA expression of the oestrogen and androgen receptors in brain and liver. Most prominently, liver expression of oestrogen receptor 1 was reduced in infected females but not in males, whereas expression of oestrogen receptor 2a was up-regulated in both genders. Further, insulin-like growth factor 1 mRNA in the liver was increased in infected females but not in males. Despite severe impacts on plasma sex steroids and pituitary gonadotropin expression, brain mRNA levels of gonadotropin-releasing hormone (GnRH) precursors encoding GnRH2 and GnRH3 were not affected by L. intestinalis-infection. In summary, the present results provide basic knowledge of the endocrine system in L. intestinalis-infected roach and clearly demonstrate that parasites can cause ED in fish.
Collapse
Affiliation(s)
- Achim Trubiroha
- Department of Aquaculture and Ecophysiology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, D-12587 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Oyoo‐Okoth E, Wim A, Osano O, Kraak MH, Ngure V, Makwali J, Orina PS. Use of the fish endoparasite
Ligula intestinalis
(L., 1758) in an intermediate cyprinid host (
Rastreneobola argentea
) for biomonitoring heavy metal contamination in Lake Victoria, Kenya. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1440-1770.2010.00423.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Elijah Oyoo‐Okoth
- Division of Environmental Health, School of Environmental Studies, Moi University, Eldoret, Kenya
- Department of Aquatic Ecology and Ecotoxicology, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Admiraal Wim
- Department of Aquatic Ecology and Ecotoxicology, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Odipo Osano
- Division of Environmental Health, School of Environmental Studies, Moi University, Eldoret, Kenya
| | - Michiel H.S. Kraak
- Department of Aquatic Ecology and Ecotoxicology, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Veronica Ngure
- Division of Environmental Health, School of Environmental Studies, Moi University, Eldoret, Kenya
| | - Judith Makwali
- Department of Biological Sciences, Moi University, Eldoret, Kenya
| | - Paul S. Orina
- Kenya Marine and Fisheries Research Institute, Kisumu, Kenya
| |
Collapse
|
28
|
Abstract
Since its use as a model to study metazoan parasite culture and in vitro development, the plerocercoid of the tapeworm, Ligula intestinalis, has served as a useful scientific tool to study a range of biological factors, particularly within its fish intermediate host. From the extensive long-term ecological studies on the interactions between the parasite and cyprinid hosts, to the recent advances made using molecular technology on parasite diversity and speciation, studies on the parasite have, over the last 60 years, led to significant advances in knowledge on host-parasite interactions. The parasite has served as a useful model to study pollution, immunology and parasite ecology and genetics, as well has being the archetypal endocrine disruptor.
Collapse
|
29
|
Endocrine effects of the tapewormLigula intestinalisin its teleost host, the roach (Rutilus rutilus). Parasitology 2009; 137:697-704. [DOI: 10.1017/s003118200999151x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe effects of parasite infection by the cestodeLigula intestinalison the reproductive function and endocrine system of wild roachRutilus rutiluswere evaluated. Gonad maturation, plasma vitellogenin, plasma steroid concentrations (i.e. progesterone, 11-keto-testosterone and 17-β-estradiol) and brain aromatase activity were investigated in relation with parasitization. A low prevalence (8%) of ligulosed roach and a moderate impact of parasitization (mean parasitization index of 8·8%) were found in the studied population. Inhibition of gonad maturation generally resulted from infestation but 5% of the ligulosed roach nevertheless reached maturity. Main sex steroid plasma content was depleted in both genders. Male 11-keto-testosterone, female 17-β-estradiol and progesterone plasma concentrations of both genders were, respectively, 27, 5 and 3 times lower in ligulosed fish when compared to their non-infected counterparts. Progesterone levels were negatively correlated with the parasitization index in females. Brain aromatase activity of infected roach was reduced to 50% of that of the non-infected fish. These results demonstrate significant negative effects on the reproductive function of wild roach infected by the tapewormL. intestinaliscollected from a site with low contamination.
Collapse
|
30
|
Trubiroha A, Wuertz S, Frank SN, Sures B, Kloas W. Expression of gonadotropin subunits in roach (Rutilus rutilus, Cyprinidae) infected with plerocercoids of the tapeworm Ligula intestinalis (Cestoda). Int J Parasitol 2009; 39:1465-73. [PMID: 19477180 DOI: 10.1016/j.ijpara.2009.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/27/2009] [Accepted: 05/07/2009] [Indexed: 11/29/2022]
Abstract
Plerocercoids of the tapeworm Ligula intestinalis (Cestoda: Bothriocephalidea) have been reported to inhibit gametogenesis of their intermediate fish hosts. However, mechanistic studies are rare and the proximate cues leading to impaired reproduction still remain unknown. In the present study we investigated the effects of infection by L. intestinalis on reproductive parameters of roach (Rutilus rutilus, Cyprinidae), a common fish host of this parasite. Field studies on roach demonstrated that in both genders infection prevented gonad development. As revealed by quantitative PCR, infection was accompanied by essentially lower pituitary expression of follicle-stimulating hormone beta-subunit (FSHbeta) and luteinizing hormone beta-subunit (LHbeta) mRNA compared with uninfected roach, providing clear evidence for gonadotropin-insufficiency as the cause of arrested gametogenesis. Under controlled laboratory conditions infected roach showed lower mRNA levels of FSHbeta but not of LHbeta, despite histology revealing similar gonad stages as in uninfected conspecifics. These findings indicate the involvement of FSH rather than LH in mediating effects of infection early during gonad development in roach. Moreover, the impact of L. intestinalis on reproductive parameters of roach appeared to be independent of the parasite burden. Together, these data provide valuable information on the role of FSH and LH as mediators of parasite-induced sterilization in a vertebrate and implicate the selective inhibition of host reproduction by L. intestinalis as a natural source of endocrine disruption in fish.
Collapse
Affiliation(s)
- Achim Trubiroha
- Department of Aquaculture and Ecophysiology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany.
| | | | | | | | | |
Collapse
|
31
|
Geography and host specificity: Two forces behind the genetic structure of the freshwater fish parasite Ligula intestinalis (Cestoda: Diphyllobothriidae). Int J Parasitol 2008; 38:1465-79. [DOI: 10.1016/j.ijpara.2008.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/13/2008] [Accepted: 03/17/2008] [Indexed: 11/21/2022]
|
32
|
Sitjà-Bobadilla A. Living off a fish: a trade-off between parasites and the immune system. FISH & SHELLFISH IMMUNOLOGY 2008; 25:358-372. [PMID: 18722790 DOI: 10.1016/j.fsi.2008.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/14/2008] [Accepted: 03/27/2008] [Indexed: 05/26/2023]
Abstract
Research in fish immune system and parasite invasion mechanisms has advanced the knowledge of the mechanisms whereby parasites evade or cope with fish immune response. The main mechanisms of immune evasion employed by fish parasites are reviewed and considered under ten headings. 1) Parasite isolation: parasites develop in immuno-privileged host tissues, such as brain, gonads, or eyes, where host barriers prevent or limit the immune response. 2) Host isolation: the host cellular immune response isolates and encapsulates the parasites in a dormant stage without killing them. 3) Intracellular disguise: typical of intracellular microsporidians, coccidians and some myxosporeans. 4) Parasite migration, behavioural and environmental strategies: parasites migrate to host sites the immune response has not yet reached or where it is not strong enough to kill them, or they accommodate their life cycles to the season or the age in which the host immune system is down-regulated. 5) Antigen-based strategies such as mimicry or masking, variation and sharing of parasite antigens. 6) Anti-immune mechanisms: these allow parasites to resist innate humoral factors, to neutralize host antibodies or to scavenge reactive oxygen species within macrophages. 7) Immunodepression: parasites either suppress the fish immune systems by reducing the proliferative capacity of lymphocytes or the phagocytic activity of macrophages, or they induce apoptosis of host leucocytes. 8) Immunomodulation: parasites secrete or excrete substances which modulate the secretion of host immune factors, such as cytokines, to their own benefit. 9) Fast development: parasites proliferate faster than the ability of the host to mount a defence response. 10) Exploitation of the host immune reaction. Knowledge of the evasion strategies adopted by parasites will help us to understand host-parasite interactions and may therefore help in the discovery of novel immunotherapeutic agents or targeted vaccines, and permit the selection of host-resistant strains.
Collapse
Affiliation(s)
- A Sitjà-Bobadilla
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Torre de la Sal s/n, 12595 Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
33
|
Lima NRW, Azevedo JDS, Silva LGD, Dansa-Petretski M. Parasitic castration, growth, and sex steroids in the freshwater bonefish Cyphocharax gilbert (Curimatidae) infested by Riggia paranensis (Cymothoidea). NEOTROPICAL ICHTHYOLOGY 2007. [DOI: 10.1590/s1679-62252007000400006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyphocharax gilbert shows parasitic castration when infested by the crustacean Riggia paranensis, being unable to reproduce. Fish were sampled in the middle rio Itabapoana, Brazil, to study the prevalence of parasitism, growth, and sex steroid concentrations, considering the body size, sex, and reproductive condition of specimens. Most of the fish analyzed were infested (56.0%). The presence of two lines on the scales was more frequent among infested fish (22.0%) than among fish without parasites (12.0% for females and 10.0% for males). The occurrence of three lines on the scales was rare (3.5% among infested and 2.0% among females without parasites). These results suggest that growth of the host is faster than that of non infested fish. The serum concentrations of sex steroids from fish without parasites varied at different gonadal development stages (17 beta-estradiol: 60.0 to 976.7 pg/ml; total testosterone: 220.0 to 3,887.7 pg/ml). All infested fish had lower levels of the two sex steroids and undeveloped gonads. Sex steroids levels in infested females were close to those in females at post-spawning stages. Total testosterone concentrations of infested males were below those of males at early gonadal maturation stage. These results suggest that R. paranensis reduces the reproductive capacity of C. gilbert by affecting the host endocrine system.
Collapse
|
34
|
Yang HJ. Feminization and reduction of testicular weight in mouse sparganosis. THE KOREAN JOURNAL OF PARASITOLOGY 2006; 44:167-9. [PMID: 16809967 PMCID: PMC2532630 DOI: 10.3347/kjp.2006.44.2.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
After infection of male mice with the plerocercoids (spargana) of Spirometra mansoni, serum levels of estrogen and testicular weight were analyzed by enzyme-linked immunosorbent assay (ELISA) and weighing machine, respectively. The serum level of estrogen increased progressively in infected mice compared with normal controls, whereas the testicular weight of infected mice decreased significantly (P < 0.05). These results suggest that certain substances from spargana change the steroid hormone metabolisms in the host by unknown pathways, and chronic infection may contribute to change of the function of steroid hormone target organ, i.e., testis, in male mice.
Collapse
Affiliation(s)
- Hyun-Jong Yang
- Department of Parasitology and Ewha Medical Research Center, College of Medicine, Ewha Womans University, Seoul, 158-710, Korea.
| |
Collapse
|