1
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
2
|
Anfossi R, Vivar R, Ayala P, González-Herrera F, Espinoza-Pérez C, Osorio JM, Román-Torres M, Bolívar S, Díaz-Araya G. Interferon-β decreases LPS-induced neutrophil recruitment to cardiac fibroblasts. Front Cell Dev Biol 2023; 11:1122408. [PMID: 37799272 PMCID: PMC10547890 DOI: 10.3389/fcell.2023.1122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction: Cardiac fibroblasts (CF) are crucial cells in damaged heart tissues, expressing TLR4, IFN-receptor and responding to lipopolysaccharide (LPS) and interferon-β (IFN-β) respectively. While CF interact with immune cells; however, their relationship with neutrophils remains understudied. Additionally, theimpact of LPS and IFN-β on CF-neutrophil interaction is poorly understood. Methods: Isolated CF from adult rats were treated with LPS, with or without IFN-β. This study examined IL-8 secretion, ICAM-1 and VCAM-1 expression, and neutrophil recruitment, as well as their effects on MMPs activity. Results: LPS triggered increased IL-8 expression and secretion, along with elevated ICAM-1 and VCAM-1 expression, all of which were blocked by TAK-242. Pre-treatment with IFN-β countered these LPS effects. LPS treated CF showed higher neutrophil recruitment (migration and adhesion) compared to unstimulated CF, an effect prevented by IFN-β. Ruxolitinib blocked these IFN-β anti-inflammatory effects, implicating JAK signaling. Analysis of culture medium zymograms from CF alone, and CF-neutrophils interaction, revealed that MMP2 was mainly originated from CF, while MMP9 could come from neutrophils. LPS and IFN-β boosted MMP2 secretion by CF. MMP9 activity in CF was low, and LPS or IFN-β had no significant impact. Pre-treating CF with LPS, IFN-β, or both before co-culture with neutrophils increased MMP2. Neutrophil co-culture increased MMP9 activity, with IFN-β pre-treatment reducing MMP9 compared to unstimulated CF. Conclusion: In CF, LPS induces the secretion of IL-8 favoring neutrophils recruitment and these effects were blocked by IFN-. The results highlight that CF-neutrophil interaction appears to influence the extracellular matrix through MMPs activity modulation.
Collapse
Affiliation(s)
- Renatto Anfossi
- Unidad de Farmacia, Hospital Regional del Libertador Bernardo O’Higgins, Rancagua, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Raúl Vivar
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Instituto de Farmacología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pedro Ayala
- Facultad de Medicina, Pontifica Universidad Católica de Chile, Santiago de Chile, Chile
| | | | - Claudio Espinoza-Pérez
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - José Miguel Osorio
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Román-Torres
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Samir Bolívar
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Guillermo Díaz-Araya
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Arora A, Singh A. Exploring the role of neutrophils in infectious and noninfectious pulmonary disorders. Int Rev Immunol 2023; 43:41-61. [PMID: 37353973 DOI: 10.1080/08830185.2023.2222769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
With the change in global environment, respiratory disorders are becoming more threatening to the health of people all over the world. These diseases are closely linked to performance of immune system. Within the innate arm of immune system, Neutrophils are an important moiety to serve as an immune defense barrier. They are one of the first cells recruited to the site of infection and plays a critical role in pathogenesis of various pulmonary diseases. It is established that the migration and activation of neutrophils can lead to inflammation either directly or indirectly and this inflammation caused is very crucial for the clearance of pathogens and resolution of infection. However, the immunopathological mechanisms involved to carry out the same is very complex and not well understood. Despite there being studies concentrating on the role of neutrophils in multiple respiratory diseases, there is still a long way to go in order to completely understand the complexity of the participation of neutrophils and mechanisms involved in the development of these respiratory diseases. In the present article, we have reviewed the literature to comprehensively provide an insight in the current development and advancements about the role of neutrophils in infectious respiratory disorders including viral respiratory disorders such as Coronavirus disease (COVID-19) and bacterial pulmonary disorders with a focused review on pulmonary tuberculosis as well as in noninfectious disorders like Chronic obstructive pulmonary disease (COPD) and asthma. Also, future directions into research and therapeutic targets have been discussed for further exploration.
Collapse
Affiliation(s)
- Alisha Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Lai Z, Wang Z, Yuan Z, Zhang J, Zhou J, Li D, Zhang D, Li N, Peng P, Zhou J, Li Z. Disease-Specific Haptoglobin N-Glycosylation in Inflammatory Disorders between Cancers and Benign Diseases of 3 Types of Female Internal Genital Organs. Clin Chim Acta 2023:117420. [PMID: 37285951 DOI: 10.1016/j.cca.2023.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND N-glycosylation of the haptoglobin is closely related to pathological states. This study aims to evaluate the association of glycosylation of disease-specific Hp (DSHp) β chain with different pathological states of the cervix, uterus, and ovary to explore differences in their inflammatory responses and to screen potential biomarkers to distinguish cancer from benign diseases. METHODS DSHp-β chains of 1956 patients with cancers and benign diseases located in the cervix, uterus, and ovary organs were separated from serum immunoinflammatory-related protein complexes (IIRPCs). The N-glycopeptides from DSHp-β chains were detected using mass spectrometry, followed by an analysis of machine learning algorithms. RESULTS 55 N-glycopeptides at N207/N211, 19 at N241, and 21 at N184 glycosylation sites of DSHp for each sample were identified. Fucosylation and sialylation of DSHp in cervix, uterus, and ovary cancer were significantly increased compared to their corresponding benign diseases (p < 0.001). The cervix diagnostic model, a combination of G2N3F, G4NFS, G7N2F2S5, GS-N&GS-N, G2N2&G4N3FS, G7N2F2S5, G2S2&G-N, and GN2F&G2F at N207/N211 sites, G3NFS2 and G3NFS at N241site, G9N2S, G6N3F6, G4N3F5S, G4N3F4S2, and G6N3F4S at N184 site), has shown a good diagnostic capability to distinguish cancer from benign diseases, with the area under curve (AUC) of 0.912. The uterus diagnostic model including G4NFS, G2S2&G2S2, G3N2S2, GG5N2F5, G2&G3NFS, and G5N2F3S3 at N207/N211 sites, and G2NF3S2 at N184 site, with an AUC of 0.731. The ovary diagnostic model including G2N3F, GF2S-N &G2F3S2, G2S&G2, and G2S&G3NS at N207/N211 sites; G2S and G3NFS at N241 site, G6N3F4S at N184 site, with an AUC of 0.747. CONCLUSIONS These findings provide insights into differences in organ-specific inflammatory responses of DSHp for different pathological states among the organs of the cervix, uterus, and ovary.
Collapse
Affiliation(s)
- Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhigang Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhonghao Yuan
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Jiyun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Jinyu Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Na Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing, 100730, China.
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| |
Collapse
|
5
|
Early life adversity, inflammation, and immune function: An initial test of adaptive response models of immunological programming. Dev Psychopathol 2022; 34:539-555. [PMID: 35152928 DOI: 10.1017/s095457942100170x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Much research indicates that exposure to early life adversity (ELA) predicts chronic inflammatory activity, increasing one's risk of developing diseases of aging later in life. Despite its costs, researchers have proposed that chronic inflammation may be favored in this context because it would help promote immunological vigilance in environments with an elevated risk of infection and injury. Although intuitively appealing, the assumption that exaggerated inflammatory activity predicts favorable immunological outcomes among those exposed to ELA has not been tested. Here, we seek to address this gap, examining the links between exposure to ELA, inflammation, and immune function. Consistent with others' work, results revealed that those from low socioeconomic status (SES) childhood environments exhibited exaggerated unstimulated inflammatory activity relative to what was observed among those from higher SES childhood environments. Further, results revealed that - although levels of inflammation predicted the magnitude of immunological responses in those from higher SES backgrounds - for those who grew up in low SES environments, higher levels of inflammation were unrelated to the magnitude of immunological responses. Results suggest that exaggerated inflammatory activity in the context of ELA may not predict improved ability to manage acute immunological threats.
Collapse
|
6
|
Johansson C, Kirsebom FCM. Neutrophils in respiratory viral infections. Mucosal Immunol 2021; 14:815-827. [PMID: 33758367 PMCID: PMC7985581 DOI: 10.1038/s41385-021-00397-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/04/2023]
Abstract
Viral respiratory infections are a common cause of severe disease, especially in infants, people who are immunocompromised, and in the elderly. Neutrophils, an important innate immune cell, infiltrate the lungs rapidly after an inflammatory insult. The most well-characterized effector mechanisms by which neutrophils contribute to host defense are largely extracellular and the involvement of neutrophils in protection from numerous bacterial and fungal infections is well established. However, the role of neutrophils in responses to viruses, which replicate intracellularly, has been less studied. It remains unclear whether and, by which underlying immunological mechanisms, neutrophils contribute to viral control or confer protection against an intracellular pathogen. Furthermore, neutrophils need to be tightly regulated to avoid bystander damage to host tissues. This is especially relevant in the lung where damage to delicate alveolar structures can compromise gas exchange with life-threatening consequences. It is inherently less clear how neutrophils can contribute to host immunity to viruses without causing immunopathology and/or exacerbating disease severity. In this review, we summarize and discuss the current understanding of how neutrophils in the lung direct immune responses to viruses, control viral replication and spread, and cause pathology during respiratory viral infections.
Collapse
Affiliation(s)
- Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
7
|
Evani SJ, Karna SLR, Seshu J, Leung KP. Pirfenidone regulates LPS mediated activation of neutrophils. Sci Rep 2020; 10:19936. [PMID: 33203891 PMCID: PMC7672086 DOI: 10.1038/s41598-020-76271-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Excessive inflammation or its absence may result in impaired wound healing. Neutrophils are among the first innate immune cells to arrive at the injury site. They participate in infection control and debris removal to initiate healing. If not timely resolved, neutrophils can cause excessive tissue inflammation and damage. Drugs with anti-inflammatory and anti-fibrotic effects are of promise for improving healing by balancing the primary defensive functions and excessive tissue damage actions. Of interest, pirfenidone (Pf), an FDA approved anti-fibrotic drug to treat idiopathic pulmonary fibrosis, has been shown to ameliorate inflammation in several animal models including mouse deep partial-thickness burn wounds. However, there is a lack of mechanistic insights into Pf drug action on inflammatory cells such as neutrophils. Here, we examined the treatment effects of Pf on LPS-stimulated neutrophils as a model of non-sterile inflammation. Firstly, Pf reduced chemotaxis and production of pro-inflammatory ROS, cytokines, and chemokines by LPS-activated neutrophils. Secondly, Pf increased anti-inflammatory IL-1RA and reduced neutrophil degranulation, phagocytosis, and NETosis. Thirdly, Pf affected downstream signaling kinases which might directly or indirectly influence neutrophil responses to LPS. In conclusion, the results suggest that Pf lessens the inflammatory phenotypes of LPS-activated neutrophils.
Collapse
Affiliation(s)
- Shankar J Evani
- Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, JBSA Fort Sam Houston, San Antonio, TX, 78234-7767, USA
| | - S L Rajasekhar Karna
- Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, JBSA Fort Sam Houston, San Antonio, TX, 78234-7767, USA
| | - Janakiram Seshu
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Kai P Leung
- Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, JBSA Fort Sam Houston, San Antonio, TX, 78234-7767, USA.
| |
Collapse
|
8
|
Qiu W, Chen B, Greer JB, Magnuson JT, Xiong Y, Zhong H, Andrzejczyk NE, Zheng C, Schlenk D. Transcriptomic Responses of Bisphenol S Predict Involvement of Immune Function in the Cardiotoxicity of Early Life-Stage Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2869-2877. [PMID: 31888327 DOI: 10.1021/acs.est.9b06213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bisphenol S (BPS), an alternative for bisphenol A (BPA) that is present in thermal paper and numerous consumer products, has been linked to estrogenic, cytotoxic, genotoxic, neurotoxic, and immunotoxic responses. However, the mechanisms of BPS toxicity remain poorly understood. Here, following exposure to environmentally relevant concentrations ranging from 0.1 to 100 μg/L BPS, transcriptional changes evaluated by enriched gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity Pathway Analysis (IPA) predicted cardiac disease and impairment of immune function in zebrafish at the embryo-to-larvae stage. Consistent with impacts predicted by transcriptional changes, significant sublethal impacts were observed ranging from reduced heart rate [8.7 ± 2.4% reductions at 100 μg/L BPS treatment; P < 0.05] to abnormal cardiac morphology [atrial/ventricle area significantly increased; 36.2 ± 9.6% at 100 μg/L BPS treatment; P < 0.05]. RNA-sequencing analysis results also indicated changes in nitric oxide synthetase (NOS2) and interleukin 12 (IL12) after BPS treatment, which was confirmed at the protein level. Increased expression of other cytokine genes was observed in larvae, suggesting inflammatory responses may be contributing to cardiac impairment by BPS. BPS caused cardiotoxicity, which temporally corresponded with inflammatory responses as predicted from RNA sequencing and confirmed at the protein and cellular levels of biological organization. Additional study is needed to find causal linkages between these responses.
Collapse
Affiliation(s)
- Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Bei Chen
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Justin B Greer
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Ying Xiong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanbing Zhong
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Nicolette E Andrzejczyk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
9
|
Hamam HJ, Palaniyar N. Post-Translational Modifications in NETosis and NETs-Mediated Diseases. Biomolecules 2019; 9:E369. [PMID: 31416265 PMCID: PMC6723044 DOI: 10.3390/biom9080369] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
: Neutrophils undergo a unique form of cell death that generates neutrophil extracellular traps (NETs) that may help to neutralize invading pathogens and restore homeostasis. However, uncontrolled NET formation (NETosis) can result in numerous diseases that adversely affect health. Recent studies further elucidate the mechanistic details of the different forms of NETosis and their common end structure, as NETs were constantly found to contain DNA, modified histones and cytotoxic enzymes. In fact, emerging evidence reveal that the post translational modifications (PTMs) of histones in neutrophils have a critical role in regulating neutrophil death. Histone citrullination is shown to promote a rapid form of NET formation independent of NADPH oxidase (NOX), which relies on calcium influx. Interestingly, few studies suggest an association between histone citrullination and other types of PTMs to control cell survival and death, such as histone methylation. Even more exciting is the finding that histone acetylation has a biphasic effect upon NETosis, where histone deacetylase (HDAC) inhibitors promote baseline, NOX-dependent and -independent NETosis. However, increasing levels of histone acetylation suppresses NETosis, and to switch neutrophil death to apoptosis. Interestingly, in the presence of NETosis-promoting stimuli, high levels of HDACis limit both NETosis and apoptosis, and promote neutrophil survival. Recent studies also reveal the importance of the PTMs of neutrophils in influencing numerous pathologies. Histone modifications in NETs can act as a double-edged sword, as they are capable of altering multiple types of neutrophil death, and influencing numerous NET-mediated diseases, such as acute lung injury (ALI), thrombosis, sepsis, systemic lupus erythematosus, and cancer progression. A clear understanding of the role of different PTMs in neutrophils would be important for an understanding of the molecular mechanisms of NETosis, and to appropriately treat NETs-mediated diseases.
Collapse
Affiliation(s)
- Hussein J Hamam
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
10
|
Ji X, Yue H, Ku T, Zhang Y, Yun Y, Li G, Sang N. Histone modification in the lung injury and recovery of mice in response to PM 2.5 exposure. CHEMOSPHERE 2019; 220:127-136. [PMID: 30579949 DOI: 10.1016/j.chemosphere.2018.12.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 05/05/2023]
Abstract
Epidemiological and experimental studies have progressively provided a better knowledge of the underlying mechanisms by which fine particulate matter (PM2.5) exerts its harmful health effects. However, limited studies focused on the effect and following recovery after the particulate exposure ended. In this study, we determined PM2.5 exposure-caused effects on the lung and their recovery in mice after terminating aspiration, and clarified the possible molecular modification. The results revealed that PM2.5 exposure for 4 weeks significantly decreased the lung function, and the changes returned to normal levels after 1-week recovery. However, we observed persistent particle alveolar load following 2-week recovery. Interestingly, the alterations of H3K27ac expression and related enzyme activities mimicked the changes of respiratory function during the process, and chromatin immunoprecipitation-seqences (ChIP-seq) suggested that these PM2.5-associated differential H3K27ac markers participated in immune responses and chemokine signaling pathway with stat2 and bcar1 being two important genes. Consistently, the expression of pro-inflammatory cytokines and chemokines elevated after PM2.5 exposure for 4-week, and reversed to normal levels following 2-week recovery. The study highlighted that PM2.5 aspiration caused histone modification associated lung dysfunction and inflammation, and the action restored after exposure ending and 2-week recovery. Also, persistent particle alveolar load might be a long-term potential risk for lung diseases.
Collapse
Affiliation(s)
- Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
11
|
Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel) 2019; 10:genes10030183. [PMID: 30813645 PMCID: PMC6471578 DOI: 10.3390/genes10030183] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene cause CF. Infants with CFTR mutations show a peribronchial neutrophil infiltration prior to the establishment of infection in their lung. The inflammatory response progressively increases in children that include both upper and lower airways. Infectious and inflammatory response leads to an increase in mucus viscosity and mucus plugging of small and medium-size bronchioles. Eventually, neutrophils chronically infiltrate the airways with biofilm or chronic bacterial infection. Perpetual infection and airway inflammation destroy the lungs, which leads to increased morbidity and eventual mortality in most of the patients with CF. Studies have now established that neutrophil cytotoxins, extracellular DNA, and neutrophil extracellular traps (NETs) are associated with increased mucus clogging and lung injury in CF. In addition to opportunistic pathogens, various aspects of the CF airway milieux (e.g., airway pH, salt concentration, and neutrophil phenotypes) influence the NETotic capacity of neutrophils. CF airway milieu may promote the survival of neutrophils and eventual pro-inflammatory aberrant NETosis, rather than the anti-inflammatory apoptotic death in these cells. Degrading NETs helps to manage CF airway disease; since DNAse treatment release cytotoxins from the NETs, further improvements are needed to degrade NETs with maximal positive effects. Neutrophil-T cell interactions may be important in regulating viral infection-mediated pulmonary exacerbations in patients with bacterial infections. Therefore, clarifying the role of neutrophils and NETs in CF lung disease and identifying therapies that preserve the positive effects of neutrophils, while reducing the detrimental effects of NETs and cytotoxic components, are essential in achieving innovative therapeutic advances.
Collapse
Affiliation(s)
- Meraj A Khan
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Zubair Sabz Ali
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Neil Sweezey
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Hartmut Grasemann
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
12
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Wieland A, Ahmed R. Fc Receptors in Antimicrobial Protection. Curr Top Microbiol Immunol 2019; 423:119-150. [DOI: 10.1007/82_2019_154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Ko YE, Yoon SY, Ly SY, Kim JH, Sohn KY, Kim JW. 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) reduces hepatic injury in concanavalin A-treated mice. J Cell Biochem 2017; 119:1392-1405. [PMID: 28749086 DOI: 10.1002/jcb.26299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 07/18/2017] [Indexed: 11/10/2022]
Abstract
1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG), a chemically synthesized monoacetyldiaglyceride, is one of the constituents in Sika deer antlers and has been known traditionally as having immunomodulatory effects. However, the mechanism by which PLAG controls neutrophil migration, which evokes liver injury in the hepatitis animal model, remains largely unknown. This study was designed to evaluate the immunomodulatory effects of PLAG on cytokine secretion and neutrophil migration in vivo and in vitro. Concanavalin A (Con A) induced leukocyte infiltration in the liver and increased plasma cytokine levels. Pretreatment with PLAG reduced the levels of interleukin (IL)-4, IL-6, IL-10, and CXCL2, but maintained interferon (IFN)-γ levels and modulated neutrophil recruitment toward the liver. Furthermore, the mRNA and protein levels of IL-4 and CXCL2 in liver tissue were also decreased in the Con A-treated mice. Liver histology analyses showed that PLAG reduced Con A-induced hepatic necrosis, which was accompanied by leukocyte infiltration. The in vitro studies revealed that PLAG reduced IL-4 secretion in Con A stimulated T cell and blocked signal transducer and activator of transcription 6 (STAT6) Con A induced hepatocyte. PLAG attenuated IL-4 induced activation of atypical protein kinase C (PKC)/STAT6 in hepatocytes and inhibited neutrophil migration toward the liver tissue through suppression of IL-8/vascular cell adhesion molecule (VCAM) expression. These results suggest that PLAG could mitigate excess neutrophil migration into liver tissue and potentially have a therapeutic effect on immune-mediated liver injury.
Collapse
Affiliation(s)
- Young E Ko
- Cell Factory Research Center, Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Y Yoon
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Daejeon, Korea
| | - Sun Y Ly
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Joo H Kim
- Department of Pathology, EulJi University School of Medicine, Daejeon, Republic of Korea
| | - Ki Y Sohn
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Daejeon, Korea
| | - Jae W Kim
- Cell Factory Research Center, Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| |
Collapse
|
15
|
Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc Natl Acad Sci U S A 2017; 114:E8721-E8730. [PMID: 28973850 DOI: 10.1073/pnas.1707572114] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging cause of catheter-associated urinary tract infection (CAUTI), which frequently progresses to more serious invasive infections. We adapted a mouse model of CAUTI to investigate how catheterization increases an individual's susceptibility to MRSA UTI. This analysis revealed that catheterization was required for MRSA to achieve high-level, persistent infection in the bladder. As shown previously, catheter placement induced an inflammatory response resulting in the release of the host protein fibrinogen (Fg), which coated the bladder and implant. Following infection, we showed that MRSA attached to the urothelium and implant in patterns that colocalized with deposited Fg. Furthermore, MRSA exacerbated the host inflammatory response to stimulate the additional release and accumulation of Fg in the urinary tract, which facilitated MRSA colonization. Consistent with this model, analysis of catheters from patients with S. aureus-positive cultures revealed colocalization of Fg, which was deposited on the catheter, with S. aureus Clumping Factors A and B (ClfA and ClfB) have been shown to contribute to MRSA-Fg interactions in other models of disease. We found that mutants in clfA had significantly greater Fg-binding defects than mutants in clfB in several in vitro assays. Paradoxically, only the ClfB- strain was significantly attenuated in the CAUTI model. Together, these data suggest that catheterization alters the urinary tract environment to promote MRSA CAUTI pathogenesis by inducing the release of Fg, which the pathogen enhances to persist in the urinary tract despite the host's robust immune response.
Collapse
|
16
|
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol 2017; 7:373. [PMID: 28890882 PMCID: PMC5574878 DOI: 10.3389/fcimb.2017.00373] [Citation(s) in RCA: 444] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States
| | - Erin R Green
- Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.,Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| |
Collapse
|
17
|
Prodger JL, Gray RH, Shannon B, Shahabi K, Kong X, Grabowski K, Kigozi G, Nalugoda F, Serwadda D, Wawer MJ, Reynolds SJ, Liu CM, Tobian AAR, Kaul R. Chemokine Levels in the Penile Coronal Sulcus Correlate with HIV-1 Acquisition and Are Reduced by Male Circumcision in Rakai, Uganda. PLoS Pathog 2016; 12:e1006025. [PMID: 27898732 PMCID: PMC5127584 DOI: 10.1371/journal.ppat.1006025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/26/2016] [Indexed: 12/30/2022] Open
Abstract
Individual susceptibility to HIV is heterogeneous, but the biological mechanisms explaining differences are incompletely understood. We hypothesized that penile inflammation may increase HIV susceptibility in men by recruiting permissive CD4 T cells, and that male circumcision may decrease HIV susceptibility in part by reducing genital inflammation. We used multi-array technology to measure levels of seven cytokines in coronal sulcus (penile) swabs collected longitudinally from initially uncircumcised men enrolled in a randomized trial of circumcision in Rakai, Uganda. Coronal sulcus cytokine levels were compared between men who acquired HIV and controls who remained seronegative. Cytokines were also compared within men before and after circumcision, and correlated with CD4 T cells subsets in foreskin tissue. HIV acquisition was associated with detectable coronal sulcus Interleukin-8 (IL-8 aOR 2.26, 95%CI 1.04–6.40) and Monokine Induced by γ-interferon (MIG aOR 2.72, 95%CI 1.15–8.06) at the visit prior to seroconversion, and the odds of seroconversion increased with detection of multiple cytokines. Coronal sulcus chemokine levels were not correlated with those in the vagina of a man’s female sex partner. The detection of IL-8 in swabs was significantly reduced 6 months after circumcision (PRR 0.59, 95%CI 0.44–0.87), and continued to decline for at least two years (PRR 0.29, 95%CI 0.16–0.54). Finally, prepuce IL-8 correlated with increased HIV target cell density in foreskin tissues, including highly susceptible CD4 T cells subsets, as well as with tissue neutrophil density. Together, these data suggest that penile inflammation increases HIV susceptibility and is reduced by circumcision. The per-contact risk of infection with HIV through sexual exposure is low and highly variable. Understanding the biological basis for this variability could help in the development of new methods to prevent infection. There is some evidence that penile inflammation, even in the absence of any clinical symptoms, may increase HIV-susceptibility by recruiting CD4 T cells, the immune cell type that is the principal target of HIV. We analyzed soluble inflammatory mediators in prepuce swabs collected longitudinally from initially HIV-negative men enrolled in a randomized controlled trial of adult circumcision. We found that these inflammatory mediators were elevated in men who went on to acquire HIV. We also found that higher levels of these mediators were associated with an increased density of HIV-susceptible target cells in the underlying foreskin tissue and that circumcision reduced their levels, which may help to explain why circumcision reduces HIV risk by 60% or more. Together, these data suggest that penile inflammation, in the absence of genital infections, increases HIV susceptibility and is reduced by adult male circumcision.
Collapse
Affiliation(s)
- Jessica L Prodger
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ronald H Gray
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Rakai Health Sciences Program, Kalisizo, Uganda
| | - Brett Shannon
- Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Xiangrong Kong
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kate Grabowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | - Maria J Wawer
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Rakai Health Sciences Program, Kalisizo, Uganda
| | - Steven J Reynolds
- Rakai Health Sciences Program, Kalisizo, Uganda.,Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Johns Hopkins University School of Medicine, Department of Infectious Diseases, Baltimore, Maryland
| | - Cindy M Liu
- Department of Environmental and Occupational Health, George Washington University, Washington, District of Columbia.,Translational Genomics Research Institute, Flagstaff, Arizona
| | - Aaron A R Tobian
- Rakai Health Sciences Program, Kalisizo, Uganda.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Momozono H, Miyake H, Fujisawa M. Impact of Periurethral Inflammation on Continence Status Early After Robot-Assisted Radical Prostatectomy. J Endourol 2016; 30:1207-1213. [DOI: 10.1089/end.2016.0301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hiroyuki Momozono
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideaki Miyake
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
19
|
Far beyond Phagocytosis: Phagocyte-Derived Extracellular Traps Act Efficiently against Protozoan Parasites In Vitro and In Vivo. Mediators Inflamm 2016; 2016:5898074. [PMID: 27445437 PMCID: PMC4944069 DOI: 10.1155/2016/5898074] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 12/30/2022] Open
Abstract
Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN), monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs) by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.
Collapse
|
20
|
Noël A, Xiao R, Perveen Z, Zaman HM, Rouse RL, Paulsen DB, Penn AL. Incomplete lung recovery following sub-acute inhalation of combustion-derived ultrafine particles in mice. Part Fibre Toxicol 2016; 13:10. [PMID: 26911867 PMCID: PMC4766714 DOI: 10.1186/s12989-016-0122-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022] Open
Abstract
Background Particulate matter (PM) is one of the six criteria pollutant classes for which National Ambient Air Quality Standards have been set by the United States Environmental Protection Agency. Exposures to PM have been correlated with increased cardio-pulmonary morbidity and mortality. Butadiene soot (BDS), generated from the incomplete combustion of 1,3-butadiene (BD), is both a model PM mixture and a real-life example of a petrochemical product of incomplete combustion. There are numerous events, including wildfires, accidents at refineries and tank car explosions that result in sub-acute exposure to high levels of airborne particles, with the people exposed facing serious health problems. These real-life events highlight the need to investigate the health effects induced by short-term exposure to elevated levels of PM, as well as to assess whether, and if so, how well these adverse effects are resolved over time. In the present study, we investigated the extent of recovery of mouse lungs 10 days after inhalation exposures to environmentally-relevant levels of BDS aerosols had ended. Methods Female BALB/c mice exposed to either HEPA-filtered air or to BDS (5 mg/m3 in HEPA filtered air, 4 h/day, 21 consecutive days) were sacrificed immediately, or 10 days after the final BDS exposure. Bronchoalveolar lavage fluid (BALF) was collected for cytology and cytokine analysis. Lung proteins and RNA were extracted for protein and gene expression analysis. Lung histopathology evaluation also was performed. Results Sub-acute exposures of mice to hydrocarbon-rich ultrafine particles induced: (1) BALF neutrophil elevation; (2) lung mucosal inflammation, and (3) increased BALF IL-1β concentration; with all three outcomes returning to baseline levels 10 days post-exposure. In contrast, (4) lung connective tissue inflammation persisted 10 days post-exposure; (5) we detected time-dependent up-regulation of biotransformation and oxidative stress genes, with incomplete return to baseline levels; and (6) we observed persistent particle alveolar load following 10 days of recovery. Conclusion These data show that 10 days after a 21-day exposure to 5 mg/m3 of BDS has ended, incomplete lung recovery promotes a pro-biotransformation, pro-oxidant, and pro-inflammatory milieu, which may be a starting point for potential long-term cardio-pulmonary effects.
Collapse
Affiliation(s)
- A Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Z Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - H M Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R L Rouse
- United States Food and Drug Administration, Silver Spring, MD, USA
| | - D B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - A L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA.
| |
Collapse
|
21
|
Chiewchengchol D, Wright HL, Thomas HB, Lam CW, Roberts KJ, Hirankarn N, Beresford MW, Moots RJ, Edwards SW. Differential changes in gene expression in human neutrophils following TNF-α stimulation: Up-regulation of anti-apoptotic proteins and down-regulation of proteins involved in death receptor signaling. IMMUNITY INFLAMMATION AND DISEASE 2015; 4:35-44. [PMID: 27042300 PMCID: PMC4768069 DOI: 10.1002/iid3.90] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/14/2023]
Abstract
Responses of human neutrophils to TNF‐α are complex and multifactorial. Exposure of human neutrophils to TNF‐α in vitro primes the respiratory burst, delays apoptosis and induces the expression of several genes including chemokines, and TNF‐α itself. This study aimed to determine the impact of TNF‐α exposure on the expression of neutrophil genes and proteins that regulate apoptosis. Quantitative PCR and RNA‐Seq, identified changes in expression of several apoptosis regulating genes in response to TNF‐α exposure. Up‐regulated genes included TNF‐α itself, and several anti‐apoptotic genes, including BCL2A1, CFLAR (cFLIP) and TNFAIP3, whose mRNA levels increased above control values by between 4‐20 fold (n = 3, P < 0.05). In contrast, the expression of pro‐apoptotic genes, including CASP8, FADD and TNFRSF1A and TNFRSF1B, were significantly down‐regulated following TNF‐α treatment. These changes in mRNA levels were paralleled by decreases in protein levels of caspases 8 and 10, TRADD, FADD, TNFRSF1A and TNFRSF1B, and increased cFLIP protein levels, as detected by western blotting. These data indicate that when neutrophils are triggered by TNF‐α exposure, they undergo molecular changes in transcriptional expression to up‐regulate expression of specific anti‐apoptotic proteins and concomitantly decrease expression of specific proteins involved in death receptor signaling which will alter their function in TNF‐α rich environments.
Collapse
Affiliation(s)
- Direkrit Chiewchengchol
- Institutes of Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom; Immunology Unit & Center of Excellence in Immunology and Immune-mediated DiseaseDepartment of Microbiology, Faculty of Medicine, Chulalongkorn UniversityBangkokThailand
| | - Helen L Wright
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Huw B Thomas
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Connie W Lam
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Kate J Roberts
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| | - Nattiya Hirankarn
- Immunology Unit & Center of Excellence in Immunology and Immune-mediated Disease Department of Microbiology, Faculty of Medicine, Chulalongkorn University Bangkok Thailand
| | | | - Robert J Moots
- Ageing and Chronic Disease University of Liverpool Liverpool United Kingdom
| | - Steven W Edwards
- Institutes of Integrative Biology University of Liverpool Liverpool United Kingdom
| |
Collapse
|
22
|
Chen Y, Lu R, Zheng H, Xiao R, Feng J, Wang H, Gao X, Guo L. The NFKB1 polymorphism (rs4648068) is associated with the cell proliferation and motility in gastric cancer. BMC Gastroenterol 2015; 15:21. [PMID: 25888547 PMCID: PMC4331381 DOI: 10.1186/s12876-015-0243-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/29/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We have demonstrated previously that NFKB1 single nucleotide polymorphism (SNP) rs4648068 GG homozygote was associated with the increased risk of gastric cancer in Chinese Han population. In this study, we constructed the recombinant plasmid pGL3-AA, pGL3-GG, pGL3-AA-NFKB and pGL3-GG-NFKB to investigate the function of rs4648068 by cell biology experiments. METHODS Quantitative real-time PCR was used to detect NFKB1 SNP rs4648068 genotype in the patients with gastric cancer. Anti-NF-κB1 p50 polyclonal antibodies were used for immunohistochemical analysis of the tissue specimens. The subsection of NFKB1 containing the promoter site and adjacent three consecutive exons were obtained by PCR technique and subcloned into the vector pGL3-Basic. Dual-Luciferase reporter assay was used to detect the transcriptional activity of the constructed promoter. Effects of transcription factor NFKB1 on C/EBPβ expression were determined by chromatin immunoprecipitation and Western analysis. Furthermore, proliferation and invasion ability of the transduced cell were also measured and compared. RESULTS Intensive staining for p50 expression was observed in the tissues of GG genotype patients, compared with those of GA group and AA genotype patients. The transcriptional activity of rs4648068 (A > G) by dual-Luciferase reporter assay suggested that the luciferase activity of homozygote group (pGL3-GG) was greater than that of the control (pGL3-AA), especially at the stimulation of LPS. We found that the luciferase activity was also influenced by pGL3-GG levels. The effects of NFKB1 rs4648068 were enhanced by rs4648065 on the transduced cells. The interaction between NFKB1 promoter nucleotide sequence and C/EBPβ was regulated by the functional SNP rs4648068 in SGC-7901 cells. Our data indicated that the transduction of pGL3 expression plasmid pGL3-GG-NFKB improved the proliferation and motility of gastric cancer cells. Correspondingly, the homozygote GG of SNP rs4648068 strengthened the transcriptional activity of NFKB1 and influenced the cell biological activity. CONCLUSION The transcriptional activity of NFKB1 was associated with SNP rs4648068, and this functional SNP site has the important effects on cell proliferation and motility.
Collapse
Affiliation(s)
- Ying Chen
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Renquan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Hui Zheng
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Ran Xiao
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Jingjing Feng
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Hongling Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiang Gao
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Lin Guo
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Kang YS, Han MH, Hong SH, Park C, Hwang HJ, Kim BW, Kyoung KH, Choi YW, Kim CM, Choi YH. Anti-inflammatory Effects of Schisandra chinensis (Turcz.) Baill Fruit Through the Inactivation of Nuclear Factor-κB and Mitogen-activated Protein Kinases Signaling Pathways in Lipopolysaccharide-stimulated Murine Macrophages. J Cancer Prev 2015; 19:279-87. [PMID: 25574463 PMCID: PMC4285959 DOI: 10.15430/jcp.2014.19.4.279] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Schisandrae Fructus, the dried fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae), is widely used in traditional medicine for the treatment of a number of chronic inflammatory diseases. This study examined the anti-inflammatory effects of Schisandrae Fructus ethanol extract (SF) on the production of pro-inflammatory substances in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. METHODS To measure the effects of SF on pro-inflammatory mediator and inflammatory cytokine's expression and production in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, reverse transcriptase-polymerase chain reaction, Western blotting analysis and immunofluorescence staining. RESULTS Stimulation of the RAW 264.7 cells with LPS caused an elevated production of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin (IL)-1β, which was markedly inhibited by the pretreatment with SF without causing any cytotoxic effects. SF also inhibited the expression of inducible NO synthase, TNF-α, and IL-1β protein and their mRNAs in LPS-stimulated RAW 264.7 cells. Furthermore, SF attenuated LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) by reducing inhibitory-κB degradation, and reduced the phosphorylation of mitogen-activated protein kinases (MAPKs), implying that SF regulated LPS-induced NF-κB-dependent inflammatory pathways through suppression of MAPKs activation. CONCLUSIONS SF may be useful for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Young-Soon Kang
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, Korea
| | - Min-Ho Han
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, Korea
| | - Su-Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan, Korea
| | - Hye-Jin Hwang
- Blue-Bio Industry RIC and Anti-Aging Research Center, College of Natural Sciences and Human Ecology, Dongeui University, Busan, Korea ; Department of Food and Nutrition, College of Natural Sciences and Human Ecology, Dongeui University, Busan, Korea
| | - Byung Woo Kim
- Blue-Bio Industry RIC and Anti-Aging Research Center, College of Natural Sciences and Human Ecology, Dongeui University, Busan, Korea ; Department of Life Science and Biotechnology, College of Natural Sciences and Human Ecology, Dongeui University, Busan, Korea
| | - Kim Ho Kyoung
- Herbal Medicine Resources Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience and Life and Industry Convergence Research Institute, College of Natural Resource and Life Sciences, Pusan National University, Miryang, Korea
| | - Cheol Min Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, Korea ; Blue-Bio Industry RIC and Anti-Aging Research Center, College of Natural Sciences and Human Ecology, Dongeui University, Busan, Korea
| |
Collapse
|
24
|
Hoonhorst SJM, Timens W, Koenderman L, Lo Tam Loi AT, Lammers JWJ, Boezen HM, van Oosterhout AJM, Postma DS, Ten Hacken NHT. Increased activation of blood neutrophils after cigarette smoking in young individuals susceptible to COPD. Respir Res 2014; 15:121. [PMID: 25301367 PMCID: PMC4203909 DOI: 10.1186/s12931-014-0121-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background Cigarette smoking is the most important risk factor for Chronic Obstructive Pulmonary Disease (COPD). Only a subgroup of smokers develops COPD and it is unclear why these individuals are more susceptible to the detrimental effects of cigarette smoking. The risk to develop COPD is known to be higher in individuals with familial aggregation of COPD. This study aimed to investigate if acute systemic and local immune responses to cigarette smoke differentiate between individuals susceptible or non-susceptible to develop COPD, both at young (18-40 years) and old (40-75 years) age. Methods All participants smoked three cigarettes in one hour. Changes in inflammatory markers in peripheral blood (at 0 and 3 hours) and in bronchial biopsies (at 0 and 24 hours) were investigated. Acute effects of smoking were analyzed within and between susceptible and non-susceptible individuals, and by multiple regression analysis. Results Young susceptible individuals showed significantly higher increases in the expression of FcγRII (CD32) in its active forms (A17 and A27) on neutrophils after smoking (p = 0.016 and 0.028 respectively), independently of age, smoking status and expression of the respective markers at baseline. Smoking had no significant effect on mediators in blood or inflammatory cell counts in bronchial biopsies. In the old group, acute effects of smoking were comparable between healthy controls and COPD patients. Conclusions We show for the first time that COPD susceptibility at young age associates with an increased systemic innate immune response to cigarette smoking. This suggests a role of systemic inflammation in the early induction phase of COPD. Trial registration Clinicaltrials.gov: NCT00807469 Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0121-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susan J M Hoonhorst
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,GRIAC research institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Wim Timens
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Leo Koenderman
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Adèle T Lo Tam Loi
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Jan-Willem J Lammers
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - H Marike Boezen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Antoon J M van Oosterhout
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,Lab of Allergy and Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Dirkje S Postma
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,GRIAC research institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Nick H T Ten Hacken
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,GRIAC research institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
Goncalves DM, Girard D. Zinc oxide nanoparticles delay human neutrophil apoptosis by a de novo protein synthesis-dependent and reactive oxygen species-independent mechanism. Toxicol In Vitro 2014; 28:926-31. [DOI: 10.1016/j.tiv.2014.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/27/2014] [Accepted: 03/05/2014] [Indexed: 12/29/2022]
|
26
|
No major role for the transcription factor NF-κB in bone marrow function during peritonitis in the mouse. Int J Hematol 2014; 100:111-8. [PMID: 24859830 DOI: 10.1007/s12185-014-1598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Nuclear factor-kappa B (NF-κB) is a multipotent transcription factor that plays a pivotal role in immune reactions, inflammation, and possibly hematopoiesis as well. Mobilization of neutrophilic granulocytes during inflammation is a highly regulated process, but one that is incompletely understood. We studied the in vivo activity of NF-κB in mouse organs and cells, with a focus on bone marrow, during acute inflammation. NF-κB activity was studied in transgenic mice expressing a luciferase reporter expressed in a NF-κB activation-dependent fashion. Acute peritoneal inflammation was induced by lipopolysaccharide (LPS), the casein digest bacto-tryptone, or the insoluble polysaccharide zymosan. Organs were removed and blood, bone marrow, and peritoneal cells were separated using density gradient centrifugation. NF-κB activity in organ homogenates and cell lysates was quantified. These three inflammatory agents increased NF-κB activity to a variable extent within the inflamed peritoneal cavity, liver, and spleen, with LPS being the strongest stimulus. LPS, but not bacto-tryptone or zymosan, activated NF-κB in lung and bone marrow, the latter activity mainly observed in density fractions rich in immature bone marrow cells. NF-κB activation was prominent at 6 h after induction of peritonitis, fading at 24 h, as expected for an acute phase phenomenon. From this proof-of-principle study with luciferase reporter mice dependent on NF-κB activation, we suggest that, in steady-state mice, mobilization of bone marrow granulocytes to an inflammatory site can occur without discernible activation of NF-κB in bone marrow.
Collapse
|
27
|
Moreno G, Errea A, Van Maele L, Roberts R, Léger H, Sirard JC, Benecke A, Rumbo M, Hozbor D. Toll-like receptor 4 orchestrates neutrophil recruitment into airways during the first hours of Bordetella pertussis infection. Microbes Infect 2013; 15:708-18. [DOI: 10.1016/j.micinf.2013.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 01/16/2023]
|
28
|
Cheng OZ, Palaniyar N. NET balancing: a problem in inflammatory lung diseases. Front Immunol 2013; 4:1. [PMID: 23355837 PMCID: PMC3553399 DOI: 10.3389/fimmu.2013.00001] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/01/2013] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are beneficial antimicrobial defense structures that can help fight against invading pathogens in the host. However, recent studies reveal that NETs exert adverse effects in a number of diseases including those of the lung. Many inflammatory lung diseases are characterized with a massive influx of neutrophils into the airways. Neutrophils contribute to the pathology of these diseases. To date, NETs have been identified in the lungs of cystic fibrosis (CF), acute lung injury (ALI), allergic asthma, and lungs infected with bacteria, virus, or fungi. These microbes and several host factors can stimulate NET formation, or NETosis. Different forms of NETosis have been identified and are dependent on varying types of stimuli. All of these pathways however appear to result in the formation of NETs that contain DNA, modified extracellular histones, proteases, and cytotoxic enzymes. Some of the NET components are immunogenic and damaging to host tissue. Innate immune collectins, such as pulmonary surfactant protein D (SP-D), bind NETs, and enhance the clearance of dying cells and DNA by alveolar macrophages. In many inflammatory lung diseases, bronchoalveolar SP-D levels are altered and its deficiency results in the accumulation of DNA in the lungs. Some of the other therapeutic molecules under consideration for treating NET-related diseases include DNases, antiproteases, myeloperoxidase (MPO) inhibitors, peptidylarginine deiminase-4 inhibitors, and anti-histone antibodies. NETs could provide important biological advantage for the host to fight against certain microbial infections. However, too much of a good thing can be a bad thing. Maintaining the right balance of NET formation and reducing the amount of NETs that accumulate in tissues are essential for harnessing the power of NETs with minimal damage to the hosts.
Collapse
Affiliation(s)
- Olivia Z Cheng
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, SickKids Research Institute Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
29
|
Sodium caseinate induces mouse granulopoiesis. Inflamm Res 2012; 61:367-73. [DOI: 10.1007/s00011-011-0421-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/16/2011] [Accepted: 12/19/2011] [Indexed: 12/29/2022] Open
|
30
|
Wilkerson JL, Milligan ED. The Central Role of Glia in Pathological Pain and the Potential of Targeting the Cannabinoid 2 Receptor for Pain Relief. ACTA ACUST UNITED AC 2011; 2011. [PMID: 22442754 DOI: 10.5402/2011/593894] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Under normal conditions, acute pain processing consists of well-characterized neuronal signaling events. When dysfunctional pain signaling occurs, pathological pain ensues. Glial activation and their released factors participate in the mediation of pathological pain. The use of cannabinoid compounds for pain relief is currently an area of great interest for both basic scientists and physicians. These compounds, bind mainly either the cannabinoid receptor subtype 1 (CB(1)R) or cannabinoid receptor subtype 2 (CB(2)R) and are able to modulate pain. Although cannabinoids were initially only thought to modulate pain via neuronal mechanisms within the central nervous system, strong evidence now supports that CB(2)R cannabinoid compounds are capable of modulating glia, (e.g. astrocytes and microglia) for pain relief. However, the mechanisms underlying cannabinoid receptor-mediated pain relief remain largely unknown. An emerging body of evidence supports that CB(2)R agonist compounds may prove to be powerful novel therapeutic candidates for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Neurosciences, School of Medicine, University of New Mexico, HSC, MSC08-4740, Albuquerque, NM 87131, USA
| | | |
Collapse
|
31
|
Reynolds PR, Kasteler SD, Schmitt RE, Hoidal JR. Receptor for advanced glycation end-products signals through Ras during tobacco smoke-induced pulmonary inflammation. Am J Respir Cell Mol Biol 2011; 45:411-8. [PMID: 21131443 DOI: 10.1165/rcmb.2010-0231oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously demonstrated up-regulation of the receptor for advanced glycation end-products (RAGE) and its ligands by cigarette smoke extract (CSE) in rat R3/1 cells, a type I-like alveolar epithelial cell line. However, RAGE-mediated intracellular signaling pathways that lead to pulmonary inflammation remained unclear. Using ELISAs, we demonstrate that alveolar epithelial cell lines exposed to 25% CSE for 2 hours induce the activation of Ras, a small GTPase that functions as a molecular switch in the control of several intracellular signaling networks. Conversely, cells treated with siRNA for RAGE (siRAGE) resulted in decreased Ras activation. Furthermore, Ras was significantly diminished in lungs from RAGE null mice exposed to chronic tobacco smoke when compared with smoke-exposed wild-type mice. The use of a luciferase reporter containing NF-κB binding sites also demonstrated elevated NF-κB activation in R3/1 cells after CSE stimulation and decreased NF-κB activation in cells transfected with siRAGE before CSE exposure. ELISA revealed an increase in the secretion of IL-1β and CCL5 by R3/1 cells, two cytokines induced by NF-κB and associated with leukocyte chemotaxis. Furthermore, real-time RT-PCR and ELISAs revealed decreased cytokine secretion in RAGE null mouse lung exposed to tobacco smoke compared with lungs from smoke-exposed wild-type animals. These results support the conclusion that CSE-induced RAGE expression functions in pathways that involve Ras-mediated NF-κB activation and cytokine elaboration. This RAGE-Ras-NF-κB axis likely contributes to inflammation associated with several smoking-related inflammatory lung diseases.
Collapse
Affiliation(s)
- Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | |
Collapse
|
32
|
Dong J, Chen P, Wang R, Yu D, Zhang Y, Xiao W. NADPH oxidase: a target for the modulation of the excessive oxidase damage induced by overtraining in rat neutrophils. Int J Biol Sci 2011; 7:881-91. [PMID: 21814483 PMCID: PMC3149282 DOI: 10.7150/ijbs.7.881] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/09/2011] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The purpose of this study is to demonstrate that NADPH oxidase mediating the ROS production is the major pathway for ROS generation in neutrophils during exercise. NADPH oxidase, as a target can modulate oxidative damage induced by overtraining, which can be value to the prevention of exercise-induced immunosuppression. METHODS Thirty male Wistar rats were randomly divided into three groups: a negative control group (C, n = 10), an overtraining group (E, n = 10) and an overtraining + DPI intervention group (D, n =10). Groups E and D were trained on a standard treadmill with progressive load for 11 weeks. After 36-40 h from the last training, eight rats were randomly selected from each group, and blood was sampled from the orbital vein. ELISAs were used to measure serum cytokine levels and lipid peroxidation in blood plasma. Flow cytometry with Annexin V/PI double staining was used to measure neutrophil apoptosis and necrosis. DNA damage in lymphocytes was tested using single cell gel electrophoresis (SCGE). The co-localization between gp91(phox) and p47(phox) of the NADPH-oxidase was detected using immunocytochemistry and confocal microscopy. RESULTS 1) Compared with group C, the concentrations of IL-1β, IL-8, and TNF-α were significantly increased and MCP-1, and CINC were significantly decreased in blood plasma from group E (P < 0.01 and P < 0.05, respectively). Concentrations of IL-1β and MCP-1 were decreased (P < 0.05), and IL-8 and TNF-α were significantly increased (P <0.05) in blood plasma from group D. MDA and MPO were elevated in plasma from groups E and D (P < 0.01 and P < 0.05, respectively). 2) Compared with group C, the percentage of neutrophils apoptosis were significantly elevated (P < 0.01) in both groups E and D, and the percentage of cell death was raised in group E (P < 0.05). No significant change was observed in group D. 3) Compared with group C, the number of comet cells, an indicator of DNA damage, was significantly increased (P < 0.01), and the width and tail length of comet cells were notably increased in group E, while no significant increase was observed in group D. 4) The p47(phox )protein translocated to the cell membrane and co-localized with the gp91(phox) subunit of NADPH oxidase in neutrophils activated by overtraining. CONCLUSION 1) Excessive exercise led to an increased secretion of inflammatory cytokines and chemokines in peripheral blood, and it may have induced tissue inflammation 2) Overtraining can activate the NADPH oxidase-mediated overproduction of ROS, leading to increased lipid peroxidation. 3) NADPHoxidase in neutrophils as a target, was responsible for ROS, oxidative damage to phagocytes and lymphocytes and changes to inflammatory cytokines and immune regulatory factors all affect cellular immune functions and may be causative factors for exercise-induced immunosuppression.
Collapse
Affiliation(s)
- Jingmei Dong
- Department of Sports Science, Shanghai University of Sport, Shanghai 200438, China
| | | | | | | | | | | |
Collapse
|
33
|
Lopera D, Naranjo TW, Cruz OG, Restrepo A, Cano LE, Lenzi HL. Structural and topographic dynamics of pulmonary histopathology and local cytokine profiles in Paracoccidioides brasiliensis conidia-infected mice. PLoS Negl Trop Dis 2011; 5:e1232. [PMID: 21765962 PMCID: PMC3134433 DOI: 10.1371/journal.pntd.0001232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 05/25/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Paracoccidioidomycosis (PCM), an endemic systemic mycosis caused by the fungus Paracoccidioides brasiliensis (Pb), usually results in severe lung damage in patients. METHODS AND FINDINGS Considering the difficulties to sequentially study the infection in humans, this work was done in mice inoculated intranasally with infective Pb-conidia. Lungs of control and Pb-infected mice were studied after 2-hours, 4, 8, 12 and 16-weeks post-infection (p.i) in order to define histopathologic patterns of pulmonary lesions, multiplex-cytokine profiles and their dynamics during the course of this mycosis. Besides the nodular/granulomatous lesions previously informed, results revealed additional non-formerly described lung abnormalities, such as periarterial sheath inflammation and pseudotumoral masses. The following chronologic stages occurring during the course of the experimental infection were defined: Stage one (2-hours p.i): mild septal infiltration composed by neutrophils and macrophages accompanied by an intense "cytokine burst" represented by significant increases in IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL12p70, IL-13, IL-17, Eotaxin, G-CSF, MCP1, MIP1α, GM-CSF, IFN-γ, MIP1β and TNFα levels. Stage two (4-weeks p.i): presence of nodules, evidence of incipient periarterial- and intense but disperse parenchymal- inflammation, abnormalities that continued to be accompanied by hyper-secretion of those cytokines and chemokines mentioned in the first stage of infection. Stages three and four (8 and 12-weeks p.i.): fungal proliferation, inflammation and collagenesis reached their highest intensity with particular involvement of the periarterial space. Paradoxically, lung cytokines and chemokines were down-regulated with significant decreases in IL-2,IL-3,IL-5,IL-9,IL-13,IL-15,GM-CSF,IFN-γ,MIP1β and TNFα. Stage five (16-weeks p.i.): inflammation decreased becoming limited to the pseudotumoral masses and was accompanied by a "silent" cytokine response, except for PDGF, MIG, RANTES and IL12p40 which remained up-regulated for the duration of the experiment. CONCLUSIONS Results of this study identified both classic and novel patterns corresponding to histopathologic and immunologic responses occurring during the course of experimental PCM.
Collapse
Affiliation(s)
- Damaris Lopera
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Tonny W. Naranjo
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Health Sciences, Universidad Pontificia Bolivarina, Medellín, Colombia
| | - Oswaldo G. Cruz
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Angela Restrepo
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Luz Elena Cano
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Health Sciences, Universidad Pontificia Bolivarina, Medellín, Colombia
- Microbiology School, Universidad de Antioquia, Medellín, Colombia
| | - Henrique Leonel Lenzi
- Laboratory of Pathology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Freitas M, Gomes A, Porto G, Fernandes E. Nickel induces oxidative burst, NF-κB activation and interleukin-8 production in human neutrophils. J Biol Inorg Chem 2010; 15:1275-83. [DOI: 10.1007/s00775-010-0685-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 06/28/2010] [Indexed: 11/29/2022]
|
35
|
Binet F, Chiasson S, Girard D. Interaction between arsenic trioxide (ATO) and human neutrophils. Hum Exp Toxicol 2010; 30:416-24. [DOI: 10.1177/0960327110372645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cytotoxic effect of arsenic trioxide (ATO) is known to be mediated by its ability to induce cell apoptosis in a variety of cells, including neutrophils. More recently, we demonstrated that ATO induced several parameters involved in endoplasmic reticulum (ER) stress-induced neutrophil apoptosis but that caspase-4 was not involved. The aim of this study was to better understand how neutrophils are activated by ATO and to further demonstrate that ATO is an ER stressor. Human neutrophils were isolated from healthy blood donors and incubated in vitro in the presence or absence of ATO and several parameters were investigated. We found that ATO induced the expression of the proapoptotic GADD153 protein, a key player involved in ER stress-induced apoptosis, activated nuclear nuclear factor κB (NF-κB) DNA binding activities, and increased prostaglandine E2 (PGE2) production. Using an antibody array approach, we found that ATO increased the production of several cytokines, with interleukin 8 (IL-8) being the predominant one. We confirmed that ATO increased the production of IL-8 by enzyme-linked-immunosorbent assay (ELISA). Treatment with a caspase-4 inhibitor did not inhibit IL-8 production. The results of the present study further support the notion that ATO is an ER stressor and that, although its toxic effect is mediated by induction of apoptosis, this chemical also induced, in parallel, NF-κB activation, the production of PGE2 and several cytokines probably involved in other cell functions. Also, we conclude that the production of IL-8 is not induced by a caspase-4-dependent mechanism, suggesting that ATO-induced caspase-4 activation is involved in other as yet unidentified functions in human neutrophils.
Collapse
Affiliation(s)
- François Binet
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Sonia Chiasson
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada,
| |
Collapse
|
36
|
St-Onge M, Lagarde S, Laflamme C, Rollet-Labelle E, Marois L, Naccache PH, Pouliot M. Proteinase-activated receptor-2 up-regulation by Fcgamma-receptor activation in human neutrophils. FASEB J 2010; 24:2116-25. [PMID: 20154268 DOI: 10.1096/fj.09-146167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We shed new light on the expression and function of the proteinase-activated receptor (PAR) family, associated with inflammation and hyperalgesia, in human granulocytes. Resting cells expressed constitutive levels of PAR-2 and PAR-3 mRNA but not PAR-1 or PAR-4. Based on flow cytometry, stimulation with opsonized bacteria (Bop) specifically up-regulated cell surface expression of PAR-2 in a concentration-dependent and time-dependent manner, independent of transcription or de novo protein synthesis. Primary granules were identified as a source of preformed PAR-2 that can readily be mobilized at the surface on fusion with the plasma membrane. Cellular response to PAR-2 activation, measured as changes in intracellular calcium concentration, was enhanced in PAR-2 up-regulated cells. Increase of cell-surface PAR-2 and of cell responsiveness were dependent specifically on the engagement of immunoglobulin (Ig)-binding receptors. Together, our results reveal that mobilization of intracellular granules, in response to Ig-receptor activation, up-regulates PAR-2 surface expression and makes neutrophils more responsive to proteinase activity. This enhanced response to PAR-2 activation indicates that molecular communication between pain and inflammation may be more important than previously believed.
Collapse
Affiliation(s)
- Mireille St-Onge
- Centre de Recherche en Rhumatologie et Immunologie du Centre Hospitalier Universitaire de Québec, Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Fukuzono S, Kato T, Fujita H, Watanabe N, Kitagawa S. Granulocyte colony-stimulating factor negatively regulates Toll-like receptor agonist-induced cytokine production in human neutrophils. Arch Biochem Biophys 2010; 495:144-51. [PMID: 20064484 DOI: 10.1016/j.abb.2010.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
Abstract
We studied the effect of G-CSF on TLR agonist-induced cytokine production in human neutrophils. Human neutrophils produced IL-8 and TNF-alpha in response to stimulation with TLR agonists such as LPS and N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteinyl-seryl-(lysyl)(3)-lysine. This response was dependent on activation of ERK, p38, and PI3K, but not JNK. TLR agonist-induced cytokine production in neutrophils was inhibited by G-CSF, whereas it was enhanced by GM-CSF, and GM-CSF-mediated enhancement was attenuated by G-CSF. G-CSF and GM-CSF did not affect TLR agonist-induced phosphorylation of ERK, p38, JNK, Akt, and IkappaBalpha. STAT3 activation was much greater in G-CSF-stimulated neutrophils than that in GM-CSF-stimulated cells. G-CSF-mediated STAT3 phosphorylation and inhibition of TLR agonist-induced cytokine production were prevented by pretreatment of cells with AG-490 (JAK2 inhibitor). These findings suggest that G-CSF and GM-CSF exert the opposite effects on TLR agonist-induced cytokine production, and G-CSF negatively regulates TLR agonist-induced cytokine production in neutrophils via activation of STAT3.
Collapse
Affiliation(s)
- Shunsuke Fukuzono
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahi-machi, Abeno-ku, Japan
| | | | | | | | | |
Collapse
|
38
|
Chatterjee M, Saluja R, Tewari S, Barthwal MK, Goel SK, Dikshit M. Augmented nitric oxide generation in neutrophils: Oxidative and pro-inflammatory implications in hypertension. Free Radic Res 2009; 43:1195-204. [DOI: 10.3109/10715760903247256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Abstract
Interleukin-17A (IL-17A) and IL-17F are 2 of several cytokines produced by T helper 17 cells (Th17), which are able to indirectly induce the recruitment of neutrophils. Recently, human Th17 cells have been phenotypically characterized and shown to express discrete chemokine receptors, including CCR2 and CCR6. Herein, we show that highly purified neutrophils cultured with interferon-gamma plus lipopolysaccharide produce the CCL2 and CCL20 chemokines, the known ligands of CCR2 and CCR6, respectively. Accordingly, supernatants from activated neutrophils induced chemotaxis of Th17 cells, which was greatly suppressed by anti-CCL20 and anti-CCL2 antibodies. We also discovered that activated Th17 cells could directly chemoattract neutrophils via the release of biologically active CXCL8. Consistent with this reciprocal recruitment, neutrophils and Th17 cells were found in gut tissue from Crohn disease and synovial fluid from rheumatoid arthritis patients. Finally, we report that, although human Th17 cells can directly interact with freshly isolated or preactivated neutrophils via granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha, and interferon-gamma release, these latter cells cannot be activated by IL-17A and IL-17F, because of their lack of IL-17RC expression. Collectively, our results reveal a novel chemokine-dependent reciprocal cross-talk between neutrophils and Th17 cells, which may represent a useful target for the treatment of chronic inflammatory diseases.
Collapse
|
40
|
Abstract
Trauma, the number one cause of death until the fourth decade of life, causes an inflammatory response. This response in its extreme is associated with the development of the systemic inflammatory state, adult respiratory distress syndrome, multi-organ failure, and death. The inflammatory response is mediated via multiple pathways- the inflammatory-cytokine, immunologic, coagulation and endocrine pathways. It is countered by producing antiinflammatory mediators. This reaction is altered in elderly patients. Knowledge of the patient's prior medical problems and the differential diagnosis for the possible causes of the current condition should help direct the surgical intervention and supportive care in an attempt to stabilize the patient. With the improvement of monitoring and diagnostic technologies, understanding the significance of the inflammatory pathways in trauma patients will decrease morbidity and mortality in this group of patients.
Collapse
Affiliation(s)
- Josh E Schroeder
- Department of Orthopedic Surgery, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
41
|
Kilpatrick LE, Sun S, Li H, Vary TC, Korchak HM. Regulation of TNF-induced oxygen radical production in human neutrophils: role of delta-PKC. J Leukoc Biol 2009; 87:153-64. [PMID: 19801500 DOI: 10.1189/jlb.0408230] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In human neutrophils, TNF-elicited O(2)(-) production requires adherence and integrin activation. How this cooperative signaling between TNFRs and integrins regulates O(2)(-) generation has yet to be fully elucidated. Previously, we identified delta-PKC as a critical early regulator of TNF signaling in adherent neutrophils. In this study, we demonstrate that inhibition of delta-PKC with a dominant-negative delta-PKC TAT peptide resulted in a significant delay in the onset time of TNF-elicited O(2)(-) generation but had no effect on Vmax, indicating an involvement of delta-PKC in the initiation of O(2)(-) production. In contrast, fMLP-elicited O(2)(-) production in adherent and nonadherent neutrophils was delta-PKC-independent, suggesting differential regulation of O(2)(-) production. An important step in activation of the NADPH oxidase is phosphorylation of the cytosolic p47phox component. In adherent neutrophils, TNF triggered a time-dependent association of delta-PKC with p47phox, which was associated with p47phox phosphorylation, indicating a role for delta-PKC in regulating O(2)(-) production at the level of p47phox. Activation of ERK and p38 MAPK is also required for TNF-elicited O(2)(-) generation. TNF-mediated ERK but not p38 MAPK recruitment to p47phox was delta-PKC-dependent. delta-PKC activity is controlled through serine/threonine phosphorylation, and phosphorylation of delta-PKC (Ser643) and delta-PKC (Thr505) was increased significantly by TNF in adherent cells via a PI3K-dependent process. Thus, signaling for TNF-elicited O(2)(-) generation is regulated by delta-PKC. Adherence-dependent cooperative signaling activates PI3K signaling, delta-PKC phosphorylation, and delta-PKC recruitment to p47phox. delta-PKC activates p47phox by serine phosphorylation or indirectly through control of ERK recruitment to p47phox.
Collapse
Affiliation(s)
- Laurie E Kilpatrick
- Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
42
|
Gallicchio M, Benetti E, Rosa AC, Fantozzi R. Tachykinin receptor modulation of cyclooxygenase-2 expression in human polymorphonuclear leucocytes. Br J Pharmacol 2009; 156:486-96. [PMID: 19154444 DOI: 10.1111/j.1476-5381.2008.00033.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated the ability of natural and synthetic selective NK receptors agonists and antagonists to modulate cyclooxygenase-2 (COX-2) expression in human polymorphonuclear leucocytes (PMNs). EXPERIMENTAL APPROACH The presence of all three tachykinin in PMNs was assessed by Western blot and PCR techniques. Natural and synthetic ligands selective for the tachykinin receptors were used to modulate COX-2 protein (measured with Western blotting) and activity [as prostaglandin E(2) (PGE(2)) output]. Effects of substance P (SP) on phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-kappaB) activation were studied to analyse the signalling pathway involved in COX-2 up-regulation mediated by SP. KEY RESULTS Stimulation of NK receptors with the natural ligands SP, neurokinin A (NKA) and neurokinin B, in the pmol.L(-1)-micromol.L(-1) concentration range, modulated COX-2 expression and PGE(2) release in a concentration- and time-dependent manner. Experiments with synthetic selective agonists [Sar(9), Met(O(2))(11)]SP, [beta-Ala(8)] NKA(4-10), senktide or selective antagonists L703,606, SR48,968 or SR142801, confirmed that COX-2 up-regulation was mediated by NK receptors. We found that mainly p38, p42 and p46 MAPKs were phosphorylated by SP and SB202190, PD98059 and SP600125, which are selective inhibitors of these kinases, blocked SP-induced COX-2 expression. SP also induced nuclear translocation of NF-kappaB concentration-dependently, with a maximum effect at 1 nmol.L(-1). CONCLUSIONS AND IMPLICATIONS Human PMNs possess functional NK(1), NK(2) and NK(3) receptors, which mediate the induction of COX-2 expression and NF-kappaB activation by SP.
Collapse
Affiliation(s)
- M Gallicchio
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Italy.
| | | | | | | |
Collapse
|
43
|
Kato T, Noma H, Kitagawa M, Takahashi T, Oshitani N, Kitagawa S. Distinct role of c-Jun N-terminal kinase isoforms in human neutrophil apoptosis regulated by tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor. J Interferon Cytokine Res 2008; 28:235-43. [PMID: 18439101 DOI: 10.1089/jir.2007.0075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We studied the role of c-Jun N-terminal kinase (JNK) in human neutrophils stimulated by tumor necrosis factor-alpha (TNF-alpha) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Stimulation of neutrophils with TNF-alpha and GM-CSF caused phosphorylation of p54 or p46 JNK or both. The phosphorylated p46 JNK band in TNF-alpha-stimulated neutrophils mobilized faster than that in GM-CSF-stimulated cells. The JNK isoform transcripts expressed in neutrophils were JNK1beta1, JNK1beta2, JNK2alpha1, and JNK2alpha2. The JNK isoforms phosphorylated by TNF-alpha and GM-CSF stimulation were found to be JNK1 and JNK2, respectively, on the basis of the molecular mass and the capture assay. TNF-alpha-induced JNK phosphorylation was sustained in the presence of cycloheximide, which was accompanied by accelerated neutrophil apoptosis. The JNK inhibitors (SP600125 and TAT-TI-JIP(153163)) suppressed neutrophil apoptosis induced by TNF-alpha plus cycloheximide, whereas they attenuated the GM-CSF-mediated antiapoptotic effect on neutrophils. The JNK inhibitor did not affect the levels of Mcl-1 and XIAP (antiapoptotic molecules), which were regulated by TNF-alpha plus cycloheximide and GM-CSF. The JNK inhibitor markedly suppressed TNF-alpha-induced and GM-CSF-induced superoxide release. These findings suggest that JNK1 and JNK2 are involved in TNF-alpha-induced neutrophil apoptosis and GM-CSF-mediated antiapoptotic effect on neutrophils, respectively, and both JNK isoforms are involved in TNF-alpha-induced and GM-CSF-induced superoxide release.
Collapse
Affiliation(s)
- Takayuki Kato
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Calpain inhibition delays neutrophil apoptosis via cyclic AMP-independent activation of protein kinase A and protein kinase A-mediated stabilization of Mcl-1 and X-linked inhibitor of apoptosis (XIAP). Arch Biochem Biophys 2008; 477:227-31. [PMID: 18647593 DOI: 10.1016/j.abb.2008.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/18/2008] [Accepted: 07/04/2008] [Indexed: 11/20/2022]
Abstract
Human neutrophils underwent spontaneous apoptosis, which was accompanied with proteasome-mediated degradation of Mcl-1 and X-linked inhibitor of apoptosis (XIAP). Calpain inhibitors (PD150606 and N-acetyl-Leu-Leu-Nle-CHO) prevented spontaneous neutrophil apoptosis and degradation of Mcl-1 and XIAP, and the effects of calpain inhibitors on neutrophils were resistant to cycloheximide. Calpain inhibitors induced protein kinase A (PKA) activation, which was unaccompanied with an increase in intracellular cyclic AMP. Calpain inhibition-mediated delayed neutrophil apoptosis, stabilization of Mcl-1 and XIAP, and phosphorylation of PKA substrates were suppressed by H-89 (specific PKA inhibitor). These findings suggest that calpain inhibition delays neutrophil apoptosis via cyclic AMP-independent activation of PKA and PKA-mediated stabilization of Mcl-1 and XIAP.
Collapse
|
45
|
Quaye IK. Haptoglobin, inflammation and disease. Trans R Soc Trop Med Hyg 2008; 102:735-42. [PMID: 18486167 DOI: 10.1016/j.trstmh.2008.04.010] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 04/03/2008] [Accepted: 04/03/2008] [Indexed: 01/08/2023] Open
Abstract
Haptoglobin is an acute phase protein that scavenges haemoglobin in the event of intravascular or extravascular haemolysis. The protein exists in humans as three main phenotypes, Hp1-1, Hp2-2 and Hp2-1. Accumulated data on the protein's function has established its strong association with diseases that have inflammatory causes. These include parasitic (malaria), infectious (HIV, tuberculosis) and non-infectious diseases (diabetes, cardiovascular disease and obesity) among others. Phenotype-dependent poor disease outcomes have been linked with the Hp2-2 phenotype. The present review brings this association into perspective by looking at the functions of the protein and how defects in these functions associated with the Hp2 allele affect disease outcome. A model is provided to explain the mechanism, which appears to be largely immunomodulatory.
Collapse
Affiliation(s)
- Isaac K Quaye
- Department of Medical Biochemistry, University of Ghana Medical School, Korle-Bu-Accra, Ghana.
| |
Collapse
|
46
|
Kanayama S, Yamada Y, Onogi A, Shigetomi H, Ueda S, Tsuji Y, Haruta S, Kawaguchi R, Yoshida S, Sakata M, Sado T, Kitanaka T, Oi H, Yagyu T, Kobayashi H. Molecular structure and function analysis of bikunin on down-regulation of tumor necrosis factor-alpha expression in activated neutrophils. Cytokine 2008; 42:191-197. [PMID: 18226914 DOI: 10.1016/j.cyto.2007.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/19/2007] [Accepted: 12/20/2007] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We performed a detailed molecular analysis of bikunin-mediated anti-inflammation (suppressive effect of cytokine release, MAP kinase activation, and nuclear translocation of NF-kB) using a truncated form of bikunin. MATERIALS AND METHODS We obtained bikunin derivatives that contained O-glycoside-linked N-terminal glycopeptide (Bik-m1), N-glycoside-linked C-terminal tandem Kunitz domains (Bik-m2), bikunin lacking O-glycoside (Bik-c), asialo bikunin (Bik-a), bikunin lacking N-glycoside (Bik-n), and purified C-terminal Kunitz domain II (kII) of bikunin (HI-8). Enzyme-linked immunosorbent assay and Western blot were carried out to measure secreted TNF-alpha and MAP kinase activation. RESULTS We examined the TNF-alpha secretion in control and lipopolysaccharide (LPS)-treated neutrophils and did not see any changes of its protein levels in the cells pretreated with Bik-m1, Bik-m2, Bik-c, or HI-8. In all of the derivatives tested, only the derivatives that lacked N-glycoside side chain showed a significant suppression of TNF-alpha secretion by LPS. Only a small (21 amino acids) deletion of the N-terminal portion of bikunin (which corresponds to Bik-m2) abolished its suppressing activity of TNF-alpha secretion, thus suggesting that the N-terminal 21 amino acids play a critical role in anti-inflammation. Bik-m1 alone failed to show anti-inflammatory response. Bikunin failed to inhibit ionomycin-induced phosphorylation of MAP kinases. CONCLUSION These data allow us to conclude that the cytokine expression was inhibited only by the O-glycoside-linked core protein without the N-glycoside side chain. Our results also suggest a possible role of bikunin for receptor-dependent MAP kinase activation.
Collapse
Affiliation(s)
- Seiji Kanayama
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Yoshihiko Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Akira Onogi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Sachiyo Ueda
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Yoriko Tsuji
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Shoji Haruta
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Ryuji Kawaguchi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Shozo Yoshida
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Mariko Sakata
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Toshiyuki Sado
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Takashi Kitanaka
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Hidekazu Oi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan
| | - Tatsuo Yagyu
- NetForce Co., Ltd., Nakamura, Nagoya, Aichi, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Nara, Kashihara 634-8522, Japan.
| |
Collapse
|
47
|
Pillay J, Hietbrink F, Koenderman L, Leenen LPH. The systemic inflammatory response induced by trauma is reflected by multiple phenotypes of blood neutrophils. Injury 2007; 38:1365-72. [PMID: 18061190 DOI: 10.1016/j.injury.2007.09.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 09/19/2007] [Indexed: 02/02/2023]
Abstract
Secondary morbidity and mortality after trauma are mainly due to a dysfunctional immune system. Severe injury can trigger a systemic inflammatory response, which is characterised by pre-activation or priming of neutrophils in peripheral blood. Signals initiated as result of local tissue damage can further activate these neutrophils leading to post-injury inflammatory complications. Additional trauma caused by surgical intervention can worsen the inflammatory response, thereby increasing the risk of these inflammatory complications. Limiting surgical procedures through damage control principles can reduce the risk of secondary morbidity. Inflammatory complications after injury cannot adequately be predicted using the current anatomical and physiological-based scoring systems. In this review we propose a methodology focussing on the activation state of the systemic inflammatory response with focus on neutrophils to aid in the risk assessment of secondary morbidity after trauma. Neutrophils are essential effector cells during the post-injury systemic inflammatory response. Neutrophils differentially express an array of surface receptors by which the cells can respond and adapt to changing environmental signals. The determination of specific expression profiles of neutrophil receptors can aid in phenotyping and quantifying the systemic inflammatory response. This article reviews the application of these specific signatures of neutrophil receptors as a consequence of severe injury.
Collapse
Affiliation(s)
- J Pillay
- Department of Respiratory Medicine, University Medical Center Utrecht, The Netherlands
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Claire M Doerschuk
- Division of Integrative Biology in the Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, USA
| |
Collapse
|