1
|
Tram J, Marty L, Mourouvin C, Abrantes M, Jaafari I, Césaire R, Hélias P, Barbeau B, Mesnard JM, Baccini V, Chaloin L, Peloponese JMJ. The Oncoprotein Fra-2 Drives the Activation of Human Endogenous Retrovirus Env Expression in Adult T-Cell Leukemia/Lymphoma (ATLL) Patients. Cells 2024; 13:1517. [PMID: 39329701 PMCID: PMC11430398 DOI: 10.3390/cells13181517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are retroviral sequences integrated into 8% of the human genome resulting from ancient exogenous retroviral infections. Unlike endogenous retroviruses of other mammalian species, HERVs are mostly replication and retro-transposition defective, and their transcription is strictly regulated by epigenetic mechanisms in normal cells. A significant addition to the growing body of research reveals that HERVs' aberrant activation is often associated with offsetting diseases like autoimmunity, neurodegenerative diseases, cancers, and chemoresistance. Adult T-cell leukemia/lymphoma (ATLL) is a very aggressive and chemoresistant leukemia caused by the human T-cell leukemia virus type 1 (HTLV-1). The prognosis of ATLL remains poor despite several new agents being approved in the last few years. In the present study, we compare the expression of HERV genes in CD8+-depleted PBMCs from HTLV-1 asymptomatic carriers and patients with acute ATLL. Herein, we show that HERVs are highly upregulated in acute ATLL. Our results further demonstrate that the oncoprotein Fra-2 binds the LTR region and activates the transcription of several HERV families, including HERV-H and HERV-K families. This raises the exciting possibility that upregulated HERV expression could be a key factor in ATLL development and the observed chemoresistance, potentially leading to new therapeutic strategies and significantly impacting the field of oncology and virology.
Collapse
Affiliation(s)
- Julie Tram
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Laetitia Marty
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Célima Mourouvin
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Magali Abrantes
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Ilham Jaafari
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Raymond Césaire
- Centre Hospitalier Universitaire de Martinique, 97261 Fort de France, France
| | - Philippe Hélias
- Département de Radiothérapie-Oncologie-Hématologie, Centre Hospitalier Universitaire de la Guadeloupe, 97110 Pointe à Pitre, France;
| | - Benoit Barbeau
- Département des Sciences Biologiques, Université du Québec à Montréal, SB-R860, Montréal, QC H2X 1Y4, Canada;
| | - Jean-Michel Mesnard
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Véronique Baccini
- Laboratoire d’Hématologie CHU de la Guadeloupe, 97110 Pointe à Pitre Guadeloupe, France;
| | - Laurent Chaloin
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| | - Jean-Marie Jr. Peloponese
- Université Montpellier (UM), 34000 Montpellier, France; (J.T.); (L.M.); (C.M.); (M.A.); (L.C.)
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France
| |
Collapse
|
2
|
Ivanov SM, Tarasova OA, Poroikov VV. Transcriptome-based analysis of human peripheral blood reveals regulators of immune response in different viral infections. Front Immunol 2023; 14:1199482. [PMID: 37795081 PMCID: PMC10546413 DOI: 10.3389/fimmu.2023.1199482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction There are difficulties in creating direct antiviral drugs for all viruses, including new, suddenly arising infections, such as COVID-19. Therefore, pathogenesis-directed therapy is often necessary to treat severe viral infections and comorbidities associated with them. Despite significant differences in the etiopathogenesis of viral diseases, in general, they are associated with significant dysfunction of the immune system. Study of common mechanisms of immune dysfunction caused by different viral infections can help develop novel therapeutic strategies to combat infections and associated comorbidities. Methods To identify common mechanisms of immune functions disruption during infection by nine different viruses (cytomegalovirus, Ebstein-Barr virus, human T-cell leukemia virus type 1, Hepatitis B and C viruses, human immunodeficiency virus, Dengue virus, SARS-CoV, and SARS-CoV-2), we analyzed the corresponding transcription profiles from peripheral blood mononuclear cells (PBMC) using the originally developed pipeline that include transcriptome data collection, processing, normalization, analysis and search for master regulators of several viral infections. The ten datasets containing transcription data from patients infected by nine viruses and healthy people were obtained from Gene Expression Omnibus. The analysis of the data was performed by Genome Enhancer pipeline. Results We revealed common pathways, cellular processes, and master regulators for studied viral infections. We found that all nine viral infections cause immune activation, exhaustion, cell proliferation disruption, and increased susceptibility to apoptosis. Using network analysis, we identified PBMC receptors, representing proteins at the top of signaling pathways that may be responsible for the observed transcriptional changes and maintain the current functional state of cells. Discussion The identified relationships between some of them and virus-induced alteration of immune functions are new and have not been found earlier, e.g., receptors for autocrine motility factor, insulin, prolactin, angiotensin II, and immunoglobulin epsilon. Modulation of the identified receptors can be investigated as one of therapeutic strategies for the treatment of severe viral infections.
Collapse
Affiliation(s)
- Sergey M. Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga A. Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
3
|
Gazon H, Barbeau B, Mesnard JM, Peloponese JM. Hijacking of the AP-1 Signaling Pathway during Development of ATL. Front Microbiol 2018; 8:2686. [PMID: 29379481 PMCID: PMC5775265 DOI: 10.3389/fmicb.2017.02686] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a fatal malignancy known as adult T-cell leukemia (ATL). One way to address the pathology of the disease lies on conducting research with a molecular approach. In addition to the analysis of ATL-relevant signaling pathways, understanding the regulation of important and relevant transcription factors allows researchers to reach this fundamental objective. HTLV-1 encodes for two oncoproteins, Tax and HTLV-1 basic leucine-zipper factor, which play significant roles in the cellular transformation and the activation of the host's immune responses. Activating protein-1 (AP-1) transcription factor has been linked to cancer and neoplastic transformation ever since the first representative members of the Jun and Fos gene family were cloned and shown to be cellular homologs of viral oncogenes. AP-1 is a dimeric transcription factor composed of proteins belonging to the Jun (c-Jun, JunB, and JunD), Fos (c-Fos, FosB, Fra1, and Fra2), and activating transcription factor protein families. Activation of AP-1 transcription factor family by different stimuli, such as inflammatory cytokines, stress inducers, or pathogens, results in innate and adaptive immunity. AP-1 is also involved in various cellular events including differentiation, proliferation, survival, and apoptosis. Deregulated expression of AP-1 transcription factors is implicated in various lymphomas such as classical Hodgkin lymphomas, anaplastic large cell lymphomas, diffuse large B-cell lymphomas, and adult T-cell leukemia. Here, we review the current thinking behind deregulation of the AP-1 pathway and its contribution to HTLV-induced cellular transformation.
Collapse
Affiliation(s)
- Hélène Gazon
- Belgium Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Benoit Barbeau
- Département des Sciences Biologiques and Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Jean-Marie Peloponese
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
4
|
RNA stability regulates human T cell leukemia virus type 1 gene expression in chronically-infected CD4 T cells. Virology 2017; 508:7-17. [PMID: 28478312 DOI: 10.1016/j.virol.2017.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/22/2022]
Abstract
Regulation of expression of HTLV-1 gene products from integrated proviruses plays an important role in HTLV-1-associated disease pathogenesis. Previous studies have shown that T cell receptor (TCR)- and phorbol ester (PMA) stimulation of chronically infected CD4 T cells increases the expression of integrated HTLV-1 proviruses in latently infected cells, however the mechanism remains unknown. Analysis of HTLV-1 RNA and protein species following PMA treatment of the latently HTLV-1-infected, FS and SP T cell lines demonstrated rapid induction of tax/rex mRNA. This rapid increase in tax/rex mRNA was associated with markedly enhanced tax/rex mRNA stability while the stability of unspliced or singly spliced HTLV-1 RNAs did not increase. Tax/rex mRNA in the HTLV-1 constitutively expressing cell lines exhibited high basal stability even without PMA treatment. Our data support a model whereby T cell activation leads to increased HTLV-1 gene expression at least in part through increased tax/rex mRNA stability.
Collapse
|
5
|
The Major Histocompatibility Complex Class II Transactivator CIITA Inhibits the Persistent Activation of NF-κB by the Human T Cell Lymphotropic Virus Type 1 Tax-1 Oncoprotein. J Virol 2016; 90:3708-21. [PMID: 26792751 DOI: 10.1128/jvi.03000-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Human T cell lymphotropic virus type 1 (HTLV-1) Tax-1, a key protein in HTLV-1-induced T cell transformation, deregulates diverse cell signaling pathways. Among them, the NF-κB pathway is constitutively activated by Tax-1, which binds to NF-κB proteins and activates the IκB kinase (IKK). Upon phosphorylation-dependent IκB degradation, NF-κB migrates into the nucleus, mediating Tax-1-stimulated gene expression. We show that the transcriptional regulator of major histocompatibility complex class II genes CIITA (class II transactivator), endogenously or ectopically expressed in different cells, inhibits the activation of the canonical NF-κB pathway by Tax-1 and map the region that mediates this effect. CIITA affects the subcellular localization of Tax-1, which is mostly retained in the cytoplasm, and this correlates with impaired migration of RelA into the nucleus. Cytoplasmic and nuclear mutant forms of CIITA reveal that CIITA exploits different strategies to suppress Tax-1-mediated NF-κB activation in both subcellular compartments. CIITA interacts with Tax-1 without preventing Tax-1 binding to both IKKγ and RelA. Nevertheless, CIITA affects Tax-1-induced IKK activity, causing retention of the inactive p50/RelA/IκB complex in the cytoplasm. Nuclear CIITA associates with Tax-1/RelA in nuclear bodies, blocking Tax-1-dependent activation of NF-κB-responsive genes. Thus, CIITA inhibits cytoplasmic and nuclear steps of Tax-1-mediated NF-κB activation. These results, together with our previous finding that CIITA acts as a restriction factor inhibiting Tax-1-promoted HTLV-1 gene expression and replication, indicate that CIITA is a versatile molecule that might also counteract Tax-1 transforming activity. Unveiling the molecular basis of CIITA-mediated inhibition of Tax-1 functions may be important in defining new strategies to control HTLV-1 spreading and oncogenic potential. IMPORTANCE HTLV-1 is the causative agent of human adult T cell leukemia-lymphoma (ATLL). The viral transactivator Tax-1 plays a central role in the onset of ATLL, mostly by deregulating the NF-κB pathway. We demonstrate that CIITA, a key regulator of adaptive immunity, suppresses Tax-1-dependent activation of NF-κB by acting at several levels: it retains most of Tax-1 and RelA in the cytoplasm and inhibits their residual functional activity in the nucleus. Importantly, this inhibition occurs in cells that are targets of HTLV-1 infection. These findings are of interest in the field of virology because they expand the current knowledge of the functional relationship between viral products and cellular interactors and provide the basis for a better understanding of the molecular countermeasures adopted by the host cell to antagonize HTLV-1 spreading and transforming properties. Within this framework, our results may contribute to the establishment of novel strategies against HTLV-1 infection and virus-dependent oncogenic transformation.
Collapse
|
6
|
Shirinian M, Kfoury Y, Dassouki Z, El-Hajj H, Bazarbachi A. Tax-1 and Tax-2 similarities and differences: focus on post-translational modifications and NF-κB activation. Front Microbiol 2013; 4:231. [PMID: 23966989 PMCID: PMC3744011 DOI: 10.3389/fmicb.2013.00231] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/29/2013] [Indexed: 11/13/2022] Open
Abstract
Although human T cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) share similar genetic organization, they have major differences in their pathogenesis and disease manifestation. HTLV-1 is capable of transforming T lymphocytes in infected patients resulting in adult T cell leukemia/lymphoma whereas HTLV-2 is not clearly associated with lymphoproliferative diseases. Numerous studies have provided accumulating evidence on the involvement of the viral transactivators Tax-1 versus Tax-2 in T cell transformation. Tax-1 is a potent transcriptional activator of both viral and cellular genes. Tax-1 post-translational modifications and specifically ubiquitylation and SUMOylation have been implicated in nuclear factor-kappaB (NF-κB) activation and may contribute to its transformation capacity. Although Tax-2 has similar protein structure compared to Tax-1, the two proteins display differences both in their protein–protein interaction and activation of signal transduction pathways. Recent studies on Tax-2 have suggested ubiquitylation and SUMOylation independent mechanisms of NF-κB activation. In this present review, structural and functional differences between Tax-1 and Tax-2 will be summarized. Specifically, we will address their subcellular localization, nuclear trafficking and their effect on cellular regulatory proteins. A special attention will be given to Tax-1/Tax-2 post-translational modification such as ubiquitylation, SUMOylation, phosphorylation, acetylation, NF-κB activation, and protein–protein interactions involved in oncogenecity both in vivo and in vitro.
Collapse
Affiliation(s)
- Margret Shirinian
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | |
Collapse
|
7
|
Turci M, Lodewick J, Di Gennaro G, Rinaldi AS, Marin O, Diani E, Sampaio C, Bex F, Bertazzoni U, Romanelli MG. Ubiquitination and sumoylation of the HTLV-2 Tax-2B protein regulate its NF-κB activity: a comparative study with the HTLV-1 Tax-1 protein. Retrovirology 2012; 9:102. [PMID: 23217160 PMCID: PMC3543174 DOI: 10.1186/1742-4690-9-102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 11/02/2012] [Indexed: 01/17/2023] Open
Abstract
Background Retroviruses HTLV-1 and HTLV-2 have homologous genomic structures but differ significantly in pathogenicity. HTLV-1 is associated with Adult T cell Leukemia (ATL), whereas infection by HTLV-2 has no association with neoplasia. Transformation of T lymphocytes by HTLV-1 is linked to the capacity of its oncoprotein Tax-1 to alter cell survival and cell cycle control mechanisms. Among these functions, Tax-1-mediated activation of cellular gene expression via the NF-κB pathway depends on Tax-1 post-translational modifications by ubiquitination and sumoylation. The Tax-2 protein of HTLV-2B (Tax-2B) is also modified by ubiquitination and sumoylation and activates the NF-κB pathway to a level similar to that of Tax-1. The present study aims to understand whether ubiquitination and sumoylation modifications are involved in Tax-2B-mediated activation of the NF-κB pathway. Results The comparison of Tax-1 and Tax-2B lysine to arginine substitution mutants revealed conserved patterns and levels of ubiquitination with notable difference in the lysine usage for sumoylation. Neither Tax-1 nor Tax-2B ubiquitination and sumoylation deficient mutants could activate the NF-κB pathway and fusion of ubiquitin or SUMO-1 to the C-terminus of the ubiquitination and sumoylation deficient Tax-2B mutant strikingly restored transcriptional activity. In addition, ubiquitinated forms of Tax-2B colocalized with RelA and IKKγ in prominent cytoplasmic structures associated with the Golgi apparatus, whereas colocalization of Tax-2B with the RelA subunit of NF-κB and the transcriptional coactivator p300 in punctate nuclear structures was dependent on Tax-2B sumoylation, as previously observed for Tax-1. Conclusions Both Tax-1 and Tax-2 activate the NF-κB pathway via similar mechanisms involving ubiquitination and sumoylation. Therefore, the different transforming potential of HTLV-1 and HTLV-2 is unlikely to be related to different modes of activation of the canonical NF-κB pathway.
Collapse
Affiliation(s)
- Marco Turci
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bonnet A, Randrianarison-Huetz V, Nzounza P, Nedelec M, Chazal M, Waast L, Pene S, Bazarbachi A, Mahieux R, Bénit L, Pique C. Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation. Retrovirology 2012; 9:77. [PMID: 23009398 PMCID: PMC3476979 DOI: 10.1186/1742-4690-9-77] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 09/01/2012] [Indexed: 11/19/2022] Open
Abstract
Background The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4+ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. Results In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4+ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. Conclusions These data reveal that the formation of Tax nuclear bodies, previously associated to transcriptional activities in Tax-transfected cells, is dispensable for NF-κB promoter activation, notably in CD4+ T cells. They also provide the first evidence that Tax SUMOylation is not a key determinant for Tax-induced NF-κB activation.
Collapse
Affiliation(s)
- Amandine Bonnet
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Human T-cell leukemia virus type 1 (HTLV-1) bZIP factor requires cellular transcription factor JunD to upregulate HTLV-1 antisense transcription from the 3' long terminal repeat. J Virol 2012; 86:9070-8. [PMID: 22696638 DOI: 10.1128/jvi.00661-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection with the human T-cell leukemia virus type 1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia (ATL), a fatal malignancy characterized by the uncontrolled proliferation of virally infected CD4(+) T cells. The HTLV-1 basic leucine zipper factor (HBZ) is believed to contribute to development and maintenance of ATL. Unlike the other HTLV-1 genes, the hbz gene is encoded on the complementary strand of the provirus and therefore is not under direct control of the promoter within the 5' long terminal repeat (LTR) of the provirus. This promoter can undergo inactivating genetic or epigenetic changes during the course of ATL that eliminates expression of all viral genes except that of hbz. In contrast, repressive modifications are not known to occur on the hbz promoter located in the 3' LTR, and hbz expression has been consistently detected in all ATL patient samples. Although Sp1 regulates basal transcription from the HBZ promoter, other factors that activate transcription remain undefined. In this study, we used a proviral reporter construct deleted of the 5' LTR to show that HBZ upregulates its own expression through cooperation with JunD. Activation of antisense transcription was apparent in serum-deprived cells in which the level of JunD was elevated, and elimination of JunD expression by gene knockout or shRNA-mediated knockdown abrogated this effect. Activation through HBZ and JunD additionally required Sp1 binding at the hbz promoter. These data favor a model in which JunD is recruited to the promoter through Sp1, where it heterodimerizes with HBZ thereby enhancing its activity. Separately, hbz gene expression led to an increase in JunD abundance, and this effect correlated with emergence of features of transformed cells in immortalized fibroblasts. Overall, our results suggest that JunD represents a novel therapeutic target for the treatment of ATL.
Collapse
|
10
|
Comparison of the Genetic Organization, Expression Strategies and Oncogenic Potential of HTLV-1 and HTLV-2. LEUKEMIA RESEARCH AND TREATMENT 2011; 2012:876153. [PMID: 23213551 PMCID: PMC3504254 DOI: 10.1155/2012/876153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/24/2011] [Indexed: 11/30/2022]
Abstract
Human T cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are genetically related complex retroviruses that are capable of immortalizing human T-cells in vitro and establish life-long persistent infections in vivo. In spite of these apparent similarities, HTLV-1 and HTLV-2 exhibit a significantly different pathogenic potential. HTLV-1 is recognized as the causative agent of adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In contrast, HTLV-2 has not been causally linked to human malignancy, although it may increase the risk of developing inflammatory neuropathies and infectious diseases. The present paper is focused on the studies aimed at defining the viral genetic determinants of the pathobiology of HTLV-1 and HTLV-2 through a comparison of the expression strategies and functional properties of the different gene products of the two viruses.
Collapse
|
11
|
Abstract
Since posttranslational modification (PTM) by the small ubiquitin-related modifiers (SUMOs) was discovered over a decade ago, a huge number of cellular proteins have been found to be reversibly modified, resulting in alteration of differential cellular pathways. Although the molecular consequences of SUMO attachment are difficult to predict, the underlying principle of SUMOylation is altering inter- and/or intramolecular interactions of the modified substrate, changing localization, stability, and/or activity. Unsurprisingly, many different pathogens have evolved to exploit the cellular SUMO modification system due to its functional flexibility and far-reaching functional downstream consequences. Although the extensive knowledge gained so far is impressive, a definitive conclusion about the role of SUMO modification during virus infection in general remains elusive and is still restricted to a few, yet promising concepts. Based on the available data, this review aims, first, to provide a detailed overview of the current state of knowledge and, second, to evaluate the currently known common principles/molecular mechanisms of how human pathogenic microbes, especially viruses and their regulatory proteins, exploit the host cell SUMO modification system.
Collapse
|
12
|
FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma. Blood 2011; 118:3911-21. [PMID: 21821710 DOI: 10.1182/blood-2010-12-319467] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an incurable disease where most patients succumb within the first year of diagnosis. Both standard chemotherapy regimens and mAbs directed against ATLL tumor markers do not alter this aggressive clinical course. Therapeutic development would be facilitated by the discovery of genes and pathways that drive or initiate ATLL, but so far amenable drug targets have not been forthcoming. Because the IL-2 signaling pathway plays a prominent role in ATLL pathogenesis, mutational analysis of pathway components should yield interesting results. In this study, we focused on JAK3, the nonreceptor tyrosine kinase that signals from the IL-2R, where activating mutations have been found in diverse neoplasms. We screened 36 ATLL patients and 24 ethnically matched controls and found 4 patients with mutations in JAK3. These somatic, missense mutations occurred in the N-terminal FERM (founding members: band 4.1, ezrin, radixin, and moesin) domain and induced gain of function in JAK3. Importantly, we show that these mutant JAK3s are inhibited with a specific kinase inhibitor already in human clinical testing. Our findings underscore the importance of this pathway in ATLL development and offer a therapeutic handle for this incurable cancer.
Collapse
|
13
|
Olière S, Douville R, Sze A, Belgnaoui SM, Hiscott J. Modulation of innate immune responses during human T-cell leukemia virus (HTLV-1) pathogenesis. Cytokine Growth Factor Rev 2011; 22:197-210. [DOI: 10.1016/j.cytogfr.2011.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Lairmore MD, Anupam R, Bowden N, Haines R, Haynes RAH, Ratner L, Green PL. Molecular determinants of human T-lymphotropic virus type 1 transmission and spread. Viruses 2011; 3:1131-65. [PMID: 21994774 PMCID: PMC3185783 DOI: 10.3390/v3071131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/23/2023] Open
Abstract
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.
Collapse
Affiliation(s)
- Michael D. Lairmore
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-9203; Fax: +1-614-292-6473
| | - Rajaneesh Anupam
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Nadine Bowden
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Robyn Haines
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Rashade A. H. Haynes
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Lee Ratner
- Department of Medicine, Pathology, and Molecular Microbiology, Division of Biology and Biological Sciences, Washington University School of Medicine, Campus Box 8069, 660 S. Euclid Ave., St. Louis, MO 63110, USA; E-Mail: (L.R.)
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Bertazzoni U, Turci M, Avesani F, Di Gennaro G, Bidoia C, Romanelli MG. Intracellular localization and cellular factors interaction of HTLV-1 and HTLV-2 Tax proteins: similarities and functional differences. Viruses 2011; 3:541-560. [PMID: 21994745 PMCID: PMC3185761 DOI: 10.3390/v3050541] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 04/26/2011] [Indexed: 12/24/2022] Open
Abstract
Human T-lymphotropic viruses type 1 (HTLV-1) and type 2 (HTLV-2) present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity.
Collapse
Affiliation(s)
- Umberto Bertazzoni
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
- Authors to whom correspondence should be addressed; E-Mails: (U.B.); (M.G.R); Tel.: +39-0458027182; Fax: +390458027180
| | - Marco Turci
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
| | - Francesca Avesani
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
| | - Gianfranco Di Gennaro
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
| | - Carlo Bidoia
- Centre for Research in Infectious Diseases, University College Dublin, Belfield, Dublin 4, Ireland; E-Mail: (C.B.)
| | - Maria Grazia Romanelli
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
- Authors to whom correspondence should be addressed; E-Mails: (U.B.); (M.G.R); Tel.: +39-0458027182; Fax: +390458027180
| |
Collapse
|
16
|
The HTLV-1 hbz antisense gene indirectly promotes tax expression via down-regulation of p30(II) mRNA. Virology 2010; 410:307-15. [PMID: 21176937 DOI: 10.1016/j.virol.2010.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/22/2010] [Accepted: 11/22/2010] [Indexed: 01/08/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ) is transcribed from the antisense genomic DNA strand and functions differently in its RNA and protein forms. To distinguish between the roles of hbz mRNA and HBZ protein, we generated mutants in a proviral clone that specifically disrupt the hbz gene product. A proviral clone with a splice acceptor mutation that disrupts expression of the predominant hbz mRNA resulted in lower levels of tax mRNA. Heterologous hbz expression restored Tax activity in cells expressing this mutant clone. In contrast, proviral mutants that disrupt HBZ protein did not affect levels of tax mRNA. Expression of hbz resulted in lower levels of p30(II) mRNA. Mutation of p30(II) overcame the effects of the splice acceptor mutation of hbz, and restored tax expression. Thus, there is a complex interplay of viral regulatory proteins controlling levels of HTLV-1 gene expression.
Collapse
|
17
|
Olière S, Hernandez E, Lézin A, Arguello M, Douville R, Nguyen TLA, Olindo S, Panelatti G, Kazanji M, Wilkinson P, Sékaly RP, Césaire R, Hiscott J. HTLV-1 evades type I interferon antiviral signaling by inducing the suppressor of cytokine signaling 1 (SOCS1). PLoS Pathog 2010; 6:e1001177. [PMID: 21079688 PMCID: PMC2973829 DOI: 10.1371/journal.ppat.1001177] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 10/01/2010] [Indexed: 12/25/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of Adult T cell Leukemia (ATL) and the neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the majority of HTLV-1–infected individuals remain asymptomatic carriers (AC) during their lifetime, 2–5% will develop either ATL or HAM/TSP, but never both. To better understand the gene expression changes in HTLV-1-associated diseases, we examined the mRNA profiles of CD4+ T cells isolated from 7 ATL, 12 HAM/TSP, 11 AC and 8 non-infected controls. Using genomic approaches followed by bioinformatic analysis, we identified gene expression pattern characteristic of HTLV-1 infected individuals and particular disease states. Of particular interest, the suppressor of cytokine signaling 1—SOCS1—was upregulated in HAM/TSP and AC patients but not in ATL. Moreover, SOCS1 was positively correlated with the expression of HTLV-1 mRNA in HAM/TSP patient samples. In primary PBMCs transfected with a HTLV-1 proviral clone and in HTLV-1-transformed MT-2 cells, HTLV-1 replication correlated with induction of SOCS1 and inhibition of IFN-α/β and IFN-stimulated gene expression. Targeting SOCS1 with siRNA restored type I IFN production and reduced HTLV-1 replication in MT-2 cells. Conversely, exogenous expression of SOCS1 resulted in enhanced HTLV-1 mRNA synthesis. In addition to inhibiting signaling downstream of the IFN receptor, SOCS1 inhibited IFN-β production by targeting IRF3 for ubiquitination and proteasomal degradation. These observations identify a novel SOCS1 driven mechanism of evasion of the type I IFN antiviral response against HTLV-1. Infection with HTLV-1 leads to the development of Adult T cell Leukemia (ATL) or the neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the majority of HTLV-1–infected individuals remain asymptomatic carriers (AC) during their lifetime, 2–5% will develop either ATL or HAM/TSP. Using gene expression profiling of CD4+ T lymphocytes from HTLV-1 infected patients, we identified Suppressor of cytokine signaling 1 (SOCS1) as being highly expressed in HAM/TSP and AC patients. SOCS1 expression positively correlated with the high HTLV-1 mRNA load that is characteristic of HAM/TSP patients. SOCS1 inhibited cellular antiviral signaling during HTLV-1 infection by degrading IRF3, an essential transcription factor in the interferon pathway. Our study reveals a novel evasion mechanism utilized by HTLV-1 that leads to increased retroviral replication, without triggering the innate immune response.
Collapse
Affiliation(s)
- Stéphanie Olière
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Belgnaoui SM, Fryrear KA, Nyalwidhe JO, Guo X, Semmes OJ. The viral oncoprotein tax sequesters DNA damage response factors by tethering MDC1 to chromatin. J Biol Chem 2010; 285:32897-32905. [PMID: 20729195 PMCID: PMC2963403 DOI: 10.1074/jbc.m110.146373] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Infection with human T-cell leukemia virus induces cellular genomic instability mediated through the viral oncoprotein Tax. Here we present evidence that Tax undermines the cellular DNA damage response by sequestration of damage response factors. We show by confocal microscopy that Tax forms damage-independent nuclear foci that contain DNA-PK, BRCA1, and MDC1. Tax sequesters MDC1 to chromatin sites distinct from classic ionizing radiation-induced foci. The recruitment of MDC1 is competitive between the two foci. The N-terminal region of Tax is sufficient for foci localization, and the C-terminal half is critical for binding to MDC1 and recruitment of additional response factors. Tax expression and DNA damage response factor recruitment repressed the formation of ionizing radiation-induced Nbs1-containing foci. The Tax-induced “pseudo” DNA damage response results in phosphorylation and monoubiquitylation of H2AX, which is ablated by siRNA suppression of MDC1. These data support a model for virus-induced genomic instability in which viral oncogene-induced damage-independent foci compete with normal cellular DNA damage response.
Collapse
Affiliation(s)
- S Mehdi Belgnaoui
- From the Department of Microbiology and Molecular Cell Biology, Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, Virgina 23508
| | - Kimberly A Fryrear
- From the Department of Microbiology and Molecular Cell Biology, Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, Virgina 23508
| | - Julius O Nyalwidhe
- From the Department of Microbiology and Molecular Cell Biology, Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, Virgina 23508
| | - Xin Guo
- From the Department of Microbiology and Molecular Cell Biology, Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, Virgina 23508
| | - O John Semmes
- From the Department of Microbiology and Molecular Cell Biology, Cancer Biology and Infectious Disease Research Center, Eastern Virginia Medical School, Norfolk, Virgina 23508.
| |
Collapse
|
19
|
Haynes RAH, Zimmerman B, Millward L, Ware E, Premanandan C, Yu L, Phipps AJ, Lairmore MD. Early spatial and temporal events of human T-lymphotropic virus type 1 spread following blood-borne transmission in a rabbit model of infection. J Virol 2010; 84:5124-30. [PMID: 20219918 PMCID: PMC2863820 DOI: 10.1128/jvi.01537-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 02/13/2010] [Indexed: 01/13/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) infection causes adult T-cell leukemia/lymphoma (ATL) and is associated with a variety of lymphocyte-mediated disorders. HTLV-1 transmission occurs by transmission of infected cells via breast-feeding by infected mothers, sexual intercourse, and contaminated blood products. The route of exposure and early virus replication events are believed to be key determinants of virus-associated spread, antiviral immune responses, and ultimately disease outcomes. The lack of knowledge of early events of HTLV-1 spread following blood-borne transmission of the virus in vivo hinders a more complete understanding of the immunopathogenesis of HTLV-1 infections. Herein, we have used an established animal model of HTLV-1 infection to study early spatial and temporal events of the viral infection. Twelve-week-old rabbits were injected intravenously with cell-associated HTLV-1 (ACH-transformed R49). Blood and tissues were collected at defined intervals throughout the study to test the early spread of the infection. Antibody and hematologic responses were monitored throughout the infection. HTLV-1 intracellular Tax and soluble p19 matrix were tested from ex vivo cultured lymphocytes. Proviral copy numbers were measured by real-time PCR from blood and tissue mononuclear leukocytes. Our data indicate that intravenous infection with cell-associated HTLV-1 targets lymphocytes located in both primary lymphoid and gut-associated lymphoid compartments. A transient lymphocytosis that correlated with peak virus detection parameters was observed by 1 week postinfection before returning to baseline levels. Our data support emerging evidence that HTLV-1 promotes lymphocyte proliferation preceding early viral spread in lymphoid compartments to establish and maintain persistent infection.
Collapse
Affiliation(s)
- Rashade A. H. Haynes
- Department of Veterinary Biosciences, Center for Biostatistics, Center for Retrovirus Research and Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Bevin Zimmerman
- Department of Veterinary Biosciences, Center for Biostatistics, Center for Retrovirus Research and Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Laurie Millward
- Department of Veterinary Biosciences, Center for Biostatistics, Center for Retrovirus Research and Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Evan Ware
- Department of Veterinary Biosciences, Center for Biostatistics, Center for Retrovirus Research and Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Christopher Premanandan
- Department of Veterinary Biosciences, Center for Biostatistics, Center for Retrovirus Research and Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Lianbo Yu
- Department of Veterinary Biosciences, Center for Biostatistics, Center for Retrovirus Research and Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Andrew J. Phipps
- Department of Veterinary Biosciences, Center for Biostatistics, Center for Retrovirus Research and Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Michael D. Lairmore
- Department of Veterinary Biosciences, Center for Biostatistics, Center for Retrovirus Research and Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
20
|
Human T-lymphotropic virus type 1 transcription and chromatin-remodeling complexes. J Virol 2010; 84:4755-68. [PMID: 20164218 DOI: 10.1128/jvi.00851-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) encodes the viral protein Tax, which is believed to act as a viral transactivator through its interactions with a variety of transcription factors, including CREB and NF-kappaB. As is the case for all retroviruses, the provirus is inserted into the host DNA, where nucleosomes are deposited to ensure efficient packaging. Nucleosomes act as roadblocks in transcription, making it difficult for RNA polymerase II (Pol II) to proceed toward the 3' end of the genome. Because of this, a variety of chromatin remodelers can act to modify nucleosomes, allowing for efficient transcription. While a number of covalent modifications are known to occur on histone tails in HTLV-1 infection (i.e., histone acetyltransferases [HATs], histone deacetylases [HDACs], and histone methyltransferases [HMTs]), evidence points to the use of chromatin remodelers that use energy from ATP hydrolysis to remodel nucleosomes. Here we confirm that BRG1, which is the core subunit of eight chromatin-remodeling complexes, is essential not only for Tax transactivation but also for viral replication. This is especially evident when wild-type infectious clones of HTLV-1 are used. BRG1 associates with Tax at the HTLV-1 long terminal repeat (LTR), and coexpression of BRG1 and Tax results in increased rates of transcription. The interaction of BRG1 with Tax additionally recruits the basal transcriptional machinery and removes some of the core histones from the nucleosome at the start site (Nuc 1). When using the BRG1-deficient cell lines SW13, C33A, and TSUPR1, we observed little viral transcription and no viral replication. Importantly, while these three cell lines do not express detectable levels of BRG1, much of the SWI/SNF complex remains assembled in the cells. Knockdown of BRG1 and associated SWI/SNF subunits suggests that the BRG1-utilizing SWI/SNF complex PBAF is responsible for HTLV-1 nucleosome remodeling. Finally, HTLV-1 infection of cell lines with a knockdown in BRG1 or the PBAF complex results in a significant reduction in viral production. Overall, we concluded that BRG1 is required for Tax transactivation and HTLV-1 viral production and that the PBAF complex appears to be responsible for nucleosome remodeling.
Collapse
|
21
|
Banerjee P, Crawford L, Samuelson E, Feuer G. Hematopoietic stem cells and retroviral infection. Retrovirology 2010; 7:8. [PMID: 20132553 PMCID: PMC2826343 DOI: 10.1186/1742-4690-7-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 02/04/2010] [Indexed: 11/10/2022] Open
Abstract
Retroviral induced malignancies serve as ideal models to help us better understand the molecular mechanisms associated with the initiation and progression of leukemogenesis. Numerous retroviruses including AEV, FLV, M-MuLV and HTLV-1 have the ability to infect hematopoietic stem and progenitor cells, resulting in the deregulation of normal hematopoiesis and the development of leukemia/lymphoma. Research over the last few decades has elucidated similarities between retroviral-induced leukemogenesis, initiated by deregulation of innate hematopoietic stem cell traits, and the cancer stem cell hypothesis. Ongoing research in some of these models may provide a better understanding of the processes of normal hematopoiesis and cancer stem cells. Research on retroviral induced leukemias and lymphomas may identify the molecular events which trigger the initial cellular transformation and subsequent maintenance of hematologic malignancies, including the generation of cancer stem cells. This review focuses on the role of retroviral infection in hematopoietic stem cells and the initiation, maintenance and progression of hematological malignancies.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Lindsey Crawford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Elizabeth Samuelson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Gerold Feuer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
22
|
Distinct functions of HTLV-1 Tax1 from HTLV-2 Tax2 contribute key roles to viral pathogenesis. Retrovirology 2009; 6:117. [PMID: 20017952 PMCID: PMC2806368 DOI: 10.1186/1742-4690-6-117] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022] Open
Abstract
While the human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL), to date, its close relative HTLV-2 is not associated with ATL or other types of malignancies. Accumulating evidence shows that HTLV-1 Tax1 and HTLV-2 Tax2 have many shared activities, but the two proteins have a limited number of significantly distinct activities, and these distinctions appear to play key roles in HTLV-1 specific pathogenesis. In this review, we summarize the functions of Tax1 associated with cell survival, cell proliferation, persistent infection as well as pathogenesis. We emphasize special attention to distinctions between Tax1 and Tax2.
Collapse
|
23
|
Cyclosporine-induced immune suppression alters establishment of HTLV-1 infection in a rabbit model. Blood 2009; 115:815-23. [PMID: 19965683 DOI: 10.1182/blood-2009-07-230912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) infection causes adult T-cell leukemia and several lymphocyte-mediated inflammatory diseases. Persistent HTLV-1 infection is determined by a balance between host immune responses and virus spread. Immunomodulatory therapy involving HTLV-1-infected patients occurs in a variety of clinical settings. Knowledge of how these treatments influence host-virus relationships is not understood. In this study, we examined the effects of cyclosporine A (CsA)-induced immune suppression during early infection of HTLV-1. Twenty-four New Zealand white rabbits were split into 4 groups. Three groups were treated with either 10 or 20 mg/kg CsA or saline before infection. The fourth group was treated with 20 mg/kg CsA 1 week after infection. Immune suppression, plasma CsA concentration, ex vivo lymphocyte HTLV-1 p19 production, anti-HTLV-1 serologic responses, and proviral load levels were measured during infection. Our data indicated that CsA treatment before HTLV-1 infection enhanced early viral expression compared with untreated HTLV-1-infected rabbits, and altered long-term viral expression parameters. However, CsA treatment 1 week after infection diminished HTLV-1 expression throughout the 10-week study course. Collectively, these data indicate immunologic control is a key determinant of early HTLV-1 spread and have important implications for therapeutic intervention during HTLV-1-associated diseases.
Collapse
|
24
|
Van Duyne R, Pedati C, Guendel I, Carpio L, Kehn-Hall K, Saifuddin M, Kashanchi F. The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology 2009; 6:76. [PMID: 19674458 PMCID: PMC2743631 DOI: 10.1186/1742-4690-6-76] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 08/12/2009] [Indexed: 01/10/2023] Open
Abstract
The development of novel techniques and systems to study human infectious diseases in both an in vitro and in vivo settings is always in high demand. Ideally, small animal models are the most efficient method of studying human afflictions. This is especially evident in the study of the human retroviruses, HIV-1 and HTLV-1, in that current simian animal models, though robust, are often expensive and difficult to maintain. Over the past two decades, the construction of humanized animal models through the transplantation and engraftment of human tissues or progenitor cells into immunocompromised mouse strains has allowed for the development of a reconstituted human tissue scaffold in a small animal system. The utilization of small animal models for retroviral studies required expansion of the early CB-17 scid/scid mouse resulting in animals demonstrating improved engraftment efficiency and infectivity. The implantation of uneducated human immune cells and associated tissue provided the basis for the SCID-hu Thy/Liv and hu-PBL-SCID models. Engraftment efficiency of these tissues was further improved through the integration of the non-obese diabetic (NOD) mutation leading to the creation of NODSCID, NOD/Shi-scid IL2rγ-/-, and NOD/SCID β2-microglobulinnull animals. Further efforts at minimizing the response of the innate murine immune system produced the Rag2-/-γc-/- model which marked an important advancement in the use of human CD34+ hematopoietic stem cells. Together, these animal models have revolutionized the investigation of retroviral infections in vivo.
Collapse
Affiliation(s)
- Rachel Van Duyne
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC 20037, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kawai K, Uchida Y, Yonekura K, Virtanen S, Tähtinen M, Krohn K, Ranki A, Kanekura T. Cutaneous-type adult T-cell leukemia/lymphoma does not primarily show deletion of NAV3 gene. J Invest Dermatol 2009; 130:316-8. [PMID: 19626031 DOI: 10.1038/jid.2009.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Adhesion-dependent growth of primary adult T cell leukemia cells with down-regulation of HTLV-I p40Tax protein: a novel in vitro model of the growth of acute ATL cells. Int J Hematol 2008; 88:551-564. [DOI: 10.1007/s12185-008-0207-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 10/07/2008] [Accepted: 10/16/2008] [Indexed: 11/26/2022]
|
27
|
Ramadan E, Ward M, Guo X, Durkin SS, Sawyer A, Vilela M, Osgood C, Pothen A, Semmes OJ. Physical and in silico approaches identify DNA-PK in a Tax DNA-damage response interactome. Retrovirology 2008; 5:92. [PMID: 18922151 PMCID: PMC2576351 DOI: 10.1186/1742-4690-5-92] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 10/15/2008] [Indexed: 12/16/2022] Open
Abstract
Background We have initiated an effort to exhaustively map interactions between HTLV-1 Tax and host cellular proteins. The resulting Tax interactome will have significant utility toward defining new and understanding known activities of this important viral protein. In addition, the completion of a full Tax interactome will also help shed light upon the functional consequences of these myriad Tax activities. The physical mapping process involved the affinity isolation of Tax complexes followed by sequence identification using tandem mass spectrometry. To date we have mapped 250 cellular components within this interactome. Here we present our approach to prioritizing these interactions via an in silico culling process. Results We first constructed an in silico Tax interactome comprised of 46 literature-confirmed protein-protein interactions. This number was then reduced to four Tax-interactions suspected to play a role in DNA damage response (Rad51, TOP1, Chk2, 53BP1). The first-neighbor and second-neighbor interactions of these four proteins were assembled from available human protein interaction databases. Through an analysis of betweenness and closeness centrality measures, and numbers of interactions, we ranked proteins in the first neighborhood. When this rank list was compared to the list of physical Tax-binding proteins, DNA-PK was the highest ranked protein common to both lists. An overlapping clustering of the Tax-specific second-neighborhood protein network showed DNA-PK to be one of three bridge proteins that link multiple clusters in the DNA damage response network. Conclusion The interaction of Tax with DNA-PK represents an important biological paradigm as suggested via consensus findings in vivo and in silico. We present this methodology as an approach to discovery and as a means of validating components of a consensus Tax interactome.
Collapse
Affiliation(s)
- Emad Ramadan
- George L, Wright Center for Biomedical Proteomics, Eastern Virginia Medical School, Norfolk, VA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Van Duyne R, Kehn-Hall K, Klase Z, Easley R, Heydarian M, Saifuddin M, Wu W, Kashanchi F. Retroviral proteomics and interactomes: intricate balances of cell survival and viral replication. Expert Rev Proteomics 2008; 5:507-28. [PMID: 18532916 DOI: 10.1586/14789450.5.3.507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overall changes in the host cellular proteome upon retroviral infection intensify from the initial entry of the virus to the incorporation of viral DNA into the host genome, and finally to the consistent latent state of infection. The host cell reacts to both the entry of viral elements and the manipulation of host cellular machinery, resulting in a cascade of signaling events and pathway activation. Cell type- and tissue-specific responses are also characteristic of infection and can be classified based on the differential expression of genes and proteins between normal and disease states. The characterization of differentially expressed proteins upon infection is also critical in identifying potential biomarkers within infected bodily fluids. Biomarkers can be used to monitor the progression of infection, track the effectiveness of specific treatments and characterize the mechanisms of disease pathogenesis. Standard proteomic approaches have been applied to monitor the changes in global protein expression and localization in infected cells, tissues and fluids. Here we report on recent investigations into the characterization of proteomes in response to retroviral infection.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University, Department of Microbiology, Immunology, & Tropical Medicine, 2300 I Street, NW, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Agbottah E, Yeh WI, Berro R, Klase Z, Pedati C, Kehn-Hall K, Wu W, Kashanchi F. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways. AIDS Res Ther 2008; 5:12. [PMID: 18544167 PMCID: PMC2483717 DOI: 10.1186/1742-6405-5-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 06/10/2008] [Indexed: 01/22/2023] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) induces adult T-cell leukemia/lymphoma (ATL/L), a fatal lymphoproliferative disorder, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic progressive disease of the central nervous system after a long period of latent infection. Although the mechanism of transformation and leukemogenesis is not fully elucidated, there is evidence to suggest that the viral oncoprotein Tax plays a crucial role in these processes through the regulation of several pathways including NF-κB and the cell cycle pathways. The observation that NF-κB, which is strongly induced by Tax, is indispensable for the maintenance of the malignant phenotype of HTLV-1 by regulating the expression of various genes involved in cell cycle regulation and inhibition of apoptosis provides a possible molecular target for these infected cells. To develop potential new therapeutic strategies for HTLV-1 infected cells, in this present study, we initially screened a battery of NF-κB and CDK inhibitors (total of 35 compounds) to examine their effects on the growth and survival of infected T-cell lines. Two drugs namely BMS-345541 and Purvalanol A exhibited higher levels of growth inhibition and apoptosis in infected cell as compared to uninfected cells. BMS-345541 inhibited IKKβ kinase activity from HTLV-1 infected cells with an IC50 (the 50% of inhibitory concentration) value of 50 nM compared to 500 nM from control cells as measured by in vitro kinase assays. The effects of Purvalanol A were associated with suppression of CDK2/cyclin E complex activity as previously shown by us. Combination of both BMS-345541 and Purvalanol A showed a reduced level of HTLV-1 p19 Gag production in cell culture. The apparent apoptosis in these infected cells were associated with increased caspase-3 activity and PARP cleavage. The potent and selective apoptotic effects of these drugs suggest that both BMS-345541 and Purvalanol A, which target both NF-κB and CDK complex and the G1/S border, might be promising new agents in the treatment of these infected patients.
Collapse
|
30
|
Laybourn P. The ups and downs of Tax and histones in adult T-cell leukemogenesis. Future Oncol 2008; 4:311-7. [PMID: 18518755 DOI: 10.2217/14796694.4.3.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Riedel D, Roddy K, Sajadi M. Abdominal Pain and Bacterial Meningitis in a Previously Healthy Young Adult. Clin Infect Dis 2008. [DOI: 10.1086/587066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Usui T, Yanagihara K, Tsukasaki K, Murata K, Hasegawa H, Yamada Y, Kamihira S. Characteristic expression of HTLV-1 basic zipper factor (HBZ) transcripts in HTLV-1 provirus-positive cells. Retrovirology 2008; 5:34. [PMID: 18426605 PMCID: PMC2386809 DOI: 10.1186/1742-4690-5-34] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 04/22/2008] [Indexed: 11/10/2022] Open
Abstract
Background HTLV-1 causes adult T-cell leukemia (ATL). Although there have been many studies on the oncogenesis of the viral protein Tax, the precise oncogenic mechanism remains to be elucidated. Recently, a new viral factor, HTLV-1 basic Zip factor (HBZ), encoded from the minus strand mRNA was discovered and the current models of Tax-centered ATL cell pathogenesis are in conflict with this discovery. HBZs consisting of non-spliced and spliced isoforms (HBZ-SI) are thought to be implicated in viral replication and T-cell proliferation but there is little evidence on the HBZ expression profile on a large scale. Results To investigate the role of HBZ-SI in HTLV-1 provirus-positive cells, the HBZ-SI and Tax mRNA loads in samples with a mixture of infected and non-infected cells were measured and then adjusted by dividing by the HTLV-I proviral load. We show here that the HBZ-SI mRNA level is 4-fold higher than non-spliced HBZ and is expressed by almost all cells harboring HTLV-1 provirus with variable intensity. The proviral-adjusted HBZ-SI and Tax quantification revealed a characteristic imbalanced expression feature of high HBZ and low Tax expression levels in primary ATL cells or high HBZ and very high Tax levels in HTLV-1-related cell lines (cell lines) compared with a standard expression profile of low HBZ and low Tax in infected cells. Interestingly, according to the mutual Tax and HBZ expression status, HTLV-1-related cell lines were subcategorized into two groups, an ATL cell type with high HBZ and low Tax levels and another type with high Tax and either high or low HBZ, which was closely related to its cell origin. Conclusion This is the first comprehensive study to evaluate the mutual expression profile of HBZ and Tax in provirus-positive cells, revealing that there are quantitative and relative characteristic features among infected cells, primary ATL cells, and cell lines.
Collapse
Affiliation(s)
- Tetsuya Usui
- Department of Laboratory Medicine Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City, Japan.
| | | | | | | | | | | | | |
Collapse
|