1
|
Sankar M, Kryvi H, Fraser TWK, Philip AJP, Remø S, Hansen TJ, Witten PE, Fjelldal PG. A new method for regionalization of the vertebral column in salmonids based on radiographic hallmarks. JOURNAL OF FISH BIOLOGY 2024; 105:1189-1199. [PMID: 39034462 DOI: 10.1111/jfb.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Abstract
Current procedures to establish vertebral column regionalization (e.g., histology) in fish are time consuming and difficult to apply. The aim of this study was to develop a more rapid and accurate radiology-based method for Atlantic salmon (Salmo salar). A detailed analysis of 90 animals (4 kg) led to the establishment of region-specific radiographic hallmarks. To elucidate its transferability to other salmonid species, radiography was carried out in brown trout (Salmo trutta), Arctic char (Salvelinus alpinus), rainbow trout (Oncorhynchus mykiss), pink salmon (Oncorhynchus gorbuscha), and Chinook salmon (Oncorhynchus tshawytscha). This method was also evaluated for whole ungutted fish. The vertebral column of Atlantic salmon can be subdivided into five regions (R1-R5) based on anatomy: postcranial (R1, V1, and V2), abdominal (R2, V3-V26), transitional (R3, V27-V36), caudal (R4, V37-V53), and ural (R5, V54-V59). The following specific radiographic hallmarks allow the identification of regions: (i) lack of ribs in R1, (ii) modified parapophysis of the first vertebra of R3, (iii) prominent hemal spine of the first vertebra of R4, and (iv) the separated hemal spine of the most cranial pre-ural vertebra of R5. These hallmarks were all transferable to the other salmonid species assessed. The results include a further description of various region-specific characteristics in Atlantic salmon. The method was found applicable for sedated/whole ungutted fish, verifying it as quick and easy compared to other regionalization methods. The regions defined by radiology in this study agree with the vertebral column regions recently defined for Chinook salmon (O. tshawytscha). Thus, and considering the results of this study on various salmonid species, the currently developed regionalization protocol can be generally used for salmonids.
Collapse
Affiliation(s)
- Murugesan Sankar
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas W K Fraser
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | | | - Sofie Remø
- Feed and Nutrition, Institute of Marine Research (IMR), Bergen, Norway
| | - Tom J Hansen
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Paul Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Per Gunnar Fjelldal
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| |
Collapse
|
2
|
Kingsley EP, Hager ER, Lassance JM, Turner KM, Harringmeyer OS, Kirby C, Neugeboren BI, Hoekstra HE. Adaptive tail-length evolution in deer mice is associated with differential Hoxd13 expression in early development. Nat Ecol Evol 2024; 8:791-805. [PMID: 38378804 PMCID: PMC11009118 DOI: 10.1038/s41559-024-02346-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Variation in the size and number of axial segments underlies much of the diversity in animal body plans. Here we investigate the evolutionary, genetic and developmental mechanisms driving tail-length differences between forest and prairie ecotypes of deer mice (Peromyscus maniculatus). We first show that long-tailed forest mice perform better in an arboreal locomotion assay, consistent with tails being important for balance during climbing. We then identify six genomic regions that contribute to differences in tail length, three of which associate with caudal vertebra length and the other three with vertebra number. For all six loci, the forest allele increases tail length, indicative of the cumulative effect of natural selection. Two of the genomic regions associated with variation in vertebra number contain Hox gene clusters. Of those, we find an allele-specific decrease in Hoxd13 expression in the embryonic tail bud of long-tailed forest mice, consistent with its role in axial elongation. Additionally, we find that forest embryos have more presomitic mesoderm than prairie embryos and that this correlates with an increase in the number of neuromesodermal progenitors, which are modulated by Hox13 paralogues. Together, these results suggest a role for Hoxd13 in the development of natural variation in adaptive morphology on a microevolutionary timescale.
Collapse
Affiliation(s)
- Evan P Kingsley
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Emily R Hager
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jean-Marc Lassance
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- GIGA Institute, University of Liège, Liège, Belgium
| | - Kyle M Turner
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Centre for Teaching Support & Innovation, University of Toronto, Toronto, Ontario, Canada
| | - Olivia S Harringmeyer
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Christopher Kirby
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Beverly I Neugeboren
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Environmental Health and Safety, Harvard University, Cambridge, MA, USA
| | - Hopi E Hoekstra
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Shinya M, Kimura T, Naruse K. High-speed system to generate congenic strains in medaka. Genes Genet Syst 2023; 98:267-275. [PMID: 37839872 DOI: 10.1266/ggs.23-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The congenic strain, an inbred strain containing a small genomic region from another strain, is a powerful tool to assess the phenotypic effect of polymorphisms and/or mutations in the substituted genomic region. Recent substantial progress in the genetic studies of complex traits increases the necessity of congenic strains and, therefore, a quick breeding system for congenic strains has become increasingly important in model organisms such as mouse and medaka. Traditionally, more than ten generations are necessary to produce a congenic strain. In contrast, a quick method has been reported previously for the mouse, in which the use of genetic markers reduces the required number of backcross generations to about a half that of the traditional method, so that it would take around six generations to obtain a congenic strain. Here, we present an even quicker congenic production system, which takes only about four generations. The system can produce medaka congenic strains having part of the HNI-II (an inbred medaka strain derived from the northern Japanese population, Oryzias sakaizumii) genome in the HdrR-II1 (another inbred strain from the southern Japanese population, O. latipes) background. In this system, the availability of frozen sperm and genotype data of the BC1 male population makes it possible to start marker-assisted congenic production after obtaining the BC2 population. Our evaluation revealed that the system could work well to increase the percentage of recipient genome as expected, so that a congenic strain may be obtained in about one year.
Collapse
Affiliation(s)
| | - Tetsuaki Kimura
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI)
| |
Collapse
|
4
|
Di Biagio C, Dellacqua Z, Martini A, Huysseune A, Scardi M, Witten PE, Boglione C. A Baseline for Skeletal Investigations in Medaka ( Oryzias latipes): The Effects of Rearing Density on the Postcranial Phenotype. Front Endocrinol (Lausanne) 2022; 13:893699. [PMID: 35846331 PMCID: PMC9281570 DOI: 10.3389/fendo.2022.893699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Oryzias latipes is increasingly used as a model in biomedical skeletal research. The standard approach is to generate genetic variants with particular skeletal phenotypes which resemble skeletal diseases in humans. The proper diagnosis of skeletal variation is key for this type of research. However, even laboratory rearing conditions can alter skeletal phenotypes. The subject of this study is the link between skeletal phenotypes and rearing conditions. Thus, wildtype medaka were reared from hatching to an early juvenile stage at low (LD: 5 individuals/L), medium (MD: 15 individuals/L), and high (HD: 45 individuals/L) densities. The objectives of the study are: (I) provide a comprehensive overview of the postcranial skeletal elements in medaka; (II) evaluate the effects of rearing density on specific meristic counts and on the variability in type and incidence of skeletal anomalies; (III) define the best laboratory settings to obtain a skeletal reference for a sound evaluation of future experimental conditions; (IV) contribute to elucidating the structural and cellular changes related to the onset of skeletal anomalies. The results from this study reveal that rearing densities greater than 5 medaka/L reduce the animals' growth. This reduction is related to decreased mineralization of dermal (fin rays) and perichondral (fin supporting elements) bone. Furthermore, high density increases anomalies affecting the caudal fin endoskeleton and dermal rays, and the preural vertebral centra. A series of static observations on Alizarin red S whole mount-stained preural fusions provide insights into the etiology of centra fusion. The fusion of preural centra involves the ectopic formation of bony bridges over the intact intervertebral ligament. An apparent consequence is the degradation of the intervertebral ligaments and the remodeling and reshaping of the fused vertebral centra into a biconoid-shaped centrum. From this study it can be concluded that it is paramount to take into account the rearing conditions, natural variability, skeletal phenotypic plasticity, and the genetic background along with species-specific peculiarities when screening for skeletal phenotypes of mutant or wildtype medaka.
Collapse
Affiliation(s)
- Claudia Di Biagio
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Zachary Dellacqua
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
- Aquaculture Research Group (GIA), Universidad de Las Palmas de Gran Canaria, Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Las Palmas, Spain
| | - Arianna Martini
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| | - Ann Huysseune
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Michele Scardi
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| | - Paul Eckhard Witten
- Laboratory of Evolutionary Developmental Biology, Gent University, Department of Biology, Gent, Belgium
| | - Clara Boglione
- Laboratory of Experimental Ecology and Aquaculture, University of Rome ‘Tor Vergata’, Department of Biology, Rome, Italy
| |
Collapse
|
5
|
Shao WH, Cheng JL, Zhang E. Eight in One: Hidden Diversity of the Bagrid Catfish Tachysurus albomarginatus s.l. (Rendhal, 1928) Widespread in Lowlands of South China. Front Genet 2021; 12:713793. [PMID: 34868198 PMCID: PMC8635968 DOI: 10.3389/fgene.2021.713793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
There is increasing evidence that species diversity is underestimated in the current taxonomy of widespread freshwater fishes. The bagrid species T. albomarginatus s.l. is mainly distributed in the lowlands of South China, as currently identified. A total of 40 localities (including the type locality), which covers most of its known range, were sampled. Molecular phylogenetic analyses based on concatenated mtDNA and nuclear genes recover nine highly supported lineages clustering into eight geographic populations. The integration of molecular evidence, morphological data, and geographic distribution demonstrates the delineation of T. albomarginatus s.l. as eight putative species. Four species, namely, T. albomarginatus, T. lani, T. analis, and T. zhangfei sp. nov. and the T. similis complex are taxonomically recognized herein. Moreover, T. zhangfei sp. nov. comprises two genetically distinct lineages with no morphological and geographical difference. This study also reveals aspects of estimation of divergence time, distribution, and ecological adaption within the T. albomarginatus group. The unraveling of the hidden species diversity of this lowland bagrid fish highlights the need for not only the molecular scrutiny of widely distributed species of South China but also the adjustment of current biodiversity conservation strategies to protect the largely overlooked diversity of fishes from low-elevation rapids.
Collapse
Affiliation(s)
- Wei-Han Shao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Li Cheng
- School of Life Sciences, Jinggangshan University, Ji'an, China
| | - E Zhang
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Yassumoto TI, Nakatsukasa M, Nagano AJ, Yasugi M, Yoshimura T, Shinomiya A. Genetic analysis of body weight in wild populations of medaka fish from different latitudes. PLoS One 2020; 15:e0234803. [PMID: 32544202 PMCID: PMC7297337 DOI: 10.1371/journal.pone.0234803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
Abstract
The genetic bases of growth and body weight are of economic and scientific interest, and teleost fish models have proven useful in such investigations. The Oryzias latipes species complex (medaka) is an abundant freshwater fish in Japan and suitable for genetic studies. We compared two wild medaka stocks originating from different latitudes. The Maizuru population from higher latitudes weighed more than the Ginoza population. We investigated the genetic basis of body weight, using quantitative trait locus (QTL) analysis of the F2 offspring of these populations. We detected one statistically significant QTL for body weight on medaka chromosome 4 and identified 12 candidate genes that might be associated with body weight or growth. Nine of these 12 genes had at least one single nucleotide polymorphism that caused amino acid substitutions in protein-coding regions, and we estimated the effects of these substitutions. The present findings might contribute to the marker-assisted selection of economically important aquaculture species.
Collapse
Affiliation(s)
- Tamiris I. Yassumoto
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mana Nakatsukasa
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | | | - Masaki Yasugi
- Laboratory of Neurophysiology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
7
|
Reyes Corral WD, Aguirre WE. Effects of temperature and water turbulence on vertebral number and body shape in Astyanax mexicanus (Teleostei: Characidae). PLoS One 2019; 14:e0219677. [PMID: 31356643 PMCID: PMC6663064 DOI: 10.1371/journal.pone.0219677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/29/2019] [Indexed: 11/22/2022] Open
Abstract
Environmental changes can modify the phenotypic characteristics of populations, which in turn can influence their evolutionary trajectories. In ectotherms like fishes, temperature is a particularly important environmental variable that is known to have significant impacts on the phenotype. Here, we raised specimens of the surface ecomorph of Astyanax mexicanus at temperatures of 20°C, 23°C, 25°C, and 28°C to examine how temperature influenced vertebral number and body shape. To increase biological realism, specimens were also subjected to two water turbulence regimes. Vertebral number was counted from x-rays and body shape variation was analysed using geometric morphometric methods. Temperature significantly impacted mean total vertebral number, which increased at the lowest and highest temperatures. Fish reared at lower temperatures had relatively more precaudal vertebrae while fish reared at higher temperatures had relatively more caudal vertebrae. Vertebral anomalies, especially vertebral fusions, were most frequent at the extreme temperature treatments. Temperature significantly impacted body shape as well, with fish reared at 20°C being particularly divergent. Water turbulence also impacted body shape in a generally predictable manner, with specimens reared in high turbulence environments being more streamlined and having extended dorsal and anal fin bases. Variation in environmental variables thus resulted in significant changes in morphological traits known to impact fish fitness, indicating that A. mexicanus has the capacity to exhibit a range of phenotypic plasticity when challenged by environmental change. Understanding the biochemical mechanisms underlying this plasticity and whether adaptive plasticity has influenced the evolutionary radiation of the Characidae, are major directions for future research.
Collapse
Affiliation(s)
| | - Windsor E. Aguirre
- Department of Biological Sciences, DePaul University, Chicago, Illinois, United States of America
| |
Collapse
|
8
|
Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proc Natl Acad Sci U S A 2019; 116:6924-6931. [PMID: 30894479 DOI: 10.1073/pnas.1818486116] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is often stated that polymorphisms for mutations affecting fitness of males and females in opposite directions [sexually antagonistic (SA) polymorphisms] are the main selective force for the evolution of recombination suppression between sex chromosomes. However, empirical evidence to discriminate between different hypotheses is difficult to obtain. We report genetic mapping results in laboratory-raised families of the guppy (Poecilia reticulata), a sexually dimorphic fish with SA polymorphisms for male coloration genes, mostly on the sex chromosomes. Comparison of the genetic and physical maps shows that crossovers are distributed very differently in the two sexes (heterochiasmy); in male meiosis, they are restricted to the termini of all four chromosomes studied, including chromosome 12, which carries the sex-determining locus. Genome resequencing of male and female guppies from a population also indicates sex linkage of variants across almost the entire chromosome 12. More than 90% of the chromosome carrying the male-determining locus is therefore transmitted largely through the male lineage. A lack of heterochiasmy in a related fish species suggests that it originated recently in the lineage leading to the guppy. Our findings do not support the hypothesis that suppressed recombination evolved in response to the presence of SA polymorphisms. Instead, a low frequency of recombination on a chromosome that carries a male-determining locus and has not undergone genetic degeneration has probably facilitated the establishment of male-beneficial coloration polymorphisms.
Collapse
|
9
|
Abstract
See-through medaka lines are suitable for observing internal organs throughout life. They were bred by crossing multiple color mutants. However, some of the causal genes for these mutants have not been identified. The medaka has four pigment cell types: black melanophores, yellow xanthophores, white leucophores, and silvery iridophores. The causal genes of melanophore, xanthophore, and leucophore mutants have been elucidated, but the causal gene for the iridophore mutant remains unknown. Here, we describe the iridophore mutant, guanineless (gu), which exhibits a strong reduction in visible iridophores throughout its larval to adult stages. The gu locus was previously mapped to chromosome 5, but was located near the telomeric region, making it difficult to integrate into the chromosome. We sought the causal gene of gu using synteny analysis with the zebrafish genome and found a strong candidate, purine nucleoside phosphorylase 4a (pnp4a). Gene targeting and complementation testing showed that pnp4a is the causal gene of gu. This result will allow the establishment of inbred medaka strains or other useful strains with see-through phenotypes without major disruption in the genetic background of each strain.
Collapse
|
10
|
Tsuboko S, Kimura T, Shinya M, Suehiro Y, Okuyama T, Shimada A, Takeda H, Naruse K, Kubo T, Takeuchi H. Genetic control of startle behavior in medaka fish. PLoS One 2014; 9:e112527. [PMID: 25393539 PMCID: PMC4231031 DOI: 10.1371/journal.pone.0112527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/06/2014] [Indexed: 11/24/2022] Open
Abstract
Genetic polymorphisms are thought to generate intraspecific behavioral diversities, both within and among populations. The mechanisms underlying genetic control of behavioral properties, however, remain unclear in wild-type vertebrates, including humans. To explore this issue, we used diverse inbred strains of medaka fish (Oryzias latipes) established from the same and different local populations. Medaka exhibit a startle response to a visual stimulus (extinction of illumination) by rapidly bending their bodies (C-start) 20-ms after the stimulus presentation. We measured the rates of the response to repeated stimuli (1-s interval, 40 times) among four inbred strains, HNI-I, HNI-II, HO5, and Hd-rR-II1, and quantified two properties of the startle response: sensitivity (response rate to the first stimulus) and attenuation of the response probability with repeated stimulus presentation. Among the four strains, the greatest differences in these properties were detected between HNI-II and Hd-rR-II1. HNI-II exhibited high sensitivity (approximately 80%) and no attenuation, while Hd-rR-II1 exhibited low sensitivity (approximately 50%) and almost complete attenuation after only five stimulus presentations. Our findings suggested behavioral diversity of the startle response within a local population as well as among different populations. Linkage analysis with F2 progeny between HNI-II and Hd-rR-II1 detected quantitative trait loci (QTL) highly related to attenuation, but not to sensitivity, with a maximum logarithm of odds score of 11.82 on linkage group 16. The three genotypes (homozygous for HNI-II and Hd-rR-II1 alleles, and heterozygous) at the marker nearest the QTL correlated with attenuation. Our findings are the first to suggest that a single genomic region might be sufficient to generate individual differences in startle behavior between wild-type strains. Further identification of genetic polymorphisms that define the behavioral trait will contribute to our understanding of the neural mechanisms underlying behavioral diversity, allowing us to investigate the adaptive significance of intraspecific behavioral polymorphisms of the startle response.
Collapse
Affiliation(s)
- Satomi Tsuboko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tetsuaki Kimura
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
- National Institute for Basic Biology Center of the Interuniversity Bio-Backup Project, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Minori Shinya
- Model Fish Genomics Resource, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biology, Keio University, Yokohama, Kanagawa, Japan
| | - Yuji Suehiro
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku, Tokyo, Japan
| | - Teruhiro Okuyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
- National Institute for Basic Biology Center of the Interuniversity Bio-Backup Project, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Nishimura T, Herpin A, Kimura T, Hara I, Kawasaki T, Nakamura S, Yamamoto Y, Saito TL, Yoshimura J, Morishita S, Tsukahara T, Kobayashi S, Naruse K, Shigenobu S, Sakai N, Schartl M, Tanaka M. Analysis of a novel gene, Sdgc, reveals sex chromosome-dependent differences of medaka germ cells prior to gonad formation. Development 2014; 141:3363-9. [DOI: 10.1242/dev.106864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In vertebrates that have been examined to date, the sexual identity of germ cells is determined by the sex of gonadal somatic cells. In the teleost fish medaka, a sex-determination gene on the Y chromosome, DMY/dmrt1bY, is expressed in gonadal somatic cells and regulates the sexual identity of germ cells. Here, we report a novel mechanism by which sex chromosomes cell-autonomously confer sexually different characters upon germ cells prior to gonad formation in a genetically sex-determined species. We have identified a novel gene, Sdgc (sex chromosome-dependent differential expression in germ cells), whose transcripts are highly enriched in early XY germ cells. Chimeric analysis revealed that sexually different expression of Sdgc is controlled in a germ cell-autonomous manner by the number of Y chromosomes. Unexpectedly, DMY/dmrt1bY was expressed in germ cells prior to gonad formation, but knockdown and overexpression of DMY/dmrt1bY did not affect Sdgc expression. We also found that XX and XY germ cells isolated before the onset of DMY/dmrt1bY expression in gonadal somatic cells behaved differently in vitro and were affected by Sdgc. Sdgc maps close to the sex-determination locus, and recombination around the two loci appears to be repressed. Our results provide important insights into the acquisition and plasticity of sexual differences at the cellular level even prior to the developmental stage of sex determination.
Collapse
Affiliation(s)
- Toshiya Nishimura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Amaury Herpin
- Department of Physiological Chemistry, University of Würzburg, D-97074 Würzburg, Germany
- INRA, UR1037 Fish Physiology and Genomics, Rennes F-35000, France
| | - Tetsuaki Kimura
- Interuniversity Bio-Backup Project Center, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ikuyo Hara
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Toshihiro Kawasaki
- Genetic Strains Research Center, National institute of Genetics, Mishima 411-8540, Japan
| | - Shuhei Nakamura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Yasuhiro Yamamoto
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Taro L. Saito
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Jun Yoshimura
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Shinichi Morishita
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Tatsuya Tsukahara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Japan
| | - Satoru Kobayashi
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Kiyoshi Naruse
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Interuniversity Bio-Backup Project Center, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shuji Shigenobu
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Noriyoshi Sakai
- Genetic Strains Research Center, National institute of Genetics, Mishima 411-8540, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Manfred Schartl
- Department of Physiological Chemistry, University of Würzburg, D-97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074 Würzburg, Germany
| | - Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| |
Collapse
|
12
|
Aguirre WE, Walker K, Gideon S. Tinkering with the axial skeleton: vertebral number variation in ecologically divergent threespine stickleback populations. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Windsor E. Aguirre
- Department of Biological Sciences; DePaul University; Chicago IL 60614-3207 USA
| | - Kendal Walker
- Department of Biological Sciences; DePaul University; Chicago IL 60614-3207 USA
| | - Shawn Gideon
- Department of Biological Sciences; DePaul University; Chicago IL 60614-3207 USA
| |
Collapse
|
13
|
Berner D, Moser D, Roesti M, Buescher H, Salzburger W. GENETIC ARCHITECTURE OF SKELETAL EVOLUTION IN EUROPEAN LAKE AND STREAM STICKLEBACK. Evolution 2014; 68:1792-805. [DOI: 10.1111/evo.12390] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/11/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Daniel Berner
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Dario Moser
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Marius Roesti
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Heinz Buescher
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Walter Salzburger
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| |
Collapse
|
14
|
Maxwell EE, Wilson LAB. Regionalization of the axial skeleton in the 'ambush predator' guild--are there developmental rules underlying body shape evolution in ray-finned fishes? BMC Evol Biol 2013; 13:265. [PMID: 24314064 PMCID: PMC3867419 DOI: 10.1186/1471-2148-13-265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/29/2013] [Indexed: 11/28/2022] Open
Abstract
Background A long, slender body plan characterized by an elongate antorbital region and posterior displacement of the unpaired fins has evolved multiple times within ray-finned fishes, and is associated with ambush predation. The axial skeleton of ray-finned fishes is divided into abdominal and caudal regions, considered to be evolutionary modules. In this study, we test whether the convergent evolution of the ambush predator body plan is associated with predictable, regional changes in the axial skeleton, specifically whether the abdominal region is preferentially lengthened relative to the caudal region through the addition of vertebrae. We test this hypothesis in seven clades showing convergent evolution of this body plan, examining abdominal and caudal vertebral counts in over 300 living and fossil species. In four of these clades, we also examined the relationship between the fineness ratio and vertebral regionalization using phylogenetic independent contrasts. Results We report that in five of the clades surveyed, Lepisosteidae, Esocidae, Belonidae, Sphyraenidae and Fistulariidae, vertebrae are added preferentially to the abdominal region. In Lepisosteidae, Esocidae, and Belonidae, increasing abdominal vertebral count was also significantly related to increasing fineness ratio, a measure of elongation. Two clades did not preferentially add abdominal vertebrae: Saurichthyidae and Aulostomidae. Both of these groups show the development of a novel caudal region anterior to the insertion of the anal fin, morphologically differentiated from more posterior caudal vertebrae. Conclusions The preferential addition of abdominal vertebrae in fishes with an elongate body shape is consistent with the existence of a conservative positioning module formed by the boundary between the abdominal and caudal vertebral regions and the anterior insertion of the anal fin. Dissociation of this module is possible, although less probable than changes in the independently evolving abdominal region. Dissociation of the axial skeleton-median fin module leads to increased regionalization within the caudal vertebral column, something that has evolved several times in bony fishes, and may be homologous with the sacral region of tetrapods. These results suggest that modularity of the axial skeleton may result in somewhat predictable evolutionary outcomes in bony fishes.
Collapse
Affiliation(s)
- Erin E Maxwell
- Paläontologisches Institut und Museum, Universität Zürich, Zürich, Switzerland.
| | | |
Collapse
|