Kelleher ES, Azevedo RBR, Zheng Y. The Evolution of Small-RNA-Mediated Silencing of an Invading Transposable Element.
Genome Biol Evol 2018;
10:3038-3057. [PMID:
30252073 PMCID:
PMC6404463 DOI:
10.1093/gbe/evy218]
[Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are genomic parasites that impose fitness costs on their
hosts by producing deleterious mutations and disrupting gametogenesis. Host genomes avoid
these costs by regulating TE activity, particularly in germline cells where new insertions
are heritable and TEs are exceptionally active. However, the capacity of different
TE-associated fitness costs to select for repression in the host, and the role of
selection in the evolution of TE regulation more generally remain controversial. In this
study, we use forward, individual-based simulations to examine the evolution of
small-RNA-mediated TE regulation, a conserved mechanism for TE repression that is employed
by both prokaryotes and eukaryotes. To design and parameterize a biologically realistic
model, we drew on an extensive survey of empirical studies of the transposition and
regulation of P-element DNA transposons in Drosophila
melanogaster. We observed that even under conservative assumptions, where
small-RNA-mediated regulation reduces transposition only, repression evolves rapidly and
adaptively after the genome is invaded by a new TE in simulated populations. We further
show that the spread of repressor alleles through simulated populations is greatly
enhanced by two additional TE-imposed fitness costs: dysgenic sterility and ectopic
recombination. Finally, we demonstrate that the adaptive mutation rate to repression is a
critical parameter that influences both the evolutionary trajectory of host repression and
the associated proliferation of TEs after invasion in simulated populations. Our findings
suggest that adaptive evolution of TE regulation may be stronger and more prevalent than
previously appreciated, and provide a framework for interpreting empirical data.
Collapse