1
|
Zhuravleva АА, Silkova ОG. Disomic chromosome 3R(3B) substitution causes a complex of meiotic abnormalities in bread wheat Triticum aestivum L. Vavilovskii Zhurnal Genet Selektsii 2024; 28:365-376. [PMID: 39027125 PMCID: PMC11253021 DOI: 10.18699/vjgb-24-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 07/20/2024] Open
Abstract
Triticum aestivum L. lines introgressed with alien chromosomes create a new genetic background that changes the gene expression of both wheat and donor chromosomes. The genes involved in meiosis regulation are localized on wheat chromosome 3B. The purpose of the present study was to investigate the effect of wheat chromosome 3B substituted with homoeologous rye chromosome 3R on meiosis regulation in disomically substituted wheat line 3R(3B). Employing immunostaining with antibodies against microtubule protein, α-tubulin, and the centromere-specific histone (CENH3), as well as FISH, we analyzed microtubule cytoskeleton dynamics and wheat and rye 3R chromosomes behavior in 3R(3B) (Triticum aestivum L. variety Saratovskaya 29 × Secale cereale L. variety Onokhoiskaya) meiosis. The results revealed a set of abnormalities in the microtubule dynamics and chromosome behavior in both first and second divisions. A feature of metaphase I in 3R(3B) was a decrease in the chiasmata number compared with variety Saratovskaya 29, 34.9 ± 0.62 and 41.92 ± 0.38, respectively. Rye homologs 3R in 13.18 % of meiocytes did not form bivalents. Chromosomes were characterized by varying degrees of compaction; 53.33 ± 14.62 cells lacked a metaphase plate. Disturbances were found in microtubule nucleation at the bivalent kinetochores and in their convergence at the spindle division poles. An important feature of meiosis was the asynchronous chromosome behavior in the second division and dyads at the telophase II in 8-13 % of meiocytes, depending on the anther studied. Considering the 3R(3B) meiotic phenotype, chromosome 3B contains the genes involved in the regulation of meiotic division, and substituting 3B3B chromosomes with rye 3R3R does not compensate for their absence.
Collapse
Affiliation(s)
- А А Zhuravleva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - О G Silkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Behavior of Centromeres during Restitution of the First Meiotic Division in a Wheat–Rye Hybrid. PLANTS 2022; 11:plants11030337. [PMID: 35161318 PMCID: PMC8840579 DOI: 10.3390/plants11030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
In first division restitution (FDR)-type meiosis, univalents congregate on the metaphase I plate and separate sister chromatids in an orderly fashion, producing dyads with somatic chromosome numbers. The second meiotic division is abandoned. The separation of sister chromatids requires separation of otherwise fused sister centromeres and a bipolar attachment to the karyokinetic spindle. This study analyzed packaging of sister centromeres in pollen mother cells (PMCs) in a wheat–rye F1 hybrid with a mixture of standard reductional meiosis and FDR. No indication of sister centromere separation before MI was observed; such separation was clearly only visible in univalents placed on the metaphase plate itself, and only in PMCs undergoing FDR. Even in the FDR, PMCs univalents off the plate retained fused centromeres. Both the orientation and configuration of univalents suggest that some mechanism other than standard interactions with the karyokinetic spindle may be responsible for placing univalents on the plate, at which point sister centromeres are separated and normal amphitelic interaction with the spindle is established. At this point it is not clear at all what univalent delivery mechanism may be at play in the FDR.
Collapse
|
3
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
4
|
Karyotype Reorganization in Wheat-Rye Hybrids Obtained via Unreduced Gametes: Is There a Limit to the Chromosome Number in Triticale? PLANTS 2021; 10:plants10102052. [PMID: 34685861 PMCID: PMC8538156 DOI: 10.3390/plants10102052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
To date, few data have been accumulated on the contribution of meiotic restitution to the formation of Triticum aestivum hybrid karyotypes. In this study, based on FISH and C-banding, karyotype reorganization was observed in three groups of F5 wheat–rye hybrids 1R(1A) × R. Aberrations, including aneuploidy, telocentrics, and Robertsonian translocations, were detected in all groups. Some of the Group 1 plants and all of the Group 2 plants only had a 4R4R pair (in addition to 1R1R), which was either added or substituted for its homeolog in ABD subgenomes. In about 82% of meiocytes, 4R4R formed bivalents, which indicates its competitiveness. The rest of the Group 1 plants had 2R and 7R chromosomes in addition to 1R1R. Group 3 retained all their rye chromosomes, with a small aneuploidy on the wheat chromosomes. A feature of the meiosis in the Group 3 plants was asynchronous cell division and omission of the second division. Diploid gametes did not form because of the significant disturbances during gametogenesis. As a result, the frequency of occurrence of the formed dyads was negatively correlated (r = −0.73) with the seed sets. Thus, meiotic restitution in the 8n triticale does not contribute to fertility or increased ploidy in subsequent generations.
Collapse
|
5
|
Yang F, Liu Q, Wang Q, Yang N, Li J, Wan H, Liu Z, Yang S, Wang Y, Zhang J, Liu H, Fan X, Ma W, Yang W, Zhou Y. Characterization of the Durum Wheat- Aegilops tauschii 4D(4B) Disomic Substitution Line YL-443 With Superior Characteristics of High Yielding and Stripe Rust Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:745290. [PMID: 34659315 PMCID: PMC8514839 DOI: 10.3389/fpls.2021.745290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 05/10/2023]
Abstract
Durum wheat is one of the important food and cash crops. The main goals in current breeding programs are improving its low yield potential, kernel characteristics, and lack of resistance or tolerance to some biotic and abiotic stresses. In this study, a nascent synthesized hexaploid wheat Lanmai/AT23 is used as the female parent in crosses with its AB genome donor Lanmai. A tetraploid line YL-443 with supernumerary spikelets and high resistance to stripe rust was selected out from the pentaploid F7 progeny. Somatic analysis using multicolor fluorescence in situ hybridization (mc-FISH) revealed that this line is a disomic substitution line with the 4B chromosome pair of Lanmai replaced by the 4D chromosome pair of Aegilops tauschii AT23. Comparing with Lanmai, YL-443 shows an increase in the number of spikelets and florets per spike by 36.3 and 75.9%, respectively. The stripe rust resistance gene Yr28 carried on the 4D chromosome was fully expressed in the tetraploid background. The present 4D(4B) disomic substitution line YL-443 was distinguished from the previously reported 4D(4B) lines with the 4D chromosomes from Chinese Spring (CS). Our study demonstrated that YL-443 can be used as elite germplasm for durum wheat breeding targeting high yield potential and stripe rust resistance. The Yr28-specific PCR marker and the 4D chromosome-specific KASP markers together with its unique features of pubescent leaf sheath and auricles can be utilized for assisting selection in breeding.
Collapse
Affiliation(s)
- Fan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Qier Liu
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Honshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Sujie Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Ying Wang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Jie Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Hang Liu
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wujun Ma
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- *Correspondence: Wujun Ma
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
- Wuyun Yang
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Yonghong Zhou
| |
Collapse
|
6
|
Matsuoka Y, Mori N. Reproductive and genetic roles of the maternal progenitor in the origin of common wheat ( Triticum aestivum L.). Ecol Evol 2020; 10:13926-13937. [PMID: 33391691 PMCID: PMC7771132 DOI: 10.1002/ece3.6985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 11/06/2022] Open
Abstract
Common wheat (Triticum aestivum L., AABBDD genome) is thought to have emerged through natural hybridization between Triticum turgidum L. (AABB genome) and Aegilops tauschii Coss. (DD genome). Hybridization barriers and doubling of the trihaploid F1 hybrids' genome (ABD) via unreduced gamete fusion had key roles in the process. However, how T. turgidum, the maternal progenitor, was involved in these mechanisms remains unknown. An artificial cross-experiment using 46 cultivated and 31 wild T. turgidum accessions and a single Ae. tauschii tester with a very short genetic distance to the common wheat D genome was conducted. Cytological and quantitative trait locus analyses of F1 hybrid genome doubling were performed. The crossability and ability to cause hybrid inviability did not greatly differ between the cultivars and wild accessions. The ability to cause hybrid genome doubling was higher in the cultivars. Three novel T. turgidum loci for hybrid genome doubling, which influenced unreduced gamete production in F1 hybrids, were identified. Cultivated T. turgidum might have increased the probability of the emergence of common wheat through its enhanced ability to cause genome doubling in F1 hybrids with Ae. tauschii. The ability enhancement might have involved alterations at a relatively small number of loci.
Collapse
Affiliation(s)
| | - Naoki Mori
- Crop EvolutionGraduate School of Agricultural ScienceKobe UniversityKobeJapan
| |
Collapse
|
7
|
Fu T, Islam MS, Ali M, Wu J, Dong W. Two antimicrobial genes from Aegilops tauschii Cosson identified by the Bacillus subtilis expression system. Sci Rep 2020; 10:13346. [PMID: 32770019 PMCID: PMC7414872 DOI: 10.1038/s41598-020-70314-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial genes play an important role as a primary defense mechanism in all multicellular organisms. We chose Bacillus subtilis as a target pathogen indicator and transferred the Aegilops tauschii Cosson cDNA library into B. subtilis cells. Expression of the candidate antimicrobial gene can inhibit B. subtilis cell growth. Using this strategy, we screened six genes that have an internal effect on the indicator bacteria. Then, the secreted proteins were extracted and tested; two genes, AtR100 and AtR472, were found to have strong external antimicrobial activities with broad-spectrum resistance against Xanthomonas oryzae pv. oryzicola, Clavibacter fangii, and Botrytis cinerea. Additionally, thermal stability tests indicated that the antimicrobial activities of both proteins were thermostable. Furthermore, these two proteins exhibited no significant hemolytic activities. To test the feasibility of application at the industrial level, liquid fermentation and spray drying of these two proteins were conducted. Powder dilutions were shown to have significant inhibitory effects on B. cinerea. Fluorescence microscopy and flow cytometry results showed that the purified protein impaired and targeted the cell membranes. This study revealed that these two antimicrobial peptides could potentially be used for replacing antibiotics, which would provide the chance to reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Tingting Fu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Md Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mohsin Ali
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
8
|
Guo R, Luo J, Chang J, Rekhtman N, Arcila M, Drilon A. MET-dependent solid tumours - molecular diagnosis and targeted therapy. Nat Rev Clin Oncol 2020; 17:569-587. [PMID: 32514147 DOI: 10.1038/s41571-020-0377-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Attempts to develop MET-targeted therapies have historically focused on MET-expressing cancers, with limited success. Thus, MET expression in the absence of a genomic marker of MET dependence is a poor predictor of benefit from MET-targeted therapy. However, owing to the development of more sensitive methods of detecting genomic alterations, high-level MET amplification and activating MET mutations or fusions are all now known to be drivers of oncogenesis. MET mutations include those affecting the kinase or extracellular domains and those that result in exon 14 skipping. The activity of MET tyrosine kinase inhibitors varies by MET alteration category. The likelihood of benefit from MET-targeted therapies increases with increasing levels of MET amplification, although no consensus exists on the optimal diagnostic cut-off point for MET copy number gains identified using fluorescence in situ hybridization and, in particular, next-generation sequencing. Several agents targeting exon 14 skipping alterations are currently in clinical development, with promising data available from early-phase trials. By contrast, the therapeutic implications of MET fusions remain underexplored. Here we summarize and evaluate the utility of various diagnostic techniques and the roles of different classes of MET-targeted therapies in cancers with MET amplification, mutation and fusion, and MET overexpression.
Collapse
Affiliation(s)
- Robin Guo
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jia Luo
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Drilon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
9
|
Zuo Y, Xiang Q, Dai S, Song Z, Bao T, Hao M, Zhang L, Liu G, Li J, Liu D, Wei Y, Zheng Y, Yan Z. Development and characterization of Triticum turgidum - Aegilops comosa and T. turgidum - Ae. markgrafii amphidiploids. Genome 2020; 63:263-273. [PMID: 32160479 DOI: 10.1139/gen-2019-0215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aegilops comosa and Ae. markgrafii are diploid progenitors of polyploidy species of Aegilops sharing M and C genomes, respectively. Transferring valuable genes/traits from Aegilops into wheat is an alternative strategy for wheat genetic improvement. The amphidiploids between diploid species of Aegilops and tetraploid wheat can act as bridges to overcome obstacles from direct hybridization and can be developed by the union of unreduced gametes. In this study, we developed seven Triticum turgidum - Ae. comosa and two T. turgidum - Ae. markgrafii amphidiploids. The unreduced gametes mechanisms, including first-division restitution (FDR) and single-division meiosis (SDM), were observed in triploid F1 hybrids of T. turgidum - Ae. comosa (STM) and T. turgidum - Ae. markgrafii (STC). Only FDR was observed in STC hybrids, whereas FDR or both FDR and SDM were detected in the STM hybrids. All seven pairs of M chromosomes of Ae. comosa and C chromosomes of Ae. markgrafii were distinguished by fluorescent in situ hybridization (FISH) probes pSc119.2 and pTa71 combinations with pTa-535 and (CTT)12/(ACT)7, respectively. Meanwhile, the chromosomes of tetraploid wheat and diploid Aegilops parents were distinguished by the same FISH probes. The amphidiploids possessed specific valuable traits such as multiple tillers, large seed size related traits, and stripe rust resistance that could be utilized in the genetic improvement of wheat.
Collapse
Affiliation(s)
- Yuanyuan Zuo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Qin Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Shoufen Dai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Zhongping Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Tingyu Bao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Gang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Jian Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| | - Zehong Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, P.R. China
| |
Collapse
|
10
|
Hao M, Zhang L, Ning S, Huang L, Yuan Z, Wu B, Yan Z, Dai S, Jiang B, Zheng Y, Liu D. The Resurgence of Introgression Breeding, as Exemplified in Wheat Improvement. FRONTIERS IN PLANT SCIENCE 2020; 11:252. [PMID: 32211007 PMCID: PMC7067975 DOI: 10.3389/fpls.2020.00252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/18/2020] [Indexed: 05/21/2023]
Abstract
Breeding progress in most crops has relied heavily on the exploitation of variation within the species' primary gene pool, a process which is destined to fail once the supply of novel variants has been exhausted. Accessing a crop's secondary gene pool, as represented by its wild relatives, has the potential to greatly expand the supply of usable genetic variation. The crop in which this approach has been most strongly championed is bread wheat (Triticum aestivum), a species which is particularly tolerant of the introduction of chromosomal segments of exotic origin thanks to the genetic buffering afforded by its polyploid status. While the process of introgression can be in itself cumbersome, a larger problem is that linkage drag and/or imperfect complementation frequently impose a yield and/or quality penalty, which explains the reluctance of breeders to introduce such materials into their breeding populations. Thanks to the development of novel strategies to induce introgression and of genomic tools to facilitate the selection of desirable genotypes, introgression breeding is returning as a mainstream activity, at least in wheat. Accessing variation present in progenitor species has even been able to drive genetic advance in grain yield. The current resurgence of interest in introgression breeding can be expected to result in an increased deployment of exotic genes in commercial wheat cultivars.
Collapse
Affiliation(s)
- Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Ya’an, China
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Ya’an, China
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Ya’an, China
- Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
11
|
Zeng D, Guan J, Luo J, Zhao L, Li Y, Chen W, Zhang L, Ning S, Yuan Z, Li A, Zheng Y, Mao L, Liu D, Hao M. A transcriptomic view of the ability of nascent hexaploid wheat to tolerate aneuploidy. BMC PLANT BIOLOGY 2020; 20:97. [PMID: 32131739 PMCID: PMC7057484 DOI: 10.1186/s12870-020-2309-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND In contrast to most animal species, polyploid plant species are quite tolerant of aneuploidy. Here, the global transcriptome of four aneuploid derivatives of a synthetic hexaploid wheat line was acquired, with the goal of characterizing the relationship between gene copy number and transcript abundance. RESULTS For most of the genes mapped to the chromosome involved in aneuploidy, the abundance of transcripts reflected the gene copy number. Aneuploidy had a greater effect on the strength of transcription of genes mapped to the chromosome present in a noneuploid dose than on that of genes mapped elsewhere in the genome. Overall, changing the copy number of one member of a homeologous set had little effect on the abundance of transcripts generated from the set of homeologs as a whole, consistent with the tolerance of aneuploidy exhibited by allopolyploids, whether in the form of a chromosomal deficit (monosomy) or chromosomal excess (trisomy). CONCLUSIONS Our findings shed new light on the genetic regulation of homeoallele transcription and contribute to a deeper understanding of allopolyploid genome evolution, with implications for the breeding of polyploid crops.
Collapse
Affiliation(s)
- Deying Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Jiantao Guan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, 610066, Sichuan, China
| | - Laibin Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Yazhou Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Wenshuai Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Shunzong Ning
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Zhongwei Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Aili Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Long Mao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
12
|
Oleszczuk S, Grzechnik N, Mason AS, Zimny J. Heritability of meiotic restitution and fertility restoration in haploid triticale. PLANT CELL REPORTS 2019; 38:1515-1525. [PMID: 31473791 PMCID: PMC6825030 DOI: 10.1007/s00299-019-02462-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/19/2019] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE A single division meiosis mechanism of meiotic restitution is incompletely penetrant but significantly associated with restored fertility in triticale haploids (n = 21, genome formula ABR). Meiotic restitution, or failure of meiosis to produce gametes with a reduced chromosome number, can lead to the restoration of fertility in allohaploids. Meiotic restitution is of major interest for producing doubled haploids, as haploid plants undergoing meiotic restitution can often form seeds without the need to apply mitosis inhibitors to double chromosome number. We aimed to characterize meiotic restitution in a population of 183 haploids (n = 21, genome formula ABR) derived from an F1 wheat-rye hybrid where one parent was known to carry factors responsible for restoration of fertility in wide-cross haploids. Based on cytological analysis, approximately half of the plants analyzed were characterized by normal meiosis, while half showed at least some cytological evidence of meiotic restitution. However, this mechanism was incompletely penetrant in the population, with no individual plant showing 100% unreduced gamete formation: restitution occurred sectorially within each anther and was not observed in all the anthers of a given plant. Hence, the absence of meiotic restitution could not be confirmed conclusively for any individual plant, confounding this analysis. However, cytological observation of meiotic restitution was significantly associated with seed set, further confirming the role of meiotic restitution in fertility restoration. Our results provide insight into this mechanism of unreduced gamete formation, and provide a basis for future work identifying the genetic factors responsible for this trait.
Collapse
Affiliation(s)
- Sylwia Oleszczuk
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, 05-870, Blonie, Poland.
| | - Natalia Grzechnik
- Department of Robotics and Mechatronics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Research Center for Biosystems, Land Use and Nutrition (IFZ), Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Janusz Zimny
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, 05-870, Blonie, Poland
| |
Collapse
|
13
|
The role of reproductive isolation in allopolyploid speciation patterns: empirical insights from the progenitors of common wheat. Sci Rep 2017; 7:16004. [PMID: 29167543 PMCID: PMC5700127 DOI: 10.1038/s41598-017-15919-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/03/2017] [Indexed: 11/15/2022] Open
Abstract
The ability to cause reproductive isolation often varies among individuals within a plant species. We addressed whether such polymorphism influenced speciation of the allopolyploid common wheat (Triticum aestivum L., AABBDD genome) by evaluating the expression of pre-pollination (outcrossing potential) and post-pollination (crossability) barriers in Aegilops tauschii Coss. (the D genome progenitor). In total, 201 Ae. tauschii accessions representing the entire natural habitat range of the species were used for anther length measurement and artificial crosses with a Triticum turgidum L. (the AB genome progenitor) tester. Intraspecific comparisons showed that both barriers were more strongly expressed in the TauL1 lineage than in the TauL2 lineage. The ability of Ae. tauschii to cause reproductive isolation in the hybridisation with T. turgidum might have markedly influenced common wheat’s speciation by inducing lineage-associated patterns of gene flow. The TauL2 accessions with high potential for natural hybridisation with T. turgidum clustered in the southern coastal Caspian region. This provided phenotypic support for the derivation of the D genome of common wheat from southern Caspian populations. The present study underscored the importance of approaches that incorporate the genealogical and geographic structure of the parental species’ reproductive isolation in understanding the mechanism of plant allopolyploid speciation.
Collapse
|
14
|
|
15
|
Hao M, Li A, Shi T, Luo J, Zhang L, Zhang X, Ning S, Yuan Z, Zeng D, Kong X, Li X, Zheng H, Lan X, Zhang H, Zheng Y, Mao L, Liu D. The abundance of homoeologue transcripts is disrupted by hybridization and is partially restored by genome doubling in synthetic hexaploid wheat. BMC Genomics 2017; 18:149. [PMID: 28187716 PMCID: PMC5303294 DOI: 10.1186/s12864-017-3558-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background The formation of an allopolyploid is a two step process, comprising an initial wide hybridization event, which is later followed by a whole genome doubling. Both processes can affect the transcription of homoeologues. Here, RNA-Seq was used to obtain the genome-wide leaf transcriptome of two independent Triticum turgidum × Aegilops tauschii allotriploids (F1), along with their spontaneous allohexaploids (S1) and their parental lines. The resulting sequence data were then used to characterize variation in homoeologue transcript abundance. Results The hybridization event strongly down-regulated D-subgenome homoeologues, but this effect was in many cases reversed by whole genome doubling. The suppression of D-subgenome homoeologue transcription resulted in a marked frequency of parental transcription level dominance, especially with respect to genes encoding proteins involved in photosynthesis. Singletons (genes where no homoeologues were present) were frequently transcribed at both the allotriploid and allohexaploid plants. Conclusions The implication is that whole genome doubling helps to overcome the phenotypic weakness of the allotriploid, restoring a more favourable gene dosage in genes experiencing transcription level dominance in hexaploid wheat. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3558-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tongwei Shi
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Jiangtao Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuechuan Zhang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Deying Zeng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xingchen Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaolong Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huaigang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
16
|
Zeng D, Luo J, Li Z, Chen G, Zhang L, Ning S, Yuan Z, Zheng Y, Hao M, Liu D. High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines. PLoS One 2016; 11:e0162847. [PMID: 27611704 PMCID: PMC5017740 DOI: 10.1371/journal.pone.0162847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/29/2016] [Indexed: 11/24/2022] Open
Abstract
Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the ‘Chinese Spring’ common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers specific for homoeologs. Based on high-confidence ‘Chinese Spring’ genes with known functions, we developed 183 putative homoeolog-specific markers for chromosomes 4B and 7B. These markers were used in PCR assays for the 4B and 7B nullisomes and their euploid synthetic hexaploid wheat (SHW) line that was newly generated from a hybridization between Triticum turgidum (AABB) and the wild diploid species Aegilops tauschii (DD). Up to 64% of the markers for chromosomes 4B or 7B in the SHW background were confirmed to be homoeolog-specific. Thus, these markers were highly transferable between the ‘Chinese Spring’ bread wheat and SHW lines. Homoeolog-specific markers designed using genes with known functions may be useful for genetic investigations involving homoeologous chromosome tracking and homoeolog expression and interaction analyses.
Collapse
Affiliation(s)
- Deying Zeng
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, Sichuan, 610066, China
| | - Zenglin Li
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Gang Chen
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
- * E-mail: (DL); (MH)
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
- * E-mail: (DL); (MH)
| |
Collapse
|
17
|
Silkova OG, Loginova DB. Sister chromatid separation and monopolar spindle organization in the first meiosis as two mechanisms of unreduced gametes formation in wheat-rye hybrids. PLANT REPRODUCTION 2016; 29:199-213. [PMID: 26994004 PMCID: PMC4909807 DOI: 10.1007/s00497-016-0279-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/02/2016] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Unreduced gametes. The absence of a strict pachytene checkpoint in plants presents an opportunity to study meiosis in polyhaploid organisms. In the present study, we demonstrate that meiosis is coordinated in hybrids between disomic wheat-rye substitution lines 1Rv(1A), 2R(2D), 5R(5D), 6R(6A) and rye (Triticum aestivum L. × Secale cereale L., 4x = 28, ABDR). By using in situ hybridization with a centromere pAet6-09 probe and immunostaining with H3Ser10ph-, CENH3-, and α-tubulin-specific antibodies, we distinguished four chromosome behaviour types. The first one is a mitotic-like division that is characterized by mitotic centromere architecture, robust bipolar spindle, one-step loss of arm and centromere cohesion, and sister chromatid separation in the first and only meiotic division. The second type involves a monopolar spindle formation, which appears as a hat-shaped group of chromosomes moving in one direction, wherein MT bundles are co-oriented polewards. It prevents chromosome segregation in meiosis I, with a bipolar spindle distributing sister chromatids to the poles in meiosis II. These events subsequently result in the formation of unreduced microspores. The other two meiotic-like chromosome segregation patterns known as reductional and equational plus reductional represent stand-alone types of cell division rather than intermediate steps of meiosis I. Only sterile pollen is produced as a result of such meiotic-like chromosome behaviours. Slightly variable meiotic phenotypes are reproducibly observed in hybrids under different growth conditions. The 2R(2D)xR genotype tends to promote reductional division. In contrast, the genotypes 1Rv(1A)xR, 5R(5D)xR, and 6R(6A)xR promote equational chromosome segregation and monopolar spindle formation in addition to reductional and equational plus reductional division types.
Collapse
Affiliation(s)
- O G Silkova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk, 630090, Russia.
| | - D B Loginova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk, 630090, Russia
| |
Collapse
|
18
|
Fakhri Z, Mirzaghaderi G, Ahmadian S, Mason AS. Unreduced gamete formation in wheat × Aegilops spp. hybrids is genotype specific and prevented by shared homologous subgenomes. PLANT CELL REPORTS 2016; 35:1143-54. [PMID: 26883221 DOI: 10.1007/s00299-016-1951-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/03/2016] [Indexed: 05/22/2023]
Abstract
The presence of homologous subgenomes inhibited unreduced gamete formation in wheat × Aegilops interspecific hybrids. Unreduced gamete rates were under the control of the wheat nuclear genome. Production of unreduced gametes is common among interspecific hybrids, and may be affected by parental genotypes and genomic similarity. In the present study, five cultivars of Triticum aestivum and two tetraploid Aegilops species (i.e. Ae. triuncialis and Ae. cylindrica) were reciprocally crossed to produce 20 interspecific hybrid combinations. These hybrids comprised two different types: T. aestivum × Aegilops triuncialis; 2n = ABDU(t)C(t) (which lack a common subgenome) and T. aestivum × Ae. cylindrica; 2n = ABDD(c)C(c) (which share a common subgenome). The frequency of unreduced gametes in F1 hybrids was estimated in sporads from the frequency of dyads, and the frequency of viable pollen, germinated pollen and seed set were recorded. Different meiotic abnormalities recorded in the hybrids included precocious chromosome migration to the poles at metaphase I and II, laggards in anaphase I and II, micronuclei and chromosome stickiness, failure in cell wall formation, premature cytokinesis and microspore fusion. The mean frequency of restitution meiosis was 10.1 %, and the mean frequency of unreduced viable pollen was 4.84 % in T. aestivum × Ae. triuncialis hybrids. By contrast, in T. aestivum × Ae. cylindrica hybrids no meiotic restitution was observed, and a low rate of viable gametes (0.3 %) was recorded. This study present evidence that high levels of homologous pairing between the D and D(c) subgenomes may interfere with meiotic restitution and the formation of unreduced gametes. Variation in unreduced gamete production was also observed between T. aestivum × Ae. triuncialis hybrid plants, suggesting genetic control of this trait.
Collapse
Affiliation(s)
- Zhaleh Fakhri
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| | - Samira Ahmadian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Annaliese S Mason
- IFZ Research Centre for Biosystems, Land Use and Nutrition, Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
19
|
Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides. Sci Rep 2015; 5:10763. [PMID: 26084265 PMCID: PMC4471722 DOI: 10.1038/srep10763] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Wild emmer wheat, Triticum turgidum ssp. dicoccoides is the wild relative of Triticum turgidum, the progenitor of durum and bread wheat, and maintains a rich allelic diversity among its wild populations. The lack of adequate genetic and genomic resources, however, restricts its exploitation in wheat improvement. Here, we report next-generation sequencing of the flow-sorted chromosome 5B of T. dicoccoides to shed light into its genome structure, function and organization by exploring the repetitive elements, protein-encoding genes and putative microRNA and tRNA coding sequences. Comparative analyses with its counterparts in modern and wild wheats suggest clues into the B-genome evolution. Syntenic relationships of chromosome 5B with the model grasses can facilitate further efforts for fine-mapping of traits of interest. Mapping of 5B sequences onto the root transcriptomes of two additional T. dicoccoides genotypes, with contrasting drought tolerances, revealed several thousands of single nucleotide polymorphisms, of which 584 shared polymorphisms on 228 transcripts were specific to the drought-tolerant genotype. To our knowledge, this study presents the largest genomics resource currently available for T. dicoccoides, which, we believe, will encourage the exploitation of its genetic and genomic potential for wheat improvement to meet the increasing demand to feed the world.
Collapse
|