1
|
Elias M, Chere D, Lule D, Serba D, Tirfessa A, Gelmesa D, Tesso T, Bantte K, Menamo TM. Multi-locus genome-wide association study reveal genomic regions underlying root system architecture traits in Ethiopian sorghum germplasm. THE PLANT GENOME 2024; 17:e20436. [PMID: 38361379 DOI: 10.1002/tpg2.20436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
The identification of genomic regions underlying the root system architecture (RSA) is vital for improving crop abiotic stress tolerance. To improve sorghum (Sorghum bicolor L. Moench) for environmental stress tolerance, information on genetic variability and genomic regions linked to RSA traits is paramount. The aim of this study was, therefore, to investigate common quantitative trait nucleotides (QTNs) via multiple methodologies and identify genomic regions linked to RSA traits in a panel of 274 Ethiopian sorghum accessions. Multi-locus genome-wide association study was conducted using 265,944 high-quality single nucleotide polymorphism markers. Considering the QTN detected by at least three different methods, a total of 17 reliable QTNs were found to be significantly associated with root angle, number, length, and dry weight. Four QTNs were detected on chromosome SBI-05, followed by SBI-01 and SBI-02 with three QTNs each. Among the 17 QTNs, 11 are colocated with previously identified root traits quantitative trait loci and the remaining six are genome regions with novel genes. A total of 118 genes are colocated with these up- and down-streams of the QTNs. Moreover, five QTNs were found intragenic. These QTNs are S5_8994835 (number of nodal roots), S10_55702393 (number of nodal roots), S1_56872999 (nodal root angle), S9_1212069 (nodal root angle), and S5_5667192 (root dry weight) intragenic regions of Sobic.005G073101, Sobic.010G198000, Sobic.001G273000, Sobic.009G013600, and Sobic.005G054700, respectively. Particularly, Sobic.005G073101, Sobic.010G198000, and Sobic.009G013600 were found responsible for the plant growth hormone-induced RSA. These genes may regulate root development in the seedling stage. Further analysis on these genes might be important to explore the genetic structure of RSA of sorghum.
Collapse
Affiliation(s)
- Masarat Elias
- School of Plant Science, Haramaya University, Dire Dawa, Ethiopia
| | - Diriba Chere
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Dagnachew Lule
- Ethiopia Agricultural Transformation Institute, Addis Ababa, Ethiopia
| | - Desalegn Serba
- United States Department of Agriculture, Agricultural Research Service, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Alemu Tirfessa
- Ethiopian Institute of Agricultural Research (EIAR), Melkassa Agricultural Research Center, Adama, Ethiopia
| | - Dandena Gelmesa
- School of Plant Science, Haramaya University, Dire Dawa, Ethiopia
| | - Tesfaye Tesso
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Kassahun Bantte
- Department of Plant Science and Horticulture, Jimma University, Jimma, Ethiopia
| | - Temesgen M Menamo
- Department of Plant Science and Horticulture, Jimma University, Jimma, Ethiopia
| |
Collapse
|
2
|
Zhang W, Benke R, Zhang X, Zhang H, Zhao C, Zhao Y, Xu Y, Wang H, Liu S, Li X, Wu Y. Novel allelic variations in Tannin1 and Tannin2 contribute to tannin absence in sorghum. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:24. [PMID: 38495646 PMCID: PMC10942951 DOI: 10.1007/s11032-024-01463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Sorghum is an important food crop commonly used for brewing, feed, and bioenergy. Certain genotypes of sorghum contain high concentrations of condensed tannins in seeds, which are beneficial, such as protecting grains from herbivore bird pests, but also impair grain quality and digestibility. Previously, we identified Tannin1 and Tannin2, each with three recessive causal alleles, regulate tannin absence in sorghum. In this study, via characterizing 421 sorghum accessions, we further identified three novel recessive alleles from these two genes. The tan1-d allele contains a 12-bp deletion at position 659 nt and the tan1-e allele contains a 10-bp deletion at position 771 nt in Tannin1. The tan2-d allele contains a C-to-T transition, which results in a premature stop codon before the bHLH domain in Tannin2, and was predominantly selected in China. We further developed KASP assays targeting these identified recessive alleles to efficiently genotype large populations. These studies provide new insights in sorghum domestication and convenient tools for breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01463-y.
Collapse
Affiliation(s)
- Wenbin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Ryan Benke
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164 USA
| | - Xiao Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Huawen Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Cunyuan Zhao
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Yu Zhao
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Ying Xu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Hailian Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Shubing Liu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Xianran Li
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164 USA
| | - Yuye Wu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
3
|
Atsbeha G, Mekonnen T, Kebede M, Haileselassie T, Goodwin SB, Tesfaye K. Genetic architecture of adult-plant resistance to stripe rust in bread wheat ( Triticum aestivum L.) association panel. FRONTIERS IN PLANT SCIENCE 2023; 14:1256770. [PMID: 38130484 PMCID: PMC10733515 DOI: 10.3389/fpls.2023.1256770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a severe disease in wheat worldwide, including Ethiopia, causing up to 100% wheat yield loss in the worst season. The use of resistant cultivars is considered to be the most effective and durable management technique for controlling the disease. Therefore, the present study targeted the genetic architecture of adult plant resistance to yellow rust in 178 wheat association panels. The panel was phenotyped for yellow rust adult-plant resistance at three locations. Phonological, yield, yield-related, and agro-morphological traits were recorded. The association panel was fingerprinted using the genotyping-by-sequencing (GBS) platform, and a total of 6,788 polymorphic single nucleotide polymorphisms (SNPs) were used for genome-wide association analysis to identify effective yellow rust resistance genes. The marker-trait association analysis was conducted using the Genome Association and Prediction Integrated Tool (GAPIT). The broad-sense heritability for the considered traits ranged from 74.52% to 88.64%, implying the presence of promising yellow rust resistance alleles in the association panel that could be deployed to improve wheat resistance to the disease. The overall linkage disequilibrium (LD) declined within an average physical distance of 31.44 Mbp at r2 = 0.2. Marker-trait association (MTA) analysis identified 148 loci significantly (p = 0.001) associated with yellow rust adult-plant resistance. Most of the detected resistance quantitative trait loci (QTLs) were located on the same chromosomes as previously reported QTLs for yellow rust resistance and mapped on chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6A, 6B, 7A, and 7D. However, 12 of the discovered MTAs were not previously documented in the wheat literature, suggesting that they could represent novel loci for stripe rust resistance. Zooming into the QTL regions in IWGSC RefSeq Annotation v1 identified crucial disease resistance-associated genes that are key in plants' defense mechanisms against pathogen infections. The detected QTLs will be helpful for marker-assisted breeding of wheat to increase resistance to stripe rust. Generally, the present study identified putative QTLs for field resistance to yellow rust and some important agronomic traits. Most of the discovered QTLs have been reported previously, indicating the potential to improve wheat resistance to yellow rust by deploying the QTLs discovered by marker-assisted selection.
Collapse
Affiliation(s)
- Genet Atsbeha
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Tilahun Mekonnen
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mulugeta Kebede
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Stephen B. Goodwin
- USDA-Agricultural Research Service, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Bio and Emerging Technology Institute. Affiliated with the Institute of Biotechnology, Addis Ababa, University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Ahn E, Botkin J, Ellur V, Lee Y, Poudel K, Prom LK, Magill C. Genome-Wide Association Study of Seed Morphology Traits in Senegalese Sorghum Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2344. [PMID: 37375969 DOI: 10.3390/plants12122344] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Sorghum is considered the fifth most important crop in the world. Despite the potential value of Senegalese germplasm for various traits, such as resistance to fungal diseases, there is limited information on the study of sorghum seed morphology. In this study, 162 Senegalese germplasms were evaluated for seed area size, length, width, length-to-width ratio, perimeter, circularity, the distance between the intersection of length & width (IS) and center of gravity (CG), and seed darkness and brightness by scanning and analyzing morphology-related traits with SmartGrain software at the USDA-ARS Plant Science Research Unit. Correlations between seed morphology-related traits and traits associated with anthracnose and head smut resistance were analyzed. Lastly, genome-wide association studies were performed on phenotypic data collected from over 16,000 seeds and 193,727 publicly available single nucleotide polymorphisms (SNPs). Several significant SNPs were found and mapped to the reference sorghum genome to uncover multiple candidate genes potentially associated with seed morphology. The results indicate clear correlations among seed morphology-related traits and potential associations between seed morphology and the defense response of sorghum. GWAS analysis listed candidate genes associated with seed morphologies that can be used for sorghum breeding in the future.
Collapse
Affiliation(s)
- Ezekiel Ahn
- USDA-ARS Plant Science Research Unit, St. Paul, MN 55108, USA
| | - Jacob Botkin
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Vishnutej Ellur
- Molecular Plant Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yoonjung Lee
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kabita Poudel
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Louis K Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Baloch FS, Altaf MT, Liaqat W, Bedir M, Nadeem MA, Cömertpay G, Çoban N, Habyarimana E, Barutçular C, Cerit I, Ludidi N, Karaköy T, Aasim M, Chung YS, Nawaz MA, Hatipoğlu R, Kökten K, Sun HJ. Recent advancements in the breeding of sorghum crop: current status and future strategies for marker-assisted breeding. Front Genet 2023; 14:1150616. [PMID: 37252661 PMCID: PMC10213934 DOI: 10.3389/fgene.2023.1150616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Sorghum is emerging as a model crop for functional genetics and genomics of tropical grasses with abundant uses, including food, feed, and fuel, among others. It is currently the fifth most significant primary cereal crop. Crops are subjected to various biotic and abiotic stresses, which negatively impact on agricultural production. Developing high-yielding, disease-resistant, and climate-resilient cultivars can be achieved through marker-assisted breeding. Such selection has considerably reduced the time to market new crop varieties adapted to challenging conditions. In the recent years, extensive knowledge was gained about genetic markers. We are providing an overview of current advances in sorghum breeding initiatives, with a special focus on early breeders who may not be familiar with DNA markers. Advancements in molecular plant breeding, genetics, genomics selection, and genome editing have contributed to a thorough understanding of DNA markers, provided various proofs of the genetic variety accessible in crop plants, and have substantially enhanced plant breeding technologies. Marker-assisted selection has accelerated and precised the plant breeding process, empowering plant breeders all around the world.
Collapse
Affiliation(s)
- Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Mehmet Bedir
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Gönül Cömertpay
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Nergiz Çoban
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ibrahim Cerit
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ndomelele Ludidi
- Plant Stress Tolerance Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | | | - Rüştü Hatipoğlu
- Kırşehir Ahi Evran Universitesi Ziraat Fakultesi Tarla Bitkileri Bolumu, Kırşehir, Türkiye
| | - Kağan Kökten
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
6
|
Gangurde SS, Xavier A, Naik YD, Jha UC, Rangari SK, Kumar R, Reddy MSS, Channale S, Elango D, Mir RR, Zwart R, Laxuman C, Sudini HK, Pandey MK, Punnuri S, Mendu V, Reddy UK, Guo B, Gangarao NVPR, Sharma VK, Wang X, Zhao C, Thudi M. Two decades of association mapping: Insights on disease resistance in major crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1064059. [PMID: 37082513 PMCID: PMC10112529 DOI: 10.3389/fpls.2022.1064059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
Climate change across the globe has an impact on the occurrence, prevalence, and severity of plant diseases. About 30% of yield losses in major crops are due to plant diseases; emerging diseases are likely to worsen the sustainable production in the coming years. Plant diseases have led to increased hunger and mass migration of human populations in the past, thus a serious threat to global food security. Equipping the modern varieties/hybrids with enhanced genetic resistance is the most economic, sustainable and environmentally friendly solution. Plant geneticists have done tremendous work in identifying stable resistance in primary genepools and many times other than primary genepools to breed resistant varieties in different major crops. Over the last two decades, the availability of crop and pathogen genomes due to advances in next generation sequencing technologies improved our understanding of trait genetics using different approaches. Genome-wide association studies have been effectively used to identify candidate genes and map loci associated with different diseases in crop plants. In this review, we highlight successful examples for the discovery of resistance genes to many important diseases. In addition, major developments in association studies, statistical models and bioinformatic tools that improve the power, resolution and the efficiency of identifying marker-trait associations. Overall this review provides comprehensive insights into the two decades of advances in GWAS studies and discusses the challenges and opportunities this research area provides for breeding resistant varieties.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Alencar Xavier
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | | | - Uday Chand Jha
- Indian Council of Agricultural Research (ICAR), Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | | | - Raj Kumar
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - M. S. Sai Reddy
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Sonal Channale
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Reyazul Rouf Mir
- Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Sopore, India
| | - Rebecca Zwart
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - C. Laxuman
- Zonal Agricultural Research Station (ZARS), Kalaburagi, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Manish K. Pandey
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Somashekhar Punnuri
- College of Agriculture, Family Sciences and Technology, Dr. Fort Valley State University, Fort Valley, GA, United States
| | - Venugopal Mendu
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, West Virginia, WV, United States
| | - Baozhu Guo
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
| | | | - Vinay K. Sharma
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Xingjun Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Mahendar Thudi
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| |
Collapse
|
7
|
Kumar P, Singh J, Kaur G, Adunola PM, Biswas A, Bazzer S, Kaur H, Kaur I, Kaur H, Sandhu KS, Vemula S, Kaur B, Singh V, Tseng TM. OMICS in Fodder Crops: Applications, Challenges, and Prospects. Curr Issues Mol Biol 2022; 44:5440-5473. [PMID: 36354681 PMCID: PMC9688858 DOI: 10.3390/cimb44110369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Biomass yield and quality are the primary targets in forage crop improvement programs worldwide. Low-quality fodder reduces the quality of dairy products and affects cattle's health. In multipurpose crops, such as maize, sorghum, cowpea, alfalfa, and oat, a plethora of morphological and biochemical/nutritional quality studies have been conducted. However, the overall growth in fodder quality improvement is not on par with cereals or major food crops. The use of advanced technologies, such as multi-omics, has increased crop improvement programs manyfold. Traits such as stay-green, the number of tillers per plant, total biomass, and tolerance to biotic and/or abiotic stresses can be targeted in fodder crop improvement programs. Omic technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, provide an efficient way to develop better cultivars. There is an abundance of scope for fodder quality improvement by improving the forage nutrition quality, edible quality, and digestibility. The present review includes a brief description of the established omics technologies for five major fodder crops, i.e., sorghum, cowpea, maize, oats, and alfalfa. Additionally, current improvements and future perspectives have been highlighted.
Collapse
Affiliation(s)
- Pawan Kumar
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar 125004, India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
- Krishi Vigyan Kendra, Guru Angad Dev Veterinary and Animal Science University, Barnala 148107, India
| | - Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Anju Biswas
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Sumandeep Bazzer
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, WA 57007, USA
| | - Harpreet Kaur
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88001, USA
| | - Ishveen Kaur
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Harpreet Kaur
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Shailaja Vemula
- Agronomy Department, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Balwinder Kaur
- Department of Entomology, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Varsha Singh
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| | - Te Ming Tseng
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
8
|
Diversity of Some of the Major Fungal Pathogens of Soybean and Potential Management Options. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Khasin M, Bernhardson LF, O'Neill PM, Palmer NA, Scully ED, Sattler SE, Funnell-Harris DL. Pathogen and drought stress affect cell wall and phytohormone signaling to shape host responses in a sorghum COMT bmr12 mutant. BMC PLANT BIOLOGY 2021; 21:391. [PMID: 34418969 PMCID: PMC8379876 DOI: 10.1186/s12870-021-03149-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND As effects of global climate change intensify, the interaction of biotic and abiotic stresses increasingly threatens current agricultural practices. The secondary cell wall is a vanguard of resistance to these stresses. Fusarium thapsinum (Fusarium stalk rot) and Macrophomina phaseolina (charcoal rot) cause internal damage to the stalks of the drought tolerant C4 grass, sorghum (Sorghum bicolor (L.) Moench), resulting in reduced transpiration, reduced photosynthesis, and increased lodging, severely reducing yields. Drought can magnify these losses. Two null alleles in monolignol biosynthesis of sorghum (brown midrib 6-ref, bmr6-ref; cinnamyl alcohol dehydrogenase, CAD; and bmr12-ref; caffeic acid O-methyltransferase, COMT) were used to investigate the interaction of water limitation with F. thapsinum or M. phaseolina infection. RESULTS The bmr12 plants inoculated with either of these pathogens had increased levels of salicylic acid (SA) and jasmonic acid (JA) across both watering conditions and significantly reduced lesion sizes under water limitation compared to adequate watering, which suggested that drought may prime induction of pathogen resistance. RNA-Seq analysis revealed coexpressed genes associated with pathogen infection. The defense response included phytohormone signal transduction pathways, primary and secondary cell wall biosynthetic genes, and genes encoding components of the spliceosome and proteasome. CONCLUSION Alterations in the composition of the secondary cell wall affect immunity by influencing phenolic composition and phytohormone signaling, leading to the action of defense pathways. Some of these pathways appear to be activated or enhanced by drought. Secondary metabolite biosynthesis and modification in SA and JA signal transduction may be involved in priming a stronger defense response in water-limited bmr12 plants.
Collapse
Affiliation(s)
- Maya Khasin
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, 251 Filley Hall, University of Nebraska-East Campus, Lincoln, NE, 68583, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Lois F Bernhardson
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, 251 Filley Hall, University of Nebraska-East Campus, Lincoln, NE, 68583, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Patrick M O'Neill
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, 251 Filley Hall, University of Nebraska-East Campus, Lincoln, NE, 68583, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Nathan A Palmer
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, 251 Filley Hall, University of Nebraska-East Campus, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Erin D Scully
- Stored Product Insect and Engineering Research Unit, Center for Grain and Animal Health, USDA-ARS, Manhattan, KS, 66502, USA
- Department of Entomology, Kansas State University, Manhattan, KS, 66502, USA
| | - Scott E Sattler
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, 251 Filley Hall, University of Nebraska-East Campus, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Deanna L Funnell-Harris
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, 251 Filley Hall, University of Nebraska-East Campus, Lincoln, NE, 68583, USA.
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68583, USA.
| |
Collapse
|
10
|
Hao H, Li Z, Leng C, Lu C, Luo H, Liu Y, Wu X, Liu Z, Shang L, Jing HC. Sorghum breeding in the genomic era: opportunities and challenges. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1899-1924. [PMID: 33655424 PMCID: PMC7924314 DOI: 10.1007/s00122-021-03789-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
The importance and potential of the multi-purpose crop sorghum in global food security have not yet been fully exploited, and the integration of the state-of-art genomics and high-throughput technologies into breeding practice is required. Sorghum, a historically vital staple food source and currently the fifth most important major cereal, is emerging as a crop with diverse end-uses as food, feed, fuel and forage and a model for functional genetics and genomics of tropical grasses. Rapid development in high-throughput experimental and data processing technologies has significantly speeded up sorghum genomic researches in the past few years. The genomes of three sorghum lines are available, thousands of genetic stocks accessible and various genetic populations, including NAM, MAGIC, and mutagenised populations released. Functional and comparative genomics have elucidated key genetic loci and genes controlling agronomical and adaptive traits. However, the knowledge gained has far away from being translated into real breeding practices. We argue that the way forward is to take a genome-based approach for tailored designing of sorghum as a multi-functional crop combining excellent agricultural traits for various end uses. In this review, we update the new concepts and innovation systems in crop breeding and summarise recent advances in sorghum genomic researches, especially the genome-wide dissection of variations in genes and alleles for agronomically important traits. Future directions and opportunities for sorghum breeding are highlighted to stimulate discussion amongst sorghum academic and industrial communities.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chuanyuan Leng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cheng Lu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiquan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Li Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Mural RV, Grzybowski M, Miao C, Damke A, Sapkota S, Boyles RE, Salas Fernandez MG, Schnable PS, Sigmon B, Kresovich S, Schnable JC. Meta-Analysis Identifies Pleiotropic Loci Controlling Phenotypic Trade-offs in Sorghum. Genetics 2021; 218:6294935. [PMID: 34100945 PMCID: PMC9335936 DOI: 10.1093/genetics/iyab087] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Community association populations are composed of phenotypically and genetically diverse accessions. Once these populations are genotyped, the resulting marker data can be reused by different groups investigating the genetic basis of different traits. Because the same genotypes are observed and scored for a wide range of traits in different environments, these populations represent a unique resource to investigate pleiotropy. Here we assembled a set of 234 separate trait datasets for the Sorghum Association Panel, a group of 406 sorghum genotypes widely employed by the sorghum genetics community. Comparison of genome wide association studies conducted with two independently generated marker sets for this population demonstrate that existing genetic marker sets do not saturate the genome and likely capture only 35-43% of potentially detectable loci controlling variation for traits scored in this population. While limited evidence for pleiotropy was apparent in cross-GWAS comparisons, a multivariate adaptive shrinkage approach recovered both known pleiotropic effects of existing loci and new pleiotropic effects, particularly significant impacts of known dwarfing genes on root architecture. In addition, we identified new loci with pleiotropic effects consistent with known trade-offs in sorghum development. These results demonstrate the potential for mining existing trait datasets from widely used community association populations to enable new discoveries from existing trait datasets as new, denser genetic marker datasets are generated for existing community association populations.
Collapse
Affiliation(s)
- Ravi V Mural
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Marcin Grzybowski
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Chenyong Miao
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Alyssa Damke
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Sirjan Sapkota
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634 USA.,Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA
| | - Richard E Boyles
- Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA.,Pee Dee Research and Education Center, Clemson University, Florence, SC 29532 USA
| | | | | | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Stephen Kresovich
- Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA.,Feed the Future Innovation Lab for Crop Improvement Cornell University, Ithaca, NY 14850 USA
| | - James C Schnable
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
12
|
Griebel S, Adedayo A, Tuinstra MR. Genetic diversity for starch quality and alkali spreading value in sorghum. THE PLANT GENOME 2021; 14:e20067. [PMID: 33259143 DOI: 10.1002/tpg2.20067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Sorghum is an important food crop in many parts of Africa and Asia. Landraces of sorghum are known to exhibit variation in food quality traits including starch and protein content and composition. In this study, a panel of diverse sorghum breeding lines and 788 sorghum conversion (SC) lines representing the global germplasm diversity of the crop were evaluated for variation in starch quality based on alkali spreading value (ASV). A small number of genotypes with stable expression of the ASV+ phenotype across seasons were identified; mostly representing Nandyal types from India. Genetic studies showed the ASV+ phenotype was inherited as a recessive trait. Whole genome resequencing of ASV+ donor lines revealed SNPs in genes involved in starch biosynthesis. A genome wide association study (GWAS) identified a significant SNP associated with ASV near Sobic.010G273800, a starch branching enzyme I precursor, and Sobic.010G274800 and Sobic.010G275001, both annotated as glucosyltransferases. Physiochemical analyses of accessions with contrasting ASV phenotypes demonstrated an environment dependent lower starch gelatinization temperature (GT), amylose content of approximately 22%, and good gel consistency. The starch quality attributes of these lines could be valuable in food products that require good gel consistency and viscosity.
Collapse
Affiliation(s)
- Stefanie Griebel
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Department of Crop Sciences, Division of Plant Breeding Methodology, University of Göttingen, Göttingen, 37075, Germany
| | - Adeyanju Adedayo
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | | |
Collapse
|
13
|
Wang X, Mace E, Tao Y, Cruickshank A, Hunt C, Hammer G, Jordan D. Large-scale genome-wide association study reveals that drought-induced lodging in grain sorghum is associated with plant height and traits linked to carbon remobilisation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3201-3215. [PMID: 32833037 DOI: 10.1007/s00122-020-03665-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE We detected 213 lodging QTLs and demonstrated that drought-induced stem lodging in grain sorghum is substantially associated with stay-green and plant height suggesting a critical role of carbon remobilisation. Sorghum is generally grown in water limited conditions and often lodges under post-anthesis drought, which reduces yield and quality. Due to its complexity, our understanding on the genetic control of lodging is very limited. We dissected the genetic architecture of lodging in grain sorghum through genome-wide association study (GWAS) on 2308 unique hybrids grown in 17 Australian sorghum trials over 3 years. The GWAS detected 213 QTLs, the majority of which showed a significant association with leaf senescence and plant height (72% and 71%, respectively). Only 16 lodging QTLs were not associated with either leaf senescence or plant height. The high incidence of multi-trait association for the lodging QTLs indicates that lodging in grain sorghum is mainly associated with plant height and traits linked to carbohydrate remobilisation. This result supported the selection for stay-green (delayed leaf senescence) to reduce lodging susceptibility, rather than selection for short stature and lodging resistance per se, which likely reduces yield. Additionally, our data suggested a protective effect of stay-green on weakening the association between lodging susceptibility and plant height. Our study also showed that lodging resistance might be improved by selection for stem composition but was unlikely to be improved by selection for classical resistance to stalk rots.
Collapse
Affiliation(s)
- Xuemin Wang
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Warwick, QLD, 4370, Australia
| | - Emma Mace
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Warwick, QLD, 4370, Australia
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Warwick, QLD, 4370, Australia
| | - Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Warwick, QLD, 4370, Australia
| | - Alan Cruickshank
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Warwick, QLD, 4370, Australia
| | - Colleen Hunt
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Warwick, QLD, 4370, Australia
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Warwick, QLD, 4370, Australia
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David Jordan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Warwick, QLD, 4370, Australia.
| |
Collapse
|
14
|
Elango D, Xue W, Chopra S. Genome wide association mapping of epi-cuticular wax genes in Sorghum bicolor. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1727-1737. [PMID: 32801499 PMCID: PMC7415066 DOI: 10.1007/s12298-020-00848-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 05/25/2023]
Abstract
Sorghum accumulates epi-cuticular wax (EW) in leaves, sheaths, and culms. EW reduces the transpirational and nontranspirational (nonstomatal) water loss and protects the plant from severe drought stress in addition to imparting resistance against insect pests. Results presented here are from the analysis of EW content of 387 diverse sorghum accessions and its genome-wide association study (GWAS). EW content in sorghum leaves ranged from 0.1 to 29.7 mg cm-2 with a mean value of 5.1 mg cm-2. GWAS using 265,487 single nucleotide polymorphisms identified thirty-seven putative genes associated (P < 9.89E-06) with EW biosynthesis and transport in sorghum. Major EW biosynthetic genes identified included 3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III, an Ankyrin repeat protein, a bHLH-MYC, and an R2R3-MYB transcription factor. Genes involved in EW regulation or transport included an ABC transporter, a Lipid exporter ABCA1, a Multidrug resistance protein, Inositol 1, 3, 4-trisphosphate 5/6-kinase, and a Cytochrome P450. This GWA study thus demonstrates the potential for genetic manipulation of EW content in sorghum for better adaptation to biotic and abiotic stress.
Collapse
Affiliation(s)
- Dinakaran Elango
- Department of Plant Science, Penn State University, University Park, PA USA
| | - Weiya Xue
- Department of Plant Science, Penn State University, University Park, PA USA
| | - Surinder Chopra
- Department of Plant Science, Penn State University, University Park, PA USA
| |
Collapse
|
15
|
Zhang X, Fernandes SB, Kaiser C, Adhikari P, Brown PJ, Mideros SX, Jamann TM. Conserved defense responses between maize and sorghum to Exserohilum turcicum. BMC PLANT BIOLOGY 2020; 20:67. [PMID: 32041528 PMCID: PMC7011368 DOI: 10.1186/s12870-020-2275-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Exserohilum turcicum is an important pathogen of both sorghum and maize, causing sorghum leaf blight and northern corn leaf blight. Because the same pathogen can infect and cause major losses for two of the most important grain crops, it is an ideal pathosystem to study plant-pathogen evolution and investigate shared resistance mechanisms between the two plant species. To identify sorghum genes involved in the E. turcicum response, we conducted a genome-wide association study (GWAS). RESULTS Using the sorghum conversion panel evaluated across three environments, we identified a total of 216 significant markers. Based on physical linkage with the significant markers, we detected a total of 113 unique candidate genes, some with known roles in plant defense. Also, we compared maize genes known to play a role in resistance to E. turcicum with the association mapping results and found evidence of genes conferring resistance in both crops, providing evidence of shared resistance between maize and sorghum. CONCLUSIONS Using a genetics approach, we identified shared genetic regions conferring resistance to E. turcicum in both maize and sorghum. We identified several promising candidate genes for resistance to leaf blight in sorghum, including genes related to R-gene mediated resistance. We present significant advancements in the understanding of host resistance to E. turcicum, which is crucial to reduce losses due to this important pathogen.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samuel B Fernandes
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher Kaiser
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pragya Adhikari
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Patrick J Brown
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Santiago X Mideros
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tiffany M Jamann
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Cuevas HE, Prom LK. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection. BMC Genomics 2020; 21:88. [PMID: 31992189 PMCID: PMC6988227 DOI: 10.1186/s12864-020-6489-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background The United States Department of Agriculture (USDA) National Plant Germplasm System (NPGS) sorghum core collection contains 3011 accessions randomly selected from 77 countries. Genomic and phenotypic characterization of this core collection is necessary to encourage and facilitate its utilization in breeding programs and to improve conservation efforts. In this study, we examined the genome sequences of 318 accessions belonging to the NPGS Sudan sorghum core set, and characterized their agronomic traits and anthracnose resistance response. Results We identified 183,144 single nucleotide polymorphisms (SNPs) located within or in proximity of 25,124 annotated genes using the genotyping-by-sequencing (GBS) approach. The core collection was genetically highly diverse, with an average pairwise genetic distance of 0.76 among accessions. Population structure and cluster analysis revealed five ancestral populations within the Sudan core set, with moderate to high level of genetic differentiation. In total, 171 accessions (54%) were assigned to one of these populations, which covered 96% of the total genomic variation. Genome scan based on Tajima’s D values revealed two populations under balancing selection. Phenotypic analysis showed differences in agronomic traits among the populations, suggesting that these populations belong to different ecogeographical regions. A total of 55 accessions were resistant to anthracnose; these accessions could represent multiple resistance sources. Genome-wide association study based on fixed and random model Circulating Probability (farmCPU) identified genomic regions associated with plant height, flowering time, panicle length and diameter, and anthracnose resistance response. Integrated analysis of the Sudan core set and sorghum association panel indicated that a large portion of the genetic variation in the Sudan core set might be present in breeding programs but remains unexploited within some clusters of accessions. Conclusions The NPGS Sudan core collection comprises genetically and phenotypically diverse germplasm with multiple anthracnose resistance sources. Population genomic analysis could be used to improve screening efforts and identify the most valuable germplasm for breeding programs. The new GBS data set generated in this study represents a novel genomic resource for plant breeders interested in mining the genetic diversity of the NPGS sorghum collection.
Collapse
Affiliation(s)
- Hugo E Cuevas
- USDA-ARS, Tropical Agriculture Research Station, 2200 Pedro Albizu Campos Avenue, Mayaguez, 00680, Puerto Rico
| | - Louis K Prom
- USDA-ARS, Southern Plains Agriculture Research Center, College Station, TX, 77845, USA.
| |
Collapse
|
17
|
Mohamed Nor NMI, Salleh B, Leslie JF. Fusarium Species from Sorghum in Thailand. THE PLANT PATHOLOGY JOURNAL 2019; 35:301-312. [PMID: 31481853 PMCID: PMC6706015 DOI: 10.5423/ppj.oa.03.2019.0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/02/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
Sorghum is the fifth most important cereal worldwide, spreading from Africa throughout the world. It is particularly important in the semi-arid tropics due to its drought tolerance, and when cultivated in Southeast Asia commonly occurs as a second crop during the dry season. We recovered Fusarium from sorghum in Thailand and found F. proliferatum, F. thapsinum and F. verticillioides most frequently, and intermittent isolates of F. sacchari and F. beomiforme. The relatively high frequencies of F. proliferatum and F. verticillioides, suggest mycotoxin contamination, particularly fumonisins and moniliformin, should be evaluated. Genetic variation within the three commonly recovered species was characterized with vegetative compatibility, mating type, Amplified Fragment Length Polymorphisms (AFLPs), and female fertility. Effective population number (N e ) was highest for F. verticillioides and lowest for F. thapsinum with values based on mating type allele frequencies higher than those based on female fertility. Based on AFLP genetic variation, the F. thapsinum populations were the most closely related, the F. verticillioides populations were the most distantly related, and the F. proliferatum populations were in an intermediate position. The genetic variation observed could result if F. thapsinum is introduced primarily with seed, while F. proliferatum and F. verticillioides could arrive with seed or be carried over from previous crops, e.g., rice or maize, which sorghum is following. Confirmation of species transmission patterns is needed to understand the agricultural systems in which sorghum is grown in Southeast Asia, which are quite different from the systems found in Africa, Australia, India and the Americas.
Collapse
Affiliation(s)
- Nik M. I. Mohamed Nor
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506,
USA
- School of Biological Science, Universiti Sains Malaysia, 11800 Pulau Pinang,
Malaysia
| | - Baharuddin Salleh
- School of Biological Science, Universiti Sains Malaysia, 11800 Pulau Pinang,
Malaysia
| | - John F. Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506,
USA
| |
Collapse
|
18
|
Cuevas HE, Fermin-Pérez RA, Prom LK, Cooper EA, Bean S, Rooney WL. Genome-Wide Association Mapping of Grain Mold Resistance in the US Sorghum Association Panel. THE PLANT GENOME 2019; 12. [PMID: 31290917 DOI: 10.3835/plantgenome2018.09.0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sorghum [ (L.) Moench] production in warm and humid regions is limited by grain mold disease, which can be caused by a complex of >40 pathogenic and opportunistic fungi. The identification of resistant plants within temperate-adapted germplasm is imperative for the development of better-adapted varieties. The performance of 331 accessions from the previously genotyped sorghum association panel (SAP) was evaluated in four tropical environments. Only 18 accessions showed low seed deterioration and high emergence rates. The resistant accessions showed high variation in seed tannin contents and panicle shape, indicating that grain mold resistance is not associated with a single phenotypic trait. Seed mycoflora analysis recovered pathogenic fungi , , and in both resistant and susceptible accessions. By genome-wide association scans using 268,289 single nucleotide polymorphisms (SNPs), we identified two loci associated with low seed deterioration and another associated with emergence rate. Candidate genes within these loci included one gene () and two genes ( and ) with domains associated with systemic acquired resistance, suggesting that resistance involved pathogen recognition and downstream signaling cascades. This study provides insight into the genetic control of grain mold resistance as well as valuable accessions for breeding programs in temperate environments.
Collapse
|
19
|
Prom LK, Ahn E, Isakeit T, Magill C. GWAS analysis of sorghum association panel lines identifies SNPs associated with disease response to Texas isolates of Colletotrichum sublineola. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1389-1396. [PMID: 30688991 DOI: 10.1007/s00122-019-03285-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 01/16/2019] [Indexed: 05/27/2023]
Abstract
SNPs identify prospective genes related to response to Colletotrichum sublineola (anthracnose) in the sorghum association panel lines. Sorghum association panel (SAP) lines were scored over several years for response to Colletotrichum sublineola, the causal agent of the disease anthracnose. Known resistant and susceptible lines were included each year to verify successful inoculation. Over 79,000 single-nucleotide polymorphic (SNP) loci from a publicly available genotype by sequencing dataset available for the SAP lines were used with TASSEL association mapping software to identify chromosomal locations associated with differences in disease response. When the top-scoring SNPs were mapped to the published sorghum genome, in each case, the nearest annotated gene has precedence for a role in host defense.
Collapse
Affiliation(s)
- Louis K Prom
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, 77845, USA.
| | - Ezekiel Ahn
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas Isakeit
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
20
|
Boyles RE, Brenton ZW, Kresovich S. Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:19-39. [PMID: 30260043 DOI: 10.1111/tpj.14113] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 05/10/2023]
Abstract
With the recent development of genomic resources and high-throughput phenotyping platforms, the 21st century is primed for major breakthroughs in the discovery, understanding and utilization of plant genetic variation. Significant advances in agriculture remain at the forefront to increase crop production and quality to satisfy the global food demand in a changing climate all while reducing the environmental impacts of the world's food production. Sorghum, a resilient C4 grain and grass important for food and energy production, is being extensively dissected genetically and phenomically to help connect the relationship between genetic and phenotypic variation. Unlike genetically modified crops such as corn or soybean, sorghum improvement has relied heavily on public research; thus, many of the genetic resources serve a dual purpose for both academic and commercial pursuits. Genetic and genomic resources not only provide the foundation to identify and understand the genes underlying variation, but also serve as novel sources of genetic and phenotypic diversity in plant breeding programs. To better disseminate the collective information of this community, we discuss: (i) the genomic resources of sorghum that are at the disposal of the research community; (ii) the suite of sorghum traits as potential targets for increasing productivity in contrasting environments; and (iii) the prospective approaches and technologies that will help to dissect the genotype-phenotype relationship as well as those that will apply foundational knowledge for sorghum improvement.
Collapse
Affiliation(s)
- Richard E Boyles
- Pee Dee Research and Education Center, Clemson University, 2200 Pocket Rd, Florence, SC, 29506, USA
- Advanced Plant Technology Program, Clemson University, 105 Collings St, Clemson, SC, 29634, USA
| | - Zachary W Brenton
- Advanced Plant Technology Program, Clemson University, 105 Collings St, Clemson, SC, 29634, USA
- Department of Plant and Environment Sciences, Clemson University, 171 Poole Agricultural Center, Clemson, SC, 29634, USA
| | - Stephen Kresovich
- Advanced Plant Technology Program, Clemson University, 105 Collings St, Clemson, SC, 29634, USA
- Department of Plant and Environment Sciences, Clemson University, 171 Poole Agricultural Center, Clemson, SC, 29634, USA
| |
Collapse
|
21
|
Long L, Yao F, Yu C, Ye X, Cheng Y, Wang Y, Wu Y, Li J, Wang J, Jiang Q, Li W, Ma J, Liu Y, Deng M, Wei Y, Zheng Y, Chen G. Genome-Wide Association Study for Adult-Plant Resistance to Stripe Rust in Chinese Wheat Landraces ( Triticum aestivum L.) From the Yellow and Huai River Valleys. FRONTIERS IN PLANT SCIENCE 2019; 10:596. [PMID: 31156668 PMCID: PMC6532019 DOI: 10.3389/fpls.2019.00596] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 05/21/2023]
Abstract
Stripe rust (also known as yellow rust), caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), is a common and serious fungal disease of wheat (Triticum aestivum L.) worldwide. To identify effective stripe rust resistance loci, a genome-wide association study was performed using 152 wheat landraces from the Yellow and Huai River Valleys in China based on Diversity Arrays Technology and simple sequence repeat markers. Phenotypic evaluation of the degree of resistance to stripe rust at the adult-plant stage under field conditions was carried out in five environments. In total, 19 accessions displayed stable, high degrees of resistance to stripe rust development when exposed to mixed races of Pst at the adult-plant stage in multi-environment field assessments. A marker-trait association analysis indicated that 51 loci were significantly associated with adult-plant resistance to stripe rust. These loci included 40 quantitative trait loci (QTL) regions for adult-plant resistance. Twenty identified resistance QTL were linked closely to previously reported yellow rust resistance genes or QTL regions, which were distributed across chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 4A, 4B, 5B, 6B, 7A, 7B, and 7D. Six multi-trait QTL were detected on chromosomes 1B, 1D, 2B, 3A, 3B, and 7D. Twenty QTL were mapped to chromosomes 1D, 2A, 2D, 4B, 5B, 6A, 6B, 6D, 7A, 7B, and 7D, distant from previously identified yellow rust resistance genes. Consequently, these QTL are potentially novel loci for stripe rust resistance. Among the 20 potentially novel QTL, five (QDS.sicau-2A, QIT.sicau-4B, QDS.sicau-4B.2, QDS.sicau-6A.3, and QYr.sicau-7D) were associated with field responses at the adult-plant stage in at least two environments, and may have large effects on stripe rust resistance. The novel effective QTL for adult-plant resistance to stripe rust will improve understanding of the genetic mechanisms that control the spread of stripe rust, and will aid in the molecular marker-assisted selection-based breeding of wheat for stripe rust resistance.
Collapse
Affiliation(s)
- Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Xueling Ye
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - YaXi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Guoyue Chen,
| |
Collapse
|
22
|
Girma G, Nida H, Seyoum A, Mekonen M, Nega A, Lule D, Dessalegn K, Bekele A, Gebreyohannes A, Adeyanju A, Tirfessa A, Ayana G, Taddese T, Mekbib F, Belete K, Tesso T, Ejeta G, Mengiste T. A Large-Scale Genome-Wide Association Analyses of Ethiopian Sorghum Landrace Collection Reveal Loci Associated With Important Traits. FRONTIERS IN PLANT SCIENCE 2019; 10:691. [PMID: 31191590 PMCID: PMC6549537 DOI: 10.3389/fpls.2019.00691] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/08/2019] [Indexed: 05/20/2023]
Abstract
The eastern Africa region, Ethiopia and its surroundings, is considered as the center of origin and diversity for sorghum, and has contributed to global sorghum genetic improvement. The germplasm from this region harbors enormous genetic variation for various traits but little is known regarding the genetic architecture of most traits. Here, 1425 Ethiopian landrace accessions were phenotyped under field conditions for presence or absence of awns, panicle compactness and shape, panicle exsertion, pericarp color, glume cover, plant height and smut resistance under diverse environmental conditions in Ethiopia. In addition, F1 hybrids obtained from a subset of 1341 accessions crossed to an A1 cytoplasmic male sterile line, ATx623, were scored for fertility/sterility reactions. Subsequently, genotyping-by-sequencing generated a total of 879,407 SNPs from which 72,190 robust SNP markers were selected after stringent quality control (QC). Pairwise distance-based hierarchical clustering identified 11 distinct groups. Of the genotypes assigned to either one of the 11 sub-populations, 65% had high ancestry membership coefficient with the likelihood of more than 0.60 and the remaining 35% represented highly admixed accessions. A genome-wide association study (GWAS) identified loci and SNPs associated with aforementioned traits. GWAS based on compressed mixed linear model (CMLM) identified SNPs with significant association (FDR ≤ 0.05) to the different traits studied. The percentage of total phenotypic variation explained with significant SNPs across traits ranged from 2 to 43%. Candidate genes showing significant association with different traits were identified. The sorghum bHLH transcription factor, ABORTED MICROSPORES was identified as a strong candidate gene conditioning male fertility. Notably, sorghum CLAVATA1 receptor like kinase, known for regulation of plant growth, and the ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR gene RAP2-7, known to suppress transition to flowering, were significantly associated with plant height. In addition, the YELLOW SEED1 like MYB transcription factor and TANNIN1 showed strong association with pericarp color validating previous observations. Overall, the genetic architecture of natural variation representing the complex Ethiopian sorghum germplasm was established. The study contributes to the characterization of genes and alleles controlling agronomic traits, and will serve as a source of markers for molecular breeding.
Collapse
Affiliation(s)
- Gezahegn Girma
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Habte Nida
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Amare Seyoum
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Moges Mekonen
- Chiro Agricultural Research Center, Ethiopian Institute of Agricultural Research, Chiro, Ethiopia
| | - Amare Nega
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Dagnachew Lule
- Bako Agricultural Research Center, Oromia Agricultural Research Institute, Bako, Ethiopia
| | - Kebede Dessalegn
- Bako Agricultural Research Center, Oromia Agricultural Research Institute, Bako, Ethiopia
| | - Alemnesh Bekele
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Adane Gebreyohannes
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Adedayo Adeyanju
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Alemu Tirfessa
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Getachew Ayana
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Taye Taddese
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Firew Mekbib
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Ketema Belete
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Tesfaye Tesso
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Gebisa Ejeta
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
- *Correspondence: Gebisa Ejeta,
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Tesfaye Mengiste,
| |
Collapse
|
23
|
Cuevas HE, Prom LK, Cooper EA, Knoll JE, Ni X. Genome-Wide Association Mapping of Anthracnose ( Colletotrichum sublineolum) Resistance in the U.S. Sorghum Association Panel. THE PLANT GENOME 2018; 11:170099. [PMID: 30025025 DOI: 10.3835/plantgenome2017.11.0099] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The productivity and profitability of sorghum [ (L.) Moench] is reduced by susceptibility to fungal diseases, such as anthracnose ( P. Henn.). A limited number of resistant accessions are present in the temperate-adapted germplasm; other exotic sources of resistance are not currently available for breeding programs. Among 335 accessions available to breeders from a previously genotyped sorghum association panel (SAP), we found that 75 were resistant to anthracnose. A phylogenetic analysis of these accessions showed high genetic diversity and multiple resistance sources. Genome-wide association scans (GWAS) were conducted using 268,289 single-nucleotide polymorphisms to identify loci associated with anthracnose resistance. Using logistic regressions for binary measures of resistance responses, we identified three loci within a region on chromosome 5 that have been previously associated with three sources of anthracnose resistance. A GWAS limited to Caudatum germplasm identified an association with a region on chromosome 1 and with the same previous region on chromosome 5. Candidate genes within these loci were related to R-gene families, signaling cascades, and transcriptional reprogramming, suggesting that the resistance response is controlled by multiple defense mechanisms. The strategic integration of exotic resistant germplasm into the SAP is needed to identify additional rare resistance alleles via GWAS.
Collapse
|
24
|
Identification of charcoal rot resistance QTLs in sorghum using association and in silico analyses. J Appl Genet 2018; 59:243-251. [PMID: 29876718 DOI: 10.1007/s13353-018-0446-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/30/2018] [Accepted: 05/20/2018] [Indexed: 01/01/2023]
Abstract
Charcoal rot disease, a root and stem disease caused by the soil-borne fungus Macrophomina phaseolina (Tassi) Goid., is a major biotic stress that limits sorghum productivity worldwide. Charcoal rot resistance-related parameters, e.g., pre-emergence damping-off%, post-emergence damping-off%, charcoal rot disease severity, and plant survival rates, were measured in a structured sorghum population consisting of 107 landraces. Analysis of variance of charcoal rot resistance-related parameters revealed significant variations in the response to M. phaseolina infection within evaluated accessions. Continuous phenotypic variations for resistance-related parameters were observed indicating a quantitative inheritance of resistance. The population was genotyped using 181 simple sequence repeat (SSR) markers. Association analysis identified 13 markers significantly associated with quantitative trait genes (QTLs) conferring resistance to charcoal rot disease with an R2 value ranging between 9.47 to 18.87%, nine of which are environment-specific loci. Several QTL-linked markers are significantly associated with more than one resistance-related parameter, suggesting that those QTLs might contain genes involved in the plant defense response. In silico analysis of four novel major QTLs identified 11 putative gene homologs that could be considered as candidate genes for resistance against charcoal rot disease. Cluster analysis using the genotypic data of 181 SSR markers from 107 sorghum accessions identified 12 main clusters. The results provide a basis for further functional characterization of charcoal rot disease resistance or defense genes in sorghum and for further dissection of their molecular mechanisms.
Collapse
|
25
|
Coser SM, Chowda Reddy RV, Zhang J, Mueller DS, Mengistu A, Wise KA, Allen TW, Singh A, Singh AK. Genetic Architecture of Charcoal Rot ( Macrophomina phaseolina) Resistance in Soybean Revealed Using a Diverse Panel. FRONTIERS IN PLANT SCIENCE 2017; 8:1626. [PMID: 28983305 PMCID: PMC5613161 DOI: 10.3389/fpls.2017.01626] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/05/2017] [Indexed: 05/08/2023]
Abstract
Charcoal rot (CR) disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methods available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient information available on the genetic mechanisms related to resistance. Genome-wide association studies (GWAS) enable unraveling the genetic architecture of resistance and identification of causal genes. The aims of this study were to identify new sources of resistance to CR in a collection of 459 diverse plant introductions from the USDA Soybean Germplasm Core Collection using field and greenhouse screenings, and to conduct GWAS to identify candidate genes and associated molecular markers. New sources for CR resistance were identified from both field and greenhouse screening from maturity groups I, II, and III. Five significant single nucleotide polymorphism (SNP) and putative candidate genes related to abiotic and biotic stress responses are reported from the field screening; while greenhouse screening revealed eight loci associated with eight candidate gene families, all associated with functions controlling plant defense response. No overlap of markers or genes was observed between field and greenhouse screenings suggesting a complex molecular mechanism underlying resistance to CR in soybean with varied response to different environments; but our findings provide useful information for advancing breeding for CR resistance as well as the genetic mechanism of resistance.
Collapse
Affiliation(s)
- Sara M. Coser
- Department of Agronomy, Iowa State UniversityAmes, IA, United States
| | | | - Jiaoping Zhang
- Department of Agronomy, Iowa State UniversityAmes, IA, United States
| | - Daren S. Mueller
- Department of Plant Pathology and Microbiology, Iowa State UniversityAmes, IA, United States
| | - Alemu Mengistu
- Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research ServiceJackson, TN, United States
| | - Kiersten A. Wise
- Department of Botany and Plant Pathology, Purdue UniversityWest Lafayette, IN, United States
| | - Tom W. Allen
- Delta Research and Extension Center, Mississippi State UniversityStoneville, MS, United States
| | - Arti Singh
- Department of Agronomy, Iowa State UniversityAmes, IA, United States
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State UniversityAmes, IA, United States
| |
Collapse
|
26
|
Chen J, Chopra R, Hayes C, Morris G, Marla S, Burke J, Xin Z, Burow G. Genome-Wide Association Study of Developing Leaves' Heat Tolerance during Vegetative Growth Stages in a Sorghum Association Panel. THE PLANT GENOME 2017; 10. [PMID: 28724078 DOI: 10.3835/plantgenome2016.09.0091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heat stress reduces grain yield and quality worldwide. Enhancing heat tolerance of crops at all developmental stages is one of the essential strategies required for sustaining agricultural production especially as frequency of temperature extremes escalates in response to climate change. Although heat tolerance mechanisms have been studied extensively in model plant species, little is known about the genetic control underlying heat stress responses of crop plants at the vegetative stage under field conditions. To dissect the genetic basis of heat tolerance in sorghum [ (L.) Moench], we performed a genome-wide association study (GWAS) for traits responsive to heat stress at the vegetative stage in an association panel. Natural variation in leaf firing (LF) and leaf blotching (LB) were evaluated separately for 3 yr in experimental fields at three locations where sporadic heat waves occurred throughout the sorghum growing season. We identified nine single-nucleotide polymorphisms (SNPs) that were significantly associated with LF and five SNPs that were associated with LB. Candidate genes near the SNPs were investigated and 14 were directly linked to biological pathways involved in plant stress responses including heat stress response. The findings of this study provide new knowledge on the genetic control of leaf traits responsive to heat stress in sorghum, which could aid in elucidating the genetic and molecular mechanisms of vegetative stage heat tolerance in crops. The results also provide candidate markers for molecular breeding of enhanced heat tolerance in cereal and bioenergy crops.
Collapse
|
27
|
Identification of Ganoderma Disease Resistance Loci Using Natural Field Infection of an Oil Palm Multiparental Population. G3-GENES GENOMES GENETICS 2017; 7:1683-1692. [PMID: 28592650 PMCID: PMC5473749 DOI: 10.1534/g3.117.041764] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multi-parental populations are promising tools for identifying quantitative disease resistance loci. Stem rot caused by Ganoderma boninense is a major threat to palm oil production, with yield losses of up to 80% prompting premature replantation of palms. There is evidence of genetic resistance sources, but the genetic architecture of Ganoderma resistance has not yet been investigated. This study aimed to identify Ganoderma resistance loci using an oil palm multi-parental population derived from nine major founders of ongoing breeding programs. A total of 1200 palm trees of the multi-parental population was planted in plots naturally infected by Ganoderma, and their health status was assessed biannually over 25 yr. The data were treated as survival data, and modeled using the Cox regression model, including a spatial effect to take the spatial component in the spread of Ganoderma into account. Based on the genotypes of 757 palm trees out of the 1200 planted, and on pedigree information, resistance loci were identified using a random effect with identity-by-descent kinship matrices as covariance matrices in the Cox model. Four Ganoderma resistance loci were identified, two controlling the occurrence of the first Ganoderma symptoms, and two the death of palm trees, while favorable haplotypes were identified among a major gene pool for ongoing breeding programs. This study implemented an efficient and flexible QTL mapping approach, and generated unique valuable information for the selection of oil palm varieties resistant to Ganoderma disease.
Collapse
|
28
|
Chopra R, Burow G, Burke JJ, Gladman N, Xin Z. Genome-wide association analysis of seedling traits in diverse Sorghum germplasm under thermal stress. BMC PLANT BIOLOGY 2017; 17:12. [PMID: 28086798 PMCID: PMC5237230 DOI: 10.1186/s12870-016-0966-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/23/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Climate variability due to fluctuation in temperature is a worldwide concern that imperils crop production. The need to understand how the germplasm variation in major crops can be utilized to aid in discovering and developing breeding lines that can withstand and adapt to temperature fluctuations is more necessary than ever. Here, we analyzed the genetic variation associated with responses to thermal stresses in a sorghum association panel (SAP) representing major races and working groups to identify single nucleotide polymorphisms (SNPs) that are associated with resilience to temperature stress in a major cereal crop. RESULTS The SAP exhibited extensive variation for seedling traits under cold and heat stress. Genome-wide analyses identified 30 SNPs that were strongly associated with traits measured at seedling stage under cold stress and tagged genes that act as regulators of anthocyanin expression and soluble carbohydrate metabolism. Meanwhile, 12 SNPs were significantly associated with seedling traits under heat stress and these SNPs tagged genes that function in sugar metabolism, and ion transport pathways. Evaluation of co-expression networks for genes near the significantly associated SNPs indicated complex gene interactions for cold and heat stresses in sorghum. We focused and validated the expression of four genes in the network of Sb06g025040, a basic-helix-loop-helix (bHLH) transcription factor that was proposed to be involved in purple color pigmentation of leaf, and observed that genes in this network were upregulated during cold stress in a moderately tolerant line as compared to the more sensitive line. CONCLUSION This study facilitated the tagging of genome regions associated with variation in seedling traits of sorghum under cold and heat stress. These findings show the potential of genotype information for development of temperature resilient sorghum cultivars and further characterization of genes and their networks responsible for adaptation to thermal stresses. Knowledge on the gene networks from this research can be extended to the other cereal crops to better understand the genetic basis of resilience to temperature fluctuations during plant developmental stages.
Collapse
Affiliation(s)
- Ratan Chopra
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA.
| | - Gloria Burow
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA.
| | - John J Burke
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA
| | - Nicholas Gladman
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA
| | - Zhanguo Xin
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA
| |
Collapse
|
29
|
Bartoli C, Roux F. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:763. [PMID: 28588588 PMCID: PMC5441063 DOI: 10.3389/fpls.2017.00763] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/24/2017] [Indexed: 05/18/2023]
Abstract
The emergence and re-emergence of plant pathogenic microorganisms are processes that imply perturbations in both host and pathogen ecological niches. Global change is largely assumed to drive the emergence of new etiological agents by altering the equilibrium of the ecological habitats which in turn places hosts more in contact with pathogen reservoirs. In this context, the number of epidemics is expected to increase dramatically in the next coming decades both in wild and crop plants. Under these considerations, the identification of the genetic variants underlying natural variation of resistance is a pre-requisite to estimate the adaptive potential of wild plant populations and to develop new breeding resistant cultivars. On the other hand, the prediction of pathogen's genetic determinants underlying disease emergence can help to identify plant resistance alleles. In the genomic era, whole genome sequencing combined with the development of statistical methods led to the emergence of Genome Wide Association (GWA) mapping, a powerful tool for detecting genomic regions associated with natural variation of disease resistance in both wild and cultivated plants. However, GWA mapping has been less employed for the detection of genetic variants associated with pathogenicity in microbes. Here, we reviewed GWA studies performed either in plants or in pathogenic microorganisms (bacteria, fungi and oomycetes). In addition, we highlighted the benefits and caveats of the emerging joint GWA mapping approach that allows for the simultaneous identification of genes interacting between genomes of both partners. Finally, based on co-evolutionary processes in wild populations, we highlighted a phenotyping-free joint GWA mapping approach as a promising tool for describing the molecular landscape underlying plant - microbe interactions.
Collapse
|
30
|
Boyles RE, Cooper EA, Myers MT, Brenton Z, Rauh BL, Morris GP, Kresovich S. Genome-Wide Association Studies of Grain Yield Components in Diverse Sorghum Germplasm. THE PLANT GENOME 2016; 9. [PMID: 27898823 DOI: 10.3835/plantgenome2015.09.0091] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Grain yield and its primary determinants, grain number and weight, are important traits in cereal crops that have been well studied; however, the genetic basis of and interactions between these traits remain poorly understood. Characterization of grain yield per primary panicle (YPP), grain number per primary panicle (GNP), and 1000-grain weight (TGW) in sorghum [ (L.) Moench], a hardy C cereal with a genome size of ∼730 Mb, was implemented in a diversity panel containing 390 accessions. These accessions were genotyped to obtain 268,830 single-nucleotide polymorphisms (SNPs). Genome-wide association studies (GWAS) were performed to identify loci associated with each grain yield component and understand the genetic interactions between these traits. Genome-wide association studies identified associations across the genome with YPP, GNP, and TGW that were located within previously mapped sorghum QTL for panicle weight, grain yield, and seed size, respectively. There were no significant associations between GNP and TGW that were within 100 kb, much greater than the average linkage disequilibrium (LD) in sorghum. The identification of nonoverlapping loci for grain number and weight suggests these traits may be manipulated independently to increase the grain yield of sorghum. Following GWAS, genomic regions surrounding each associated SNP were mined for candidate genes. Previously published expression data indicated several TGW candidate genes, including an ethylene receptor homolog, were primarily expressed within developing seed tissues to support GWAS. Furthermore, maize ( L.) homologs of identified TGW candidates were differentially expressed within the seed between small- and large-kernel lines from a segregating maize population.
Collapse
|
31
|
Zhao J, Mantilla Perez MB, Hu J, Salas Fernandez MG. Genome-Wide Association Study for Nine Plant Architecture Traits in Sorghum. THE PLANT GENOME 2016; 9. [PMID: 27898806 DOI: 10.3835/plantgenome2015.06.0044] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sorghum [ (L) Moench], an important grain and forage crop, is receiving significant attention as a lignocellulosic feedstock because of its water-use efficiency and high biomass yield potential. Because of the advancement of genotyping and sequencing technologies, genome-wide association study (GWAS) has become a routinely used method to investigate the genetic mechanisms underlying natural phenotypic variation. In this study, we performed a GWAS for nine grain and biomass-related plant architecture traits to determine their overall genetic architecture and the specific association of allelic variants in gibberellin (GA) biosynthesis and signaling genes with these phenotypes. A total of 101 single-nucleotide polymorphism (SNP) representative regions were associated with at least one of the nine traits, and two of the significant markers correspond to GA candidate genes, () and (), affecting plant height and seed number, respectively. The resolution of a previously reported quantitative trait loci (QTL) for leaf angle on chromosome 7 was increased to a 1.67 Mb region containing seven candidate genes with good prospects for further investigation. This study provides new knowledge of the association of GA genes with plant architecture traits and the genomic regions controlling variation in leaf angle, stem circumference, internode number, tiller number, seed number, panicle exsertion, and panicle length. The GA gene affecting seed number variation () and the genomic region on chromosome 7 associated with variation in leaf angle are also important outcomes of this study and represent the foundation of future validation studies needed to apply this knowledge in breeding programs.
Collapse
|
32
|
Luo H, Zhao W, Wang Y, Xia Y, Wu X, Zhang L, Tang B, Zhu J, Fang L, Du Z, Bekele WA, Tai S, Jordan DR, Godwin ID, Snowdon RJ, Mace ES, Jing HC, Luo J. SorGSD: a sorghum genome SNP database. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:6. [PMID: 26744602 PMCID: PMC4704391 DOI: 10.1186/s13068-015-0415-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/10/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Sorghum (Sorghum bicolor) is one of the most important cereal crops globally and a potential energy plant for biofuel production. In order to explore genetic gain for a range of important quantitative traits, such as drought and heat tolerance, grain yield, stem sugar accumulation, and biomass production, via the use of molecular breeding and genomic selection strategies, knowledge of the available genetic variation and the underlying sequence polymorphisms, is required. RESULTS Based on the assembled and annotated genome sequences of Sorghum bicolor (v2.1) and the recently published sorghum re-sequencing data, ~62.9 M SNPs were identified among 48 sorghum accessions and included in a newly developed sorghum genome SNP database SorGSD (http://sorgsd.big.ac.cn). The diverse panel of 48 sorghum lines can be classified into four groups, improved varieties, landraces, wild and weedy sorghums, and a wild relative Sorghum propinquum. SorGSD has a web-based query interface to search or browse SNPs from individual accessions, or to compare SNPs among several lines. The query results can be visualized as text format in tables, or rendered as graphics in a genome browser. Users may find useful annotation from query results including type of SNPs such as synonymous or non-synonymous SNPs, start, stop of splice variants, chromosome locations, and links to the annotation on Phytozome (www.phytozome.net) sorghum genome database. In addition, general information related to sorghum research such as online sorghum resources and literature references can also be found on the website. All the SNP data and annotations can be freely download from the website. CONCLUSIONS SorGSD is a comprehensive web-portal providing a database of large-scale genome variation across all racial types of cultivated sorghum and wild relatives. It can serve as a bioinformatics platform for a range of genomics and molecular breeding activities for sorghum and for other C4 grasses.
Collapse
Affiliation(s)
- Hong Luo
- />Genomics and Molecular Breeding of Biofuel Crops, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- />Laboratory of Bioinformatics, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Wenming Zhao
- />Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yanqing Wang
- />Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yan Xia
- />Genomics and Molecular Breeding of Biofuel Crops, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Xiaoyuan Wu
- />Genomics and Molecular Breeding of Biofuel Crops, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Limin Zhang
- />Genomics and Molecular Breeding of Biofuel Crops, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Bixia Tang
- />Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Junwei Zhu
- />Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lu Fang
- />Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zhenglin Du
- />Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Wubishet A. Bekele
- />Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | | | - David R. Jordan
- />Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Warwick, QLD 4370 Australia
| | - Ian D. Godwin
- />School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Rod J. Snowdon
- />Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Emma S. Mace
- />Department of Agriculture, Fisheries & Forestry (DAFF), Warwick, QLD 4370 Australia
| | - Hai-Chun Jing
- />Genomics and Molecular Breeding of Biofuel Crops, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Jingchu Luo
- />College of Life Sciences and State Key Laboratory of Protein and Plant Gene Research, Peking University, 100871 Beijing, China
| |
Collapse
|