1
|
Posadas N, Conaco C. Gene networks governing the response of a calcareous sponge to future ocean conditions reveal lineage-specific XBP1 regulation of the unfolded protein response. Ecol Evol 2024; 14:e11652. [PMID: 38952658 PMCID: PMC11214833 DOI: 10.1002/ece3.11652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Marine sponges are predicted to be winners in the future ocean due to their exemplary adaptive capacity. However, while many sponge groups exhibit tolerance to a wide range of environmental insults, calcifying sponges may be more susceptible to thermo-acidic stress. To describe the gene regulatory networks that govern the stress response of the calcareous sponge, Leucetta chagosensis (class Calcarea, order Clathrinida), individuals were subjected to warming and acidification conditions based on the climate models for 2100. Transcriptome analysis and gene co-expression network reconstruction revealed that the unfolded protein response (UPR) was activated under thermo-acidic stress. Among the upregulated genes were two lineage-specific homologs of X-box binding protein 1 (XBP1), a transcription factor that activates the UPR. Alternative dimerization between these XBP1 gene products suggests a clathrinid-specific mechanism to reversibly sequester the transcription factor into an inactive form, enabling the rapid regulation of pathways linked to the UPR in clathrinid calcareous sponges. Our findings support the idea that transcription factor duplication events may refine evolutionarily conserved molecular pathways and contribute to ecological success.
Collapse
Affiliation(s)
- Niño Posadas
- Marine Science Institute, University of the Philippines DilimanQuezon CityPhilippines
- Present address:
Centre for Chromosome Biology, School of Biological and Chemical SciencesUniversity of GalwayGalwayIreland
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines DilimanQuezon CityPhilippines
| |
Collapse
|
2
|
Feng B, Li Y, Liu H, Steenwyk JL, David KT, Tian X, Xu B, Gonçalves C, Opulente DA, LaBella AL, Harrison MC, Wolters JF, Shao S, Chen Z, Fisher KJ, Groenewald M, Hittinger CT, Shen XX, Rokas A, Zhou X, Li Y. Unique trajectory of gene family evolution from genomic analysis of nearly all known species in an ancient yeast lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597512. [PMID: 38895429 PMCID: PMC11185758 DOI: 10.1101/2024.06.05.597512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Gene gains and losses are a major driver of genome evolution; their precise characterization can provide insights into the origin and diversification of major lineages. Here, we examined gene family evolution of 1,154 genomes from nearly all known species in the medically and technologically important yeast subphylum Saccharomycotina. We found that yeast gene family and genome evolution are distinct from plants, animals, and filamentous ascomycetes and are characterized by small genome sizes and smaller gene numbers but larger gene family sizes. Faster-evolving lineages (FELs) in yeasts experienced significantly higher rates of gene losses-commensurate with a narrowing of metabolic niche breadth-but higher speciation rates than their slower-evolving sister lineages (SELs). Gene families most often lost are those involved in mRNA splicing, carbohydrate metabolism, and cell division and are likely associated with intron loss, metabolic breadth, and non-canonical cell cycle processes. Our results highlight the significant role of gene family contractions in the evolution of yeast metabolism, genome function, and speciation, and suggest that gene family evolutionary trajectories have differed markedly across major eukaryotic lineages.
Collapse
Affiliation(s)
- Bo Feng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yonglin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kyle T. David
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaolin Tian
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Biyang Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Dana A. Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department, Villanova University, Villanova, PA 19085, USA
| | - Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis NC 28223, USA AND Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, 28233, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F. Wolters
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Shengyuan Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Zhaohao Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Kaitlin J. Fisher
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, 13126, USA
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Ma F, Lau CY, Zheng C. Young duplicate genes show developmental stage- and cell type-specific expression and function in Caenorhabditis elegans. CELL GENOMICS 2024; 4:100467. [PMID: 38190105 PMCID: PMC10794840 DOI: 10.1016/j.xgen.2023.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Gene duplication produces the material that fuels evolutionary innovation. The "out-of-testis" hypothesis suggests that sperm competition creates selective pressure encouraging the emergence of new genes in male germline, but the somatic expression and function of the newly evolved genes are not well understood. We systematically mapped the expression of young duplicate genes throughout development in Caenorhabditis elegans using both whole-organism and single-cell transcriptomic data. Based on the expression dynamics across developmental stages, young duplicate genes fall into three clusters that are preferentially expressed in early embryos, mid-stage embryos, and late-stage larvae. Early embryonic genes are involved in protein degradation and develop essentiality comparable to the genomic average. In mid-to-late embryos and L4-stage larvae, young genes are enriched in intestine, epidermal cells, coelomocytes, and amphid chemosensory neurons. Their molecular functions and inducible expression indicate potential roles in innate immune response and chemosensory perceptions, which may contribute to adaptation outside of the sperm.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Maskalenka K, Alagöz G, Krueger F, Wright J, Rostovskaya M, Nakhuda A, Bendall A, Krueger C, Walker S, Scally A, Rugg-Gunn PJ. NANOGP1, a tandem duplicate of NANOG, exhibits partial functional conservation in human naïve pluripotent stem cells. Development 2023; 150:286291. [PMID: 36621005 PMCID: PMC10110494 DOI: 10.1242/dev.201155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023]
Abstract
Gene duplication events can drive evolution by providing genetic material for new gene functions, and they create opportunities for diverse developmental strategies to emerge between species. To study the contribution of duplicated genes to human early development, we examined the evolution and function of NANOGP1, a tandem duplicate of the transcription factor NANOG. We found that NANOGP1 and NANOG have overlapping but distinct expression profiles, with high NANOGP1 expression restricted to early epiblast cells and naïve-state pluripotent stem cells. Sequence analysis and epitope-tagging revealed that NANOGP1 is protein coding with an intact homeobox domain. The duplication that created NANOGP1 occurred earlier in primate evolution than previously thought and has been retained only in great apes, whereas Old World monkeys have disabled the gene in different ways, including homeodomain point mutations. NANOGP1 is a strong inducer of naïve pluripotency; however, unlike NANOG, it is not required to maintain the undifferentiated status of human naïve pluripotent cells. By retaining expression, sequence and partial functional conservation with its ancestral copy, NANOGP1 exemplifies how gene duplication and subfunctionalisation can contribute to transcription factor activity in human pluripotency and development.
Collapse
Affiliation(s)
| | - Gökberk Alagöz
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - Joshua Wright
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Asif Nakhuda
- Gene Targeting Facility, Babraham Institute, Cambridge CB22 3AT, UK
| | - Adam Bendall
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Christel Krueger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Simon Walker
- Imaging Facility, Babraham Institute, Cambridge CB22 3AT, UK
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
5
|
Xu S, Guo Z, Feng X, Shao S, Yang Y, Li J, Zhong C, He Z, Shi S. Where whole-genome duplication is most beneficial: Adaptation of mangroves to a wide salinity range between land and sea. Mol Ecol 2023; 32:460-475. [PMID: 34882881 DOI: 10.1111/mec.16320] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023]
Abstract
Whole-genome duplication (WGD) is believed to increase the chance of adaptation to a new environment. This conjecture may apply particularly well to new environments that are not only different but also more variable than ancestral habitats. One such prominent environment is the interface between land and sea, which has been invaded by woody plants, collectively referred as mangroves, multiple times. Here, we use two distantly related mangrove species (Avicennia marina and Rhizophora apiculata) to explore the effects of WGD on the adaptive process. We found that a high proportion of duplicated genes retained after WGD have acquired derived differential expression in response to salt gradient treatment. The WGD duplicates differentially expressed in at least one copy usually (>90%) diverge from their paralogues' expression profiles. Furthermore, both species evolved in parallel to have one paralogue expressed at a high level in both fresh water and hypersaline conditions but at a lower level at medium salinity. The pattern contrasts with the conventional view of monotone increase/decrease as salinity increases. Differentially expressed copies have thus probably acquired a new role in salinity tolerance. Our results indicate that the WGD duplicates may have evolved to function collaboratively in coping with different salinity levels, rather than specializing in the intermediate salinity optimal for mangrove plants. In conclusion, WGD and the retained duplicates appear to be an effective solution for adaptation to new and unstable environments.
Collapse
Affiliation(s)
- Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Shao Shao
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Jianfang Li
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Wang R, Wu B, Jian J, Tang Y, Zhang T, Song Z, Zhang W, Qiong L. How to survive in the world's third poplar: Insights from the genome of the highest altitude woody plant, Hippophae tibetana (Elaeagnaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1051587. [PMID: 36589082 PMCID: PMC9797102 DOI: 10.3389/fpls.2022.1051587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Hippophae tibetana (Tibetan sea-buckthorn) is one of the highest distributed woody plants in the world (3,000-5,200 meters a.s.l.). It is characterized by adaptation to extreme environment and important economic values. Here, we combined PacBio Hifi platform and Hi-C technology to assemble a 1,452.75 Mb genome encoding 33,367 genes with a Contig N50 of 74.31 Mb, and inferred its sexual chromosome. Two Hippophae-specific whole-genome duplication events (18.7-21.2 million years ago, Ma; 28.6-32.4 Ma) and long terminal repeats retroelements (LTR-RTs) amplifications were detected. Comparing with related species at lower altitude, Ziziphus jujuba (<1, 700 meters a.s.l.), H. tibetana had some significantly rapid evolving genes involved in adaptation to high altitude habitats. However, comparing with Hippophae rhamnoides (<3, 700 meters a.s.l.), no rapid evolving genes were found except microtubule and microtubule-based process genes, H. tibetana has a larger genome, with extra 2, 503 genes (7.5%) and extra 680.46 Mb transposable elements (TEs) (46.84%). These results suggest that the changes in the copy number and regulatory pattern of genes play a more important role for H. tibetana adapting to more extreme and variable environments at higher altitude by more TEs and more genes increasing genome variability and expression plasticity. This suggestion was supported by two findings: nitrogen-fixing genes of H. tibetana having more copies, and intact TEs being significantly closer genes than fragmentary TEs. This study provided new insights into the evolution of alpine plants.
Collapse
Affiliation(s)
- Ruoqiu Wang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | | | - Yiwei Tang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ticao Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiping Song
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenju Zhang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - La Qiong
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, China
| |
Collapse
|
7
|
Polyploidy as a Fundamental Phenomenon in Evolution, Development, Adaptation and Diseases. Int J Mol Sci 2022; 23:ijms23073542. [PMID: 35408902 PMCID: PMC8998937 DOI: 10.3390/ijms23073542] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
DNA replication during cell proliferation is 'vertical' copying, which reproduces an initial amount of genetic information. Polyploidy, which results from whole-genome duplication, is a fundamental complement to vertical copying. Both organismal and cell polyploidy can emerge via premature cell cycle exit or via cell-cell fusion, the latter giving rise to polyploid hybrid organisms and epigenetic hybrids of somatic cells. Polyploidy-related increase in biological plasticity, adaptation, and stress resistance manifests in evolution, development, regeneration, aging, oncogenesis, and cardiovascular diseases. Despite the prevalence in nature and importance for medicine, agri- and aquaculture, biological processes and epigenetic mechanisms underlying these fundamental features largely remain unknown. The evolutionarily conserved features of polyploidy include activation of transcription, response to stress, DNA damage and hypoxia, and induction of programs of morphogenesis, unicellularity, and longevity, suggesting that these common features confer adaptive plasticity, viability, and stress resistance to polyploid cells and organisms. By increasing cell viability, polyploidization can provide survival under stressful conditions where diploid cells cannot survive. However, in somatic cells it occurs at the expense of specific function, thus promoting developmental programming of adult cardiovascular diseases and increasing the risk of cancer. Notably, genes arising via evolutionary polyploidization are heavily involved in cancer and other diseases. Ploidy-related changes of gene expression presumably originate from chromatin modifications and the derepression of bivalent genes. The provided evidence elucidates the role of polyploidy in evolution, development, aging, and carcinogenesis, and may contribute to the development of new strategies for promoting regeneration and preventing cardiovascular diseases and cancer.
Collapse
|
8
|
Kuzmin E, Taylor JS, Boone C. Retention of duplicated genes in evolution. Trends Genet 2022; 38:59-72. [PMID: 34294428 PMCID: PMC8678172 DOI: 10.1016/j.tig.2021.06.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Gene duplication is a prevalent phenomenon across the tree of life. The processes that lead to the retention of duplicated genes are not well understood. Functional genomics approaches in model organisms, such as yeast, provide useful tools to test the mechanisms underlying retention with functional redundancy and divergence of duplicated genes, including fates associated with neofunctionalization, subfunctionalization, back-up compensation, and dosage amplification. Duplicated genes may also be retained as a consequence of structural and functional entanglement. Advances in human gene editing have enabled the interrogation of duplicated genes in the human genome, providing new tools to evaluate the relative contributions of each of these factors to duplicate gene retention and the evolution of genome structure.
Collapse
Affiliation(s)
- Elena Kuzmin
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Ave des Pins Ouest, Montreal, QC, Canada H3A 1A3.
| | - John S Taylor
- Department of Biology, University of Victoria, PO Box 1700, Station CSC, Victoria, BC, Canada V8W 2Y2
| | - Charles Boone
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1; RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan, 351-0198
| |
Collapse
|
9
|
Anatskaya OV, Vinogradov AE. Whole-Genome Duplications in Evolution, Ontogeny, and Pathology: Complexity and Emergency Reserves. Mol Biol 2021. [DOI: 10.1134/s0026893321050022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms222212293. [PMID: 34830177 PMCID: PMC8622941 DOI: 10.3390/ijms222212293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
The cell central metabolism has been shaped throughout evolutionary times when facing challenges from the availability of resources. In the budding yeast, Saccharomyces cerevisiae, a set of duplicated genes originating from an ancestral whole-genome and several coetaneous small-scale duplication events drive energy transfer through glucose metabolism as the main carbon source either by fermentation or respiration. These duplicates (~a third of the genome) have been dated back to approximately 100 MY, allowing for enough evolutionary time to diverge in both sequence and function. Gene duplication has been proposed as a molecular mechanism of biological innovation, maintaining balance between mutational robustness and evolvability of the system. However, some questions concerning the molecular mechanisms behind duplicated genes transcriptional plasticity and functional divergence remain unresolved. In this work we challenged S. cerevisiae to the use of lactic acid/lactate as the sole carbon source and performed a small adaptive laboratory evolution to this non-fermentative carbon source, determining phenotypic and transcriptomic changes. We observed growth adaptation to acidic stress, by reduction of growth rate and increase in biomass production, while the transcriptomic response was mainly driven by repression of the whole-genome duplicates, those implied in glycolysis and overexpression of ROS response. The contribution of several duplicated pairs to this carbon source switch and acidic stress is also discussed.
Collapse
|
11
|
Gorkovskiy A, Verstrepen KJ. The Role of Structural Variation in Adaptation and Evolution of Yeast and Other Fungi. Genes (Basel) 2021; 12:699. [PMID: 34066718 PMCID: PMC8150848 DOI: 10.3390/genes12050699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
Mutations in DNA can be limited to one or a few nucleotides, or encompass larger deletions, insertions, duplications, inversions and translocations that span long stretches of DNA or even full chromosomes. These so-called structural variations (SVs) can alter the gene copy number, modify open reading frames, change regulatory sequences or chromatin structure and thus result in major phenotypic changes. As some of the best-known examples of SV are linked to severe genetic disorders, this type of mutation has traditionally been regarded as negative and of little importance for adaptive evolution. However, the advent of genomic technologies uncovered the ubiquity of SVs even in healthy organisms. Moreover, experimental evolution studies suggest that SV is an important driver of evolution and adaptation to new environments. Here, we provide an overview of the causes and consequences of SV and their role in adaptation, with specific emphasis on fungi since these have proven to be excellent models to study SV.
Collapse
Affiliation(s)
- Anton Gorkovskiy
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
12
|
Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 2021; 590:438-444. [PMID: 33505029 PMCID: PMC7886653 DOI: 10.1038/s41586-020-03127-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.
Collapse
|
13
|
Pérez de Vega MJ, Moreno-Fernández S, Pontes-Quero GM, González-Amor M, Vázquez-Lasa B, Sabater-Muñoz B, Briones AM, Aguilar MR, Miguel M, González-Muñiz R. Characterization of Novel Synthetic Polyphenols: Validation of Antioxidant and Vasculoprotective Activities. Antioxidants (Basel) 2020; 9:antiox9090787. [PMID: 32854368 PMCID: PMC7555119 DOI: 10.3390/antiox9090787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022] Open
Abstract
Antioxidant compounds, including polyphenols, have therapeutic effects because of their anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. They play important roles in protecting the cardiovascular and neurological systems, by having preventive or protective effects against free radicals produced by either normal or pathological metabolism in such systems. For instance, resveratrol, a well-known potent antioxidant, has a counteracting effect on the excess of reactive oxygen species (ROS) and has a number of therapeutic benefits, like anti-inflammatory, anti-cancer and cardioprotective activities. Based on previous work from our group, and on the most frequent OH substitutions of natural polyphenols, we designed two series of synthetically accessible bis-polyhydroxyphenyl derivatives, separated by amide or urea linkers. These compounds exhibit high antioxidant ability (oxygen radical absorbance capacity (ORAC) assay) and interesting radical scavenging activity (RSA) values (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and α,α-diphenyl-β-picrylhydrazyl (DPPH) tests). Some of the best polyphenols were evaluated in two biological systems, endothelial cells (in vitro) and whole aorta (ex vivo), highly susceptible for the deleterious effects of prooxidants under different inflammatory conditions, showing protection against oxidative stress induced by inflammatory stimuli relevant in cardiovascular diseases, i.e., Angiotensin II and IL-1β. Selected compounds also showed strong in vivo antioxidant properties when evaluated in the model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
| | - Silvia Moreno-Fernández
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM, CEI+UAM), C/Nicolás Cabrera 9, 28049 Madrid, Spain; (S.M.-F.); (M.M.)
| | - Gloria María Pontes-Quero
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (G.M.P.-Q.); (B.V.-L.); (M.R.A.)
- Alodia Farmacéutica SL, Santiago Grisolía 2 D130/L145, 28760 Madrid, Spain
| | - María González-Amor
- Facultad de Medicina, Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Hospital La Paz, Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.G.-A.); (A.M.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (G.M.P.-Q.); (B.V.-L.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Beatriz Sabater-Muñoz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Ingeniero Fausto Elio, 46022 Valencia, Spain;
| | - Ana M. Briones
- Facultad de Medicina, Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas Hospital La Paz, Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.G.-A.); (A.M.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid Spain
| | - María R. Aguilar
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (G.M.P.-Q.); (B.V.-L.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Marta Miguel
- Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM, CEI+UAM), C/Nicolás Cabrera 9, 28049 Madrid, Spain; (S.M.-F.); (M.M.)
| | - Rosario González-Muñiz
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain;
- Correspondence: ; Tel.: +3-4912-587-434
| |
Collapse
|
14
|
Transcriptional Rewiring, Adaptation, and the Role of Gene Duplication in the Metabolism of Ethanol of Saccharomyces cerevisiae. mSystems 2020; 5:5/4/e00416-20. [PMID: 32788405 PMCID: PMC7426151 DOI: 10.1128/msystems.00416-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ethanol is the main by-product of yeast sugar fermentation that affects microbial growth parameters, being considered a dual molecule, a nutrient and a stressor. Previous works demonstrated that the budding yeast arose after an ancient hybridization process resulted in a tier of duplicated genes within its genome, many of them with implications in this ethanol "produce-accumulate-consume" strategy. The evolutionary link between ethanol production, consumption, and tolerance versus ploidy and stability of the hybrids is an ongoing debatable issue. The implication of ancestral duplicates in this metabolic rewiring, and how these duplicates differ transcriptionally, remains unsolved. Here, we study the transcriptomic adaptive signatures to ethanol as a nonfermentative carbon source to sustain clonal yeast growth by experimental evolution, emphasizing the role of duplicated genes in the adaptive process. As expected, ethanol was able to sustain growth but at a lower rate than glucose. Our results demonstrate that in asexual populations a complete transcriptomic rewiring was produced, strikingly by downregulation of duplicated genes, mainly whole-genome duplicates, whereas small-scale duplicates exhibited significant transcriptional divergence between copies. Overall, this study contributes to the understanding of evolution after gene duplication, linking transcriptional divergence with duplicates' fate in a multigene trait as ethanol tolerance.IMPORTANCE Gene duplication events have been related with increasing biological complexity through the tree of life, but also with illnesses, including cancer. Early evolutionary theories indicated that duplicated genes could explore alternative functions due to relaxation of selective constraints in one of the copies, as the other remains as ancestral-function backup. In unicellular eukaryotes like yeasts, it has been demonstrated that the fate and persistence of duplicates depend on duplication mechanism (whole-genome or small-scale events), shaping their actual genomes. Although it has been shown that small-scale duplicates tend to innovate and whole-genome duplicates specialize in ancestral functions, the implication of duplicates' transcriptional plasticity and transcriptional divergence on environmental and metabolic responses remains largely obscure. Here, by experimental adaptive evolution, we show that Saccharomyces cerevisiae is able to respond to metabolic stress (ethanol as nonfermentative carbon source) due to the persistence of duplicated genes. These duplicates respond by transcriptional rewiring, depending on their transcriptional background. Our results shed light on the mechanisms that determine the role of duplicates, and on their evolvability.
Collapse
|
15
|
Phylogeny, evolution, and potential ecological relationship of cytochrome CYP52 enzymes in Saccharomycetales yeasts. Sci Rep 2020; 10:10269. [PMID: 32581293 PMCID: PMC7314818 DOI: 10.1038/s41598-020-67200-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/07/2020] [Indexed: 01/16/2023] Open
Abstract
Cytochrome P450s from the CYP52 family participate in the assimilation of alkanes and fatty acids in fungi. In this work, the evolutionary history of a set of orthologous and paralogous CYP52 proteins from Saccharomycetales yeasts was inferred. Further, the phenotypic assimilation profiles were related with the distribution of cytochrome CYP52 members among species. The maximum likelihood phylogeny of CYP52 inferred proteins reveled a frequent ancient and modern duplication and loss events that generated orthologous and paralogous groups. Phylogeny and assimilation profiles of alkanes and fatty acids showed a family expansion in yeast isolated from hydrophobic-rich environments. Docking analysis of deduced ancient CYP52 proteins suggests that the most ancient function was the oxidation of C4-C11 alkanes, while the oxidation of >10 carbon alkanes and fatty acids is a derived character. The ancient CYP52 paralogs displayed partial specialization and promiscuous interaction with hydrophobic substrates. Additionally, functional optimization was not evident. Changes in the interaction of ancient CYP52 with different alkanes and fatty acids could be associated with modifications in spatial orientations of the amino acid residues that comprise the active site. The extended family of CYP52 proteins is likely evolving toward functional specialization, and certain redundancy for substrates is being maintained.
Collapse
|
16
|
Wu B, Cox MP. Greater genetic and regulatory plasticity of retained duplicates in Epichloë endophytic fungi. Mol Ecol 2019; 28:5103-5114. [PMID: 31614039 PMCID: PMC7004115 DOI: 10.1111/mec.15275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022]
Abstract
Gene duplicates can act as a source of genetic material from which new functions arise. Most duplicated genes revert to single copy genes and only a small proportion are retained. However, it remains unclear why some duplicate genes persist in the genome for an extended time. We investigate this question by analysing retained gene duplicates in the fungal genus Epichloë, ascomycete fungi that form close endophytic symbioses with their host grasses. Retained duplicates within this genus have two independent origins, but both long pre-date the origin and diversification of the genus Epichloë. We find that loss of retained duplicates within the genus is frequent and often associated with speciation. Retained duplicates have faster evolutionary rates (Ka) and show relaxed selection (Ka/Ks) compared to single copy genes. Both features are time-dependent. Through comparison of conspecific strains, we find greater evolutionary rates in coding regions and sequence divergence in regulatory regions of retained duplicates than single copy genes, with this pattern more pronounced for strains adapted to different grass host species. Consistent with this sequence divergence in regulatory regions, transcriptome analyses show greater expression variation of retained duplicates than single copy genes. This suggest that cis-regulatory changes make important contributions to the expression patterns of retained duplicates. Coupled with supporting observations from the model yeast Saccharomyces cerevisiae, these data suggest that genetic robustness and regulatory plasticity are common drivers behind the retention of duplicated genes in fungi.
Collapse
Affiliation(s)
- Baojun Wu
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
17
|
Das S, Bansal M. Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS One 2019; 14:e0212678. [PMID: 30908494 PMCID: PMC6433290 DOI: 10.1371/journal.pone.0212678] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/07/2019] [Indexed: 12/03/2022] Open
Abstract
In higher eukaryotes, gene architecture and structural properties of promoters have emerged as significant factors influencing variation in number of transcripts (expression level) and specificity of gene expression in a tissue (expression breadth), which eventually shape the phenotype. In this study, transcriptome data of different tissue types at various developmental stages of A. thaliana, O. sativa, S. bicolor and Z. mays have been used to understand the relationship between properties of gene components and its expression. Our findings indicate that in plants, among all gene architecture and structural properties of promoters, compactness of genes in terms of intron content is significantly linked to gene expression level and breadth, whereas in human an exactly opposite scenario is seen. In plants, for the first time we have carried out a quantitative estimation of effect of a particular trait on expression level and breadth, by using multiple regression analysis and it confirms that intron content of primary transcript (as %) is a powerful determinant of expression breadth. Similarly, further regression analysis revealed that among structural properties of the promoters, stability is negatively linked to expression breadth, while DNase1 sensitivity strongly governs gene expression breadth in monocots and gene expression level in dicots. In addition, promoter regions of tissue specific genes are found to be enriched with TATA box and Y-patch motifs. Finally, multi copy orthologous genes in plants are found to be longer, highly regulated and tissue specific.
Collapse
Affiliation(s)
- Sanjukta Das
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
18
|
Mattenberger F, Sabater-Muñoz B, Toft C, Sablok G, Fares MA. Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomycotina. DNA Res 2018. [PMID: 28633360 PMCID: PMC5726480 DOI: 10.1093/dnares/dsx025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Gene duplication is an important source of novelties and genome complexity. What genes are preserved as duplicated through long evolutionary times can shape the evolution of innovations. Identifying factors that influence gene duplicability is therefore an important aim in evolutionary biology. Here, we show that in the yeast Saccharomyces cerevisiae the levels of gene expression correlate with gene duplicability, its divergence, and transcriptional plasticity. Genes that were highly expressed before duplication are more likely to be preserved as duplicates for longer evolutionary times and wider phylogenetic ranges than genes that were lowly expressed. Duplicates with higher expression levels exhibit greater divergence between their gene copies. Duplicates that exhibit higher expression divergence are those enriched for TATA-containing promoters. These duplicates also show transcriptional plasticity, which seems to be involved in the origin of adaptations to environmental stresses in yeast. While the expression properties of genes strongly affect their duplicability, divergence and transcriptional plasticity are enhanced after gene duplication. We conclude that highly expressed genes are more likely to be preserved as duplicates due to their promoter architectures, their greater tolerance to expression noise, and their ability to reduce the noise-plasticity conflict.
Collapse
Affiliation(s)
- Florian Mattenberger
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Systems Biology of Molecular Interactions and Regulation Department, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones, Científicas-Universitat de Valencia (CSIC-UV), Valencia 46980, Spain
| | - Beatriz Sabater-Muñoz
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Systems Biology of Molecular Interactions and Regulation Department, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones, Científicas-Universitat de Valencia (CSIC-UV), Valencia 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Christina Toft
- Department of Genetics, University of Valencia, Burjasot, Valencia 46100, Spain.,Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Burjasot, Valencia, Spain
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Systems Biology of Molecular Interactions and Regulation Department, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones, Científicas-Universitat de Valencia (CSIC-UV), Valencia 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| |
Collapse
|
19
|
Li Z, Woo HR, Guo H. Genetic redundancy of senescence-associated transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:811-823. [PMID: 29309664 DOI: 10.1093/jxb/erx345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a genetically programmed process that constitutes the last stage of leaf development, and involves massive changes in gene expression. As a result of the intensive efforts that have been made to elucidate the molecular genetic mechanisms underlying leaf senescence, 184 genes that alter leaf senescence phenotypes when mutated or overexpressed have been identified in Arabidopsis thaliana over the past two decades. Concurrently, experimental evidence on functional redundancy within senescence-associated genes (SAGs) has increased. In this review, we focus on transcription factors that play regulatory roles in Arabidopsis leaf senescence, and describe the relationships among gene duplication, gene expression level, and senescence phenotypes. Previous findings and our re-analysis demonstrate the widespread existence of duplicate SAG pairs and a correlation between gene expression levels in duplicate genes and senescence-related phenotypic severity of the corresponding mutants. We also highlight effective and powerful tools that are available for functional analyses of redundant SAGs. We propose that the study of duplicate SAG pairs offers a unique opportunity to understand the regulation of leaf senescence and can guide the investigation of the functions of redundant SAGs via reverse genetic approaches.
Collapse
Affiliation(s)
- Zhonghai Li
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Abrhámová K, Nemčko F, Libus J, Převorovský M, Hálová M, Půta F, Folk P. Introns provide a platform for intergenic regulatory feedback of RPL22 paralogs in yeast. PLoS One 2018; 13:e0190685. [PMID: 29304067 PMCID: PMC5755908 DOI: 10.1371/journal.pone.0190685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023] Open
Abstract
Ribosomal protein genes (RPGs) in Saccharomyces cerevisiae are a remarkable regulatory group that may serve as a model for understanding genetic redundancy in evolutionary adaptations. Most RPGs exist as pairs of highly conserved functional paralogs with divergent untranslated regions and introns. We examined the roles of introns in strains with various combinations of intron and gene deletions in RPL22, RPL2, RPL16, RPL37, RPL17, RPS0, and RPS18 paralog pairs. We found that introns inhibited the expression of their genes in the RPL22 pair, with the RPL22B intron conferring a much stronger effect. While the WT RPL22A/RPL22B mRNA ratio was 93/7, the rpl22aΔi/RPL22B and RPL22A/rpl22bΔi ratios were >99/<1 and 60/40, respectively. The intron in RPL2A stimulated the expression of its own gene, but the removal of the other introns had little effect on expression of the corresponding gene pair. Rpl22 protein abundances corresponded to changes in mRNAs. Using splicing reporters containing endogenous intron sequences, we demonstrated that these effects were due to the inhibition of splicing by Rpl22 proteins but not by their RNA-binding mutant versions. Indeed, only WT Rpl22A/Rpl22B proteins (but not the mutants) interacted in a yeast three-hybrid system with an RPL22B intronic region between bp 165 and 236. Transcriptome analysis showed that both the total level of Rpl22 and the A/B ratio were important for maintaining the WT phenotype. The data presented here support the contention that the Rpl22B protein has a paralog-specific role. The RPL22 singleton of Kluyveromyces lactis, which did not undergo whole genome duplication, also responded to Rpl22-mediated inhibition in K. lactis cells. Vice versa, the overproduction of the K. lactis protein reduced the expression of RPL22A/B in S. cerevisiae. The extraribosomal function of of the K. lactis Rpl22 suggests that the loop regulating RPL22 paralogs of S. cerevisiae evolved from autoregulation.
Collapse
Affiliation(s)
- Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Filip Nemčko
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Libus
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Hálová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
21
|
|
22
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Fares MA, Sabater-Muñoz B, Toft C. Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations. Genome Biol Evol 2017; 9:1229-1240. [PMID: 28459980 PMCID: PMC5433386 DOI: 10.1093/gbe/evx085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker’s yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast.
Collapse
Affiliation(s)
- Mario A Fares
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Valencia, Spain.,Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valencia, Paterna, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Beatriz Sabater-Muñoz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Valencia, Spain.,Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valencia, Paterna, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Christina Toft
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valencia, Paterna, Spain.,Department of Genetics, University of Valencia, Burjasot, Spain.,Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Burjasot, Valencia, Spain
| |
Collapse
|
24
|
MacKintosh C, Ferrier DEK. Recent advances in understanding the roles of whole genome duplications in evolution. F1000Res 2017; 6:1623. [PMID: 28928963 PMCID: PMC5590085 DOI: 10.12688/f1000research.11792.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 01/21/2023] Open
Abstract
Ancient whole-genome duplications (WGDs)- paleopolyploidy events-are key to solving Darwin's 'abominable mystery' of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life.
Collapse
Affiliation(s)
- Carol MacKintosh
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, University of St Andrews, Scotland, KY16 8LB, UK
| |
Collapse
|
25
|
Marsit S, Leducq JB, Durand É, Marchant A, Filteau M, Landry CR. Evolutionary biology through the lens of budding yeast comparative genomics. Nat Rev Genet 2017; 18:581-598. [DOI: 10.1038/nrg.2017.49] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Limborg MT, Larson WA, Seeb LW, Seeb JE. Screening of duplicated loci reveals hidden divergence patterns in a complex salmonid genome. Mol Ecol 2017; 26:4509-4522. [DOI: 10.1111/mec.14201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Morten T. Limborg
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - Wesley A. Larson
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - James E. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| |
Collapse
|