1
|
Mendel BM, Asselin AK, Johnson KN, McGuigan K. Effects of spontaneous mutations on survival and reproduction of Drosophila serrata infected with Drosophila C virus. Evolution 2024; 78:1661-1672. [PMID: 38934580 DOI: 10.1093/evolut/qpae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The impact of selection on host immune function genes has been widely documented. However, it remains essentially unknown how mutation influences the quantitative immune traits that selection acts on. Applying a classical mutation accumulation (MA) experimental design in Drosophila serrata, we found the mutational variation in susceptibility (median time of death, LT50) to Drosophila C virus (DCV) was of similar magnitude to that reported for intrinsic survival traits. Mean LT50 did not change as mutations accumulated, suggesting no directional bias in mutational effects. Maintenance of genetic variance in immune function is hypothesized to be influenced by pleiotropic effects on immunity and other traits that contribute to fitness. To investigate this, we assayed female reproductive output for a subset of MA lines with relatively long or short survival times under DCV infection. Longer survival time tended to be associated with lower reproductive output, suggesting that mutations affecting susceptibility to DCV had pleiotropic effects on investment in reproductive fitness. Further studies are needed to uncover the general patterns of mutational effect on immune responses and other fitness traits, and to determine how selection might typically act on new mutations via their direct and pleiotropic effects.
Collapse
Affiliation(s)
- Bonita M Mendel
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Angelique K Asselin
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Karyn N Johnson
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Katrina McGuigan
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Wang Y, Allen SL, Reddiex AJ, Chenoweth SF. The impacts of positive selection on genomic variation in Drosophila serrata: Insights from a deep learning approach. Mol Ecol 2024; 33:e17499. [PMID: 39188068 DOI: 10.1111/mec.17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
This study explores the impact of positive selection on the genetic composition of a Drosophila serrata population in eastern Australia through a comprehensive analysis of 110 whole genome sequences. Utilizing an advanced deep learning algorithm (partialS/HIC) and a range of inferred demographic histories, we identified that approximately 14% of the genome is directly affected by sweeps, with soft sweeps being more prevalent (10.6%) than hard sweeps (2.1%), and partial sweeps being uncommon (1.3%). The algorithm demonstrated robustness to demographic assumptions in classifying complete sweeps but faced challenges in distinguishing neutral regions from partial sweeps and linked regions under demographic misspecification. The findings reveal the indirect influence of sweeps on nearly two-thirds of the genome through linkage, with an over-representation of putatively deleterious variants suggesting that positive selection drags deleterious variants to higher frequency due to hitchhiking with beneficial loci. Gene ontology enrichment analysis further supported our confidence in the accuracy of sweep detection as several traits expected to be under positive selection due to evolutionary arms races (e.g. immunity) were detected in hard sweeps. This study provides valuable insights into the direct and indirect contributions of positive selection in shaping genomic variation in natural populations.
Collapse
Affiliation(s)
- Yiguan Wang
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Adam J Reddiex
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Biological Data Science Institute, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
3
|
Narayan VP, Wasana N, Wilson AJ, Chenoweth SF. Misalignment of plastic and evolutionary responses of lifespan to novel carbohydrate diets. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231732. [PMID: 38234441 PMCID: PMC10791524 DOI: 10.1098/rsos.231732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Diet elicits varied effects on longevity across a wide range of animal species where dietary discordance between an organisms' evolutionary and developmental dietary history is increasingly recognized to play a critical role in shaping lifespan. However, whether such changes, predominantly assessed in a single generation, lead to evolutionary shifts in lifespan remains unclear. In this study, we used an experimental evolution approach to test whether changes in an organisms' evolutionary and developmental dietary history, specifically carbohydrate content, causes lifespan evolution in Drosophila serrata. After 30 generations, we investigated the evolutionary potential of lifespan in response to four novel diets that varied systematically in their ratio of carbohydrate-protein content. We also examined developmental plasticity effects using a set of control populations that were raised on the four novel environments allowing us to assess the extent to which plastic responses of lifespan mirrored adaptive responses observed following experimental evolution. Both high- and low-carbohydrate diets elicited plastic effects on lifespan; however, the plastic responses for lifespan to developmental diets bore little resemblance to the evolved responses on evolutionary diets. Understanding the dietary conditions regulating the match/mismatch of plastic and evolved responses will be important in determining whether a particular match/mismatch combination is adaptive for lifespan. While the differences in evolutionary diet by developmental diet interactions are only beginning to be elucidated, this study lays the foundation for future investigations of carbohydrate contributions to evolved and plastic effects on health and lifespan.
Collapse
Affiliation(s)
- Vikram P. Narayan
- School of the Environment, The University of Queensland, St. Lucia, Queensland 4072, Australia
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Nidarshani Wasana
- School of the Environment, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Alastair J. Wilson
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Stephen F. Chenoweth
- School of the Environment, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Chang CH, Mejia Natividad I, Malik HS. Expansion and loss of sperm nuclear basic protein genes in Drosophila correspond with genetic conflicts between sex chromosomes. eLife 2023; 12:85249. [PMID: 36763410 PMCID: PMC9917458 DOI: 10.7554/elife.85249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Many animal species employ sperm nuclear basic proteins (SNBPs) or protamines to package sperm genomes tightly. SNBPs vary across animal lineages and evolve rapidly in mammals. We used a phylogenomic approach to investigate SNBP diversification in Drosophila species. We found that most SNBP genes in Drosophila melanogaster evolve under positive selection except for genes essential for male fertility. Unexpectedly, evolutionarily young SNBP genes are more likely to be critical for fertility than ancient, conserved SNBP genes. For example, CG30056 is dispensable for male fertility despite being one of three SNBP genes universally retained in Drosophila species. We found 19 independent SNBP gene amplification events that occurred preferentially on sex chromosomes. Conversely, the montium group of Drosophila species lost otherwise-conserved SNBP genes, coincident with an X-Y chromosomal fusion. Furthermore, SNBP genes that became linked to sex chromosomes via chromosomal fusions were more likely to degenerate or relocate back to autosomes. We hypothesize that autosomal SNBP genes suppress meiotic drive, whereas sex-chromosomal SNBP expansions lead to meiotic drive. X-Y fusions in the montium group render autosomal SNBPs dispensable by making X-versus-Y meiotic drive obsolete or costly. Thus, genetic conflicts between sex chromosomes may drive SNBP rapid evolution during spermatogenesis in Drosophila species.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States
| | - Isabel Mejia Natividad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| |
Collapse
|
5
|
Conradsen C, Blows MW, McGuigan K. Causes of variability in estimates of mutational variance from mutation accumulation experiments. Genetics 2022; 221:6569838. [PMID: 35435211 PMCID: PMC9157167 DOI: 10.1093/genetics/iyac060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/08/2022] [Indexed: 11/15/2022] Open
Abstract
Characteristics of the new phenotypic variation introduced via mutation have broad implications in evolutionary and medical genetics. Standardized estimates of this mutational variance, VM, span 2 orders of magnitude, but the causes of this remain poorly resolved. We investigated estimate heterogeneity using 2 approaches. First, meta-analyses of ∼150 estimates of standardized VM from 37 mutation accumulation studies did not support a difference among taxa (which differ in mutation rate) but provided equivocal support for differences among trait types (life history vs morphology, predicted to differ in mutation rate). Notably, several experimental factors were confounded with taxon and trait, and further empirical data are required to resolve their influences. Second, we analyzed morphological data from an experiment in Drosophila serrata to determine the potential for unintentional heterogeneity among environments in which phenotypes were measured (i.e. among laboratories or time points) or transient segregation of mutations within mutation accumulation lines to affect standardized VM. Approximating the size of an average mutation accumulation experiment, variability among repeated estimates of (accumulated) mutational variance was comparable to variation among published estimates of standardized VM. This heterogeneity was (partially) attributable to unintended environmental variation or within line segregation of mutations only for wing size, not wing shape traits. We conclude that sampling error contributed substantial variation within this experiment, and infer that it will also contribute substantially to differences among published estimates. We suggest a logistically permissive approach to improve the precision of estimates, and consequently our understanding of the dynamics of mutational variance of quantitative traits.
Collapse
Affiliation(s)
- Cara Conradsen
- School of Biological Sciences; The University of Queensland; St. Lucia, Queensland, Australia 4072
| | - Mark W Blows
- School of Biological Sciences; The University of Queensland; St. Lucia, Queensland, Australia 4072
| | - Katrina McGuigan
- School of Biological Sciences; The University of Queensland; St. Lucia, Queensland, Australia 4072
| |
Collapse
|
6
|
Narayan VP, Wilson AJ, Chenoweth SF. Genetic and social contributions to sex differences in lifespan in Drosophila serrata. J Evol Biol 2022; 35:657-663. [PMID: 35290690 PMCID: PMC9314142 DOI: 10.1111/jeb.13992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/01/2023]
Abstract
Sex differences in lifespan remain an intriguing puzzle in evolutionary biology. While explanations range from sex differences in selection to sex differences in the expression of recessive lifespan‐altering mutations (via X‐linkage), little consensus has been reached. One unresolved issue is the extent to which genetic influences on lifespan dimorphism are modulated by the environment. For example, studies have shown that sex differences in lifespan can either increase or decrease depending upon the social environment. Here, we took an experimental approach, manipulating multiple axes of the social environment across inbred long‐ and short‐lived genotypes and their reciprocal F1s in the fly Drosophila serrata. Our results reveal strong genetic effects and subtle yet significant genotype‐by‐environment interactions for male and female lifespan, specifically due to both population density and mating status. Further, our data do not support the idea that unconditional expression of deleterious X‐linked recessive alleles in heterogametic males accounts for lower male lifespan.
Collapse
Affiliation(s)
- Vikram P Narayan
- The School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia.,College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Alastair J Wilson
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Stephen F Chenoweth
- The School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
7
|
Reddiex AJ, Chenoweth SF. Integrating genomics and multivariate evolutionary quantitative genetics: a case study of constraints on sexual selection in Drosophila serrata. Proc Biol Sci 2021; 288:20211785. [PMID: 34641732 PMCID: PMC8511789 DOI: 10.1098/rspb.2021.1785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
In evolutionary quantitative genetics, the genetic variance-covariance matrix, G, and the vector of directional selection gradients, β, are key parameters for predicting multivariate selection responses and genetic constraints. Historically, investigations of G and β have not overlapped with those dissecting the genetic basis of quantitative traits. Thus, it remains unknown whether these parameters reflect pleiotropic effects at individual loci. Here, we integrate multivariate genome-wide association study (GWAS) with G and β estimation in a well-studied system of multivariate constraint: sexual selection on male cuticular hydrocarbons (CHCs) in Drosophila serrata. In a panel of wild-derived re-sequenced lines, we augment genome-based restricted maximum likelihood to estimate G alongside multivariate single nucleotide polymorphism (SNP) effects, detecting 532 significant associations from 1 652 276 SNPs. Constraint was evident, with β lying in a direction of G with low evolvability. Interestingly, minor frequency alleles typically increased male CHC-attractiveness suggesting opposing natural selection on β. SNP effects were significantly misaligned with the major eigenvector of G, gmax, but well aligned to the second and third eigenvectors g2 and g3. We discuss potential factors leading to these varied results including multivariate stabilizing selection and mutational bias. Our framework may be useful as researchers increasingly access genomic methods to study multivariate selection responses in wild populations.
Collapse
Affiliation(s)
- Adam J. Reddiex
- School of Biological Sciences, The University of Queensland, Saint Lucia, Queensland 4072, Australia
- Research School of Biology, Australian National University, Australian Capital Territory 0200, Australia
| | - Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, Saint Lucia, Queensland 4072, Australia
| |
Collapse
|
8
|
The contribution of mutation and selection to multivariate quantitative genetic variance in an outbred population of Drosophila serrata. Proc Natl Acad Sci U S A 2021; 118:2026217118. [PMID: 34326252 DOI: 10.1073/pnas.2026217118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic variance is not equal for all multivariate combinations of traits. This inequality, in which some combinations of traits have abundant genetic variation while others have very little, biases the rate and direction of multivariate phenotypic evolution. However, we still understand little about what causes genetic variance to differ among trait combinations. Here, we investigate the relative roles of mutation and selection in determining the genetic variance of multivariate phenotypes. We accumulated mutations in an outbred population of Drosophila serrata and analyzed wing shape and size traits for over 35,000 flies to simultaneously estimate the additive genetic and additive mutational (co)variances. This experimental design allowed us to gain insight into the phenotypic effects of mutation as they arise and come under selection in naturally outbred populations. Multivariate phenotypes associated with more (less) genetic variance were also associated with more (less) mutational variance, suggesting that differences in mutational input contribute to differences in genetic variance. However, mutational correlations between traits were stronger than genetic correlations, and most mutational variance was associated with only one multivariate trait combination, while genetic variance was relatively more equal across multivariate traits. Therefore, selection is implicated in breaking down trait covariance and resulting in a different pattern of genetic variance among multivariate combinations of traits than that predicted by mutation and drift. Overall, while low mutational input might slow evolution of some multivariate phenotypes, stabilizing selection appears to reduce the strength of evolutionary bias introduced by pleiotropic mutation.
Collapse
|
9
|
Tiedeman Z, Signor S. The transposable elements of the Drosophila serrata reference panel. Genome Biol Evol 2021; 13:6265467. [PMID: 33950180 PMCID: PMC8434751 DOI: 10.1093/gbe/evab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Transposable elements (TEs) are an important component of the complex genomic ecosystem. Understanding the tempo and mode of TE proliferation, that is whether it is in maintained in transposition selection balance, or is induced periodically by environmental stress or other factors, is important for understanding the evolution of organismal genomes through time. Although TEs have been characterized in individuals or limited samples, a true understanding of the population genetics of TEs, and therefore the tempo and mode of transposition, is still lacking. Here, we characterize the TE landscape in an important model Drosophila, Drosophila serrata using the D. serrata reference panel, which is comprised of 102 sequenced inbred genotypes. We annotate the families of TEs in the D. serrata genome and investigate variation in TE copy number between genotypes. We find that many TEs have low copy number in the population, but this varies by family and includes a single TE making up to 50% of the genome content of TEs. We find that some TEs proliferate in particular genotypes compared with population levels. In addition, we characterize variation in each TE family allowing copy number to vary in each genotype and find that some TEs have diversified very little between individuals suggesting recent spread. TEs are important sources of spontaneous mutations in Drosophila, making up a large fraction of the total number of mutations in particular genotypes. Understanding the dynamics of TEs within populations will be an important step toward characterizing the origin of variation within and between species.
Collapse
Affiliation(s)
- Zachery Tiedeman
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, U.S.A
| | - Sarah Signor
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, U.S.A
| |
Collapse
|
10
|
Ferguson KB, Visser S, Dalíková M, Provazníková I, Urbaneja A, Pérez‐Hedo M, Marec F, Werren JH, Zwaan BJ, Pannebakker BA, Verhulst EC. Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. INSECT MOLECULAR BIOLOGY 2021; 30:188-209. [PMID: 33305885 PMCID: PMC8048687 DOI: 10.1111/imb.12688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 05/14/2023]
Abstract
Nesidiocoris tenuis (Reuter) is an efficient predatory biological control agent used throughout the Mediterranean Basin in tomato crops but regarded as a pest in northern European countries. From the family Miridae, it is an economically important insect yet very little is known in terms of genetic information and no genomic or transcriptomic studies have been published. Here, we use a linked-read sequencing strategy on a single female N. tenuis. From this, we assembled the 355 Mbp genome and delivered an ab initio, homology-based and evidence-based annotation. Along the way, the bacterial "contamination" was removed from the assembly. In addition, bacterial lateral gene transfer (LGT) candidates were detected in the N. tenuis genome. The complete gene set is composed of 24 688 genes; the associated proteins were compared to other hemipterans (Cimex lectularis, Halyomorpha halys and Acyrthosiphon pisum). We visualized the genome using various cytogenetic techniques, such as karyotyping, CGH and GISH, indicating a karyotype of 2n = 32. Additional analyses include the localization of 18S rDNA and unique satellite probes as well as pooled sequencing to assess nucleotide diversity and neutrality of the commercial population. This is one of the first mirid genomes to be released and the first of a mirid biological control agent.
Collapse
Affiliation(s)
- K. B. Ferguson
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - S. Visser
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - M. Dalíková
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - I. Provazníková
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- European Molecular Biology LaboratoryHeidelbergGermany
| | - A. Urbaneja
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain
| | - M. Pérez‐Hedo
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain
| | - F. Marec
- Biology Centre CASInstitute of EntomologyČeské BudějoviceCzech Republic
| | - J. H. Werren
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | - B. J. Zwaan
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - B. A. Pannebakker
- Laboratory of GeneticsWageningen UniversityWageningenThe Netherlands
| | - E. C. Verhulst
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
11
|
Wallace MA, Coffman KA, Gilbert C, Ravindran S, Albery GF, Abbott J, Argyridou E, Bellosta P, Betancourt AJ, Colinet H, Eric K, Glaser-Schmitt A, Grath S, Jelic M, Kankare M, Kozeretska I, Loeschcke V, Montchamp-Moreau C, Ometto L, Onder BS, Orengo DJ, Parsch J, Pascual M, Patenkovic A, Puerma E, Ritchie MG, Rota-Stabelli O, Schou MF, Serga SV, Stamenkovic-Radak M, Tanaskovic M, Veselinovic MS, Vieira J, Vieira CP, Kapun M, Flatt T, González J, Staubach F, Obbard DJ. The discovery, distribution, and diversity of DNA viruses associated with Drosophila melanogaster in Europe. Virus Evol 2021; 7:veab031. [PMID: 34408913 PMCID: PMC8363768 DOI: 10.1093/ve/veab031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced Drosophila, sampled from forty-seven European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a double-stranded RNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to twelve segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2 per cent or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D.melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.
Collapse
Affiliation(s)
- Megan A Wallace
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Kelsey A Coffman
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Clément Gilbert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Sanjana Ravindran
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Paola Bellosta
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Cellular, Computational and Integrative Biology, CIBIO University of Trento, Via Sommarive 9, Trento 38123, Italy
- Department of Medicine & Endocrinology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Hervé Colinet
- The European Drosophila Population Genomics Consortium (DrosEU)
- UMR CNRS 6553 ECOBIO, Université de Rennes1, Rennes, France
| | - Katarina Eric
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Amanda Glaser-Schmitt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Mihailo Jelic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Aarhus C DK-8000, Denmark
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Lino Ometto
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Aleksandra Patenkovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, St Andrews University, St Andrews HY15 4SS, UK
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Center, Fondazione E. Mach, San Michele all’Adige (TN) 38010, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige (TN) 38010, Italy
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Svitlana V Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska str, Kyiv 01601, Ukraine
| | - Marina Stamenkovic-Radak
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Marija Tanaskovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Savic Veselinovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Division of Cell & Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution and Ecology, University of Freiburg, Freiburg 79104, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
12
|
Godinho DP, Cruz MA, Charlery de la Masselière M, Teodoro‐Paulo J, Eira C, Fragata I, Rodrigues LR, Zélé F, Magalhães S. Creating outbred and inbred populations in haplodiploids to measure adaptive responses in the laboratory. Ecol Evol 2020; 10:7291-7305. [PMID: 32760529 PMCID: PMC7391545 DOI: 10.1002/ece3.6454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Laboratory studies are often criticized for not being representative of processes occurring in natural populations. One reason for this is the fact that laboratory populations generally do not capture enough of the genetic variation of natural populations. This can be mitigated by mixing the genetic background of several field populations when creating laboratory populations. From these outbred populations, it is possible to generate inbred lines, thereby freezing and partitioning part of their variability, allowing each genotype to be characterized independently. Many studies addressing adaptation of organisms to their environment, such as those involving quantitative genetics or experimental evolution, rely on inbred or outbred populations, but the methodology underlying the generation of such biological resources is usually not explicitly documented. Here, we developed different procedures to circumvent common pitfalls of laboratory studies, and illustrate their application using two haplodiploid species, the spider mites Tetranychus urticae and Tetranychus evansi. First, we present a method that increases the chance of capturing high amounts of variability when creating outbred populations, by performing controlled crosses between individuals from different field-collected populations. Second, we depict the creation of inbred lines derived from such outbred populations, by performing several generations of sib-mating. Third, we outline an experimental evolution protocol that allows the maintenance of a constant population size at the beginning of each generation, thereby preventing bottlenecks and diminishing extinction risks. Finally, we discuss the advantages of these procedures and emphasize that sharing such biological resources and combining them with available genetic tools will allow consistent and comparable studies that greatly contribute to our understanding of ecological and evolutionary processes.
Collapse
Affiliation(s)
- Diogo P. Godinho
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Miguel A. Cruz
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Maud Charlery de la Masselière
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Jéssica Teodoro‐Paulo
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Cátia Eira
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Inês Fragata
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Leonor R. Rodrigues
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| |
Collapse
|
13
|
Robin C, Battlay P, Fournier-Level A. What can genetic association panels tell us about evolutionary processes in insects? CURRENT OPINION IN INSECT SCIENCE 2019; 31:99-105. [PMID: 31109681 DOI: 10.1016/j.cois.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
If we are to fully comprehend the evolution of insect diversity at a genomic level we need to understand how natural selection can alter genetically encoded characters within populations. Genetic association panels have the potential to be standard bearers in this endeavour. They enable the mapping of phenotypes to genotypes at unprecedented resolution while simultaneously providing population genomic samples that can be interrogated for the tell-tale signs of selection. Analyses of these panels promise to elucidate the entanglement of gene ontologies, pathways, developmental processes and evolutionary constraints, and inform how these are shaped by adaptation.
Collapse
Affiliation(s)
- Charles Robin
- The School of BioSciences, The University of Melbourne, Parkville 3010, Australia.
| | - Paul Battlay
- The School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | | |
Collapse
|
14
|
Artificial selection reveals sex differences in the genetic basis of sexual attractiveness. Proc Natl Acad Sci U S A 2018; 115:5498-5503. [PMID: 29735676 DOI: 10.1073/pnas.1720368115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutual mate choice occurs when males and females base mating decisions on shared traits. Despite increased awareness, the extent to which mutual choice drives phenotypic change remains poorly understood. When preferences in both sexes target the same traits, it is unclear how evolution will proceed and whether responses to sexual selection from male choice will match or oppose responses to female choice. Answering this question is challenging, as it requires understanding, genetic relationships between the traits targeted by choice, mating success, and, ultimately, fitness for both sexes. Addressing this, we applied artificial selection to the cuticular hydrocarbons of the fly Drosophila serrata that are targeted by mutual choice and tracked evolutionary changes in males and females alongside changes in mating success. After 10 generations, significant trait evolution occurred in both sexes, but intriguingly there were major sex differences in the associated fitness consequences. Sexually selected trait evolution in males led to a genetically based increase in male mating success. By contrast, although trait evolution also occurred in females, there was no change in mating success. Our results suggest that phenotypic sexual selection on females from male choice is environmentally, rather than genetically, generated. Thus, compared with female choice, male choice is at best a weak driver of signal trait evolution in this species. Instead, the evolution of apparent female ornamentation seems more likely due to a correlated response to sexual selection on males and possibly other forms of natural selection.
Collapse
|