1
|
Walker AM, Abbondanzieri EA, Meyer AS. Live to fight another day: The bacterial nucleoid under stress. Mol Microbiol 2024:10.1111/mmi.15272. [PMID: 38690745 PMCID: PMC11527795 DOI: 10.1111/mmi.15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The bacterial chromosome is both highly supercoiled and bound by an ensemble of proteins and RNA, causing the DNA to form a compact structure termed the nucleoid. The nucleoid serves to condense, protect, and control access to the bacterial chromosome through a variety of mechanisms that remain incompletely understood. The nucleoid is also a dynamic structure, able to change both in size and composition. The dynamic nature of the bacterial nucleoid is particularly apparent when studying the effects of various stresses on bacteria, which require cells to protect their DNA and alter patterns of transcription. Stresses can lead to large changes in the organization and composition of the nucleoid on timescales as short as a few minutes. Here, we summarize some of the recent advances in our understanding of how stress can alter the organization of bacterial chromosomes.
Collapse
Affiliation(s)
- Azra M. Walker
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | | | - Anne S. Meyer
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
2
|
Soria S, Carreón-Rodríguez OE, de Anda R, Flores N, Escalante A, Bolívar F. Transcriptional and Metabolic Response of a Strain of Escherichia coli PTS - to a Perturbation of the Energetic Level by Modification of [ATP]/[ADP] Ratio. BIOTECH 2024; 13:10. [PMID: 38651490 PMCID: PMC11036233 DOI: 10.3390/biotech13020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
The intracellular [ATP]/[ADP] ratio is crucial for Escherichia coli's cellular functions, impacting transport, phosphorylation, signaling, and stress responses. Overexpression of F1-ATPase genes in E. coli increases glucose consumption, lowers energy levels, and triggers transcriptional responses in central carbon metabolism genes, particularly glycolytic ones, enhancing carbon flux. In this contribution, we report the impact of the perturbation of the energetic level in a PTS- mutant of E. coli by modifying the [ATP]/[ADP] ratio by uncoupling the cytoplasmic activity of the F1 subunit of the ATP synthase. The disruption of [ATP]/[ADP] ratio in the evolved strain of E. coli PB12 (PTS-) was achieved by the expression of the atpAGD operon encoding the soluble portion of ATP synthase F1-ATPase (strain PB12AGD+). The analysis of the physiological and metabolic response of the PTS- strain to the ATP disruption was determined using RT-qPCR of 96 genes involved in glucose and acetate transport, glycolysis and gluconeogenesis, pentose phosphate pathway (PPP), TCA cycle and glyoxylate shunt, several anaplerotic, respiratory chain, and fermentative pathways genes, sigma factors, and global regulators. The apt mutant exhibited reduced growth despite increased glucose transport due to decreased energy levels. It heightened stress response capabilities under glucose-induced energetic starvation, suggesting that the carbon flux from glycolysis is distributed toward the pentose phosphate and the Entner-Duodoroff pathway with the concomitant. Increase acetate transport, production, and utilization in response to the reduction in the [ATP]/[ADP] ratio. Upregulation of several genes encoding the TCA cycle and the glyoxylate shunt as several respiratory genes indicates increased respiratory capabilities, coupled possibly with increased availability of electron donor compounds from the TCA cycle, as this mutant increased respiratory capability by 240% more than in the PB12. The reduction in the intracellular concentration of cAMP in the atp mutant resulted in a reduced number of upregulated genes compared to PB12, suggesting that the mutant remains a robust genetic background despite the severe disruption in its energetic level.
Collapse
Affiliation(s)
- Sandra Soria
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
- Laboratorio de Soluciones Biotecnológicas (LasoBiotc), Montevideo 11800, Uruguay
| | - Ofelia E. Carreón-Rodríguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Ramón de Anda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| |
Collapse
|
3
|
Pourciau C, Yakhnin H, Pannuri A, Gorelik MG, Lai YJ, Romeo T, Babitzke P. CsrA coordinates the expression of ribosome hibernation and anti-σ factor proteins. mBio 2023; 14:e0258523. [PMID: 37943032 PMCID: PMC10746276 DOI: 10.1128/mbio.02585-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The Csr/Rsm system (carbon storage regulator or repressor of stationary phase metabolites) is a global post-transcriptional regulatory system that coordinates and responds to environmental cues and signals, facilitating the transition between active growth and stationary phase. Another key determinant of bacterial lifestyle decisions is the management of the cellular gene expression machinery. Here, we investigate the connection between these two processes in Escherichia coli. Disrupted regulation of the transcription and translation machinery impacts many cellular functions, including gene expression, growth, fitness, and stress resistance. Elucidating the role of the Csr system in controlling the activity of RNAP and ribosomes advances our understanding of mechanisms controlling bacterial growth. A more complete understanding of these processes could lead to the improvement of therapeutic strategies for recalcitrant infections.
Collapse
Affiliation(s)
- Christine Pourciau
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archanna Pannuri
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Mark G. Gorelik
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ying-Jung Lai
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Kędzierska-Mieszkowska S. Sigma factors of RNA polymerase in the pathogenic spirochaete Leptospira interrogans, the causative agent of leptospirosis. FASEB J 2023; 37:e23163. [PMID: 37688587 DOI: 10.1096/fj.202300252rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
The aim of this review is to summarize the current knowledge on the role of σ factors in a highly invasive spirochaete Leptospira interrogans responsible for leptospirosis that affects many mammals, including humans. This disease has a significant impact on public health and the economy worldwide. In bacteria, σ factors are the key regulators of gene expression at the transcriptional level and therefore play an important role in bacterial adaptative response to different environmental stimuli. These factors form a holoenzyme with the RNA polymerase core enzyme and then direct it to specific promoters, which results in turning on selected genes. Most bacteria possess several different σ factors that enable them to maintain basal gene expression, as well as to regulate gene expression in response to specific environmental signals. Recent comparative genomics and in silico genome-wide analyses have revealed that the L. interrogans genome, consisting of two circular chromosomes, encodes a total of 14 σ factors. Among them, there is one putative housekeeping σ70 -like factor, and three types of alternative σ factors, i.e., one σ54 , one σ28 and 11 putative ECF (extracytoplasmic function) σE -type factors. Here, characteristics of these putative σ factors and their possible role in the L. interrogans gene regulation (especially in this pathogen's adaptive response to various environmental conditions, an important determinant of leptospiral virulence), are presented.
Collapse
|
5
|
Balakrishnan R, Mori M, Segota I, Zhang Z, Aebersold R, Ludwig C, Hwa T. Principles of gene regulation quantitatively connect DNA to RNA and proteins in bacteria. Science 2022; 378:eabk2066. [PMID: 36480614 PMCID: PMC9804519 DOI: 10.1126/science.abk2066] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein concentrations are set by a complex interplay between gene-specific regulatory processes and systemic factors, including cell volume and shared gene expression machineries. Elucidating this interplay is crucial for discerning and designing gene regulatory systems. We quantitatively characterized gene-specific and systemic factors that affect transcription and translation genome-wide for Escherichia coli across many conditions. The results revealed two design principles that make regulation of gene expression insulated from concentrations of shared machineries: RNA polymerase activity is fine-tuned to match translational output, and translational characteristics are similar across most messenger RNAs (mRNAs). Consequently, in bacteria, protein concentration is set primarily at the promoter level. A simple mathematical formula relates promoter activities and protein concentrations across growth conditions, enabling quantitative inference of gene regulation from omics data.
Collapse
Affiliation(s)
- Rohan Balakrishnan
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
| | - Matteo Mori
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
| | - Igor Segota
- Departments of Medicine and Pharmacology, University of California at San Diego, La Jolla, California 92093
| | - Zhongge Zhang
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| | - Ruedi Aebersold
- Faculty of Science, University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
6
|
Nandy P. The role of sigma factor competition in bacterial adaptation under prolonged starvation. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35594140 DOI: 10.1099/mic.0.001195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study of adaptive microbial evolution in the laboratory can illuminate the genetic mechanisms of gaining fitness under a pre-defined set of selection factors. Laboratory evolution of bacteria under long-term starvation has gained importance in recent years because of its ability to uncover adaptive strategies that overcome prolonged nutrient limitation, a condition often encountered by natural microbes. In this evolutionary paradigm, bacteria are maintained in an energy-restricted environment in a growth phase called long-term stationary phase (LTSP). This phase is characterized by a stable, viable population size and highly dynamic genetic changes. Multiple independent iterations of LTSP evolution experiments have given rise to mutants that are slow-growing compared to the ancestor. Although the antagonistic regulation between rapid growth and the stress response is well-known in bacteria (especially Escherichia coli), the growth deficit of many LTSP-adapted mutants has not been explored in detail. In this review, I pinpoint the trade-off between growth and stress response as a dominant driver of evolutionary strategies under prolonged starvation. Focusing on mainly E. coli-based research, I discuss the various affectors and regulators of the competition between sigma factors to occupy their targets on the genome, and assess its effect on growth advantage in stationary phase (GASP). Finally, I comment on some crucial issues that hinder the progress of the field, including identification of novel metabolites in nutrient-depleted media, and the importance of using multidisciplinary research to resolve them.
Collapse
Affiliation(s)
- Pabitra Nandy
- National Centre for Biological Sciences (NCBS-TIFR), Bangalore, India.,Max Planck Institute for Evolutionary Biology, Plӧn, Germany
| |
Collapse
|
7
|
Abstract
Bacterial small RNAs (sRNAs) contribute to a variety of regulatory mechanisms that modulate a wide range of pathways, including metabolism, virulence, and antibiotic resistance. We investigated the involvement of sRNAs in rifampicin resistance in the opportunistic pathogen Staphylococcus aureus. Using a competition assay with an sRNA mutant library, we identified 6S RNA as being required for protection against low concentrations of rifampicin, an RNA polymerase (RNAP) inhibitor. This effect applied to rifabutin and fidaxomicin, two other RNAP-targeting antibiotics. 6S RNA is highly conserved in bacteria, and its absence in two other major pathogens, Salmonella enterica and Clostridioides difficile, also impaired susceptibility to RNAP inhibitors. In S. aureus, 6S RNA is produced from an autonomous gene and accumulates in stationary phase. In contrast to what was reported for Escherichia coli, S. aureus 6S RNA does not appear to play a critical role in the transition from exponential to stationary phase but affects σB-regulated expression in prolonged stationary phase. Nevertheless, its protective effect against rifampicin is independent of alternative sigma factor σB activity. Our results suggest that 6S RNA helps maintain RNAP-σA integrity in S. aureus, which could in turn help bacteria withstand low concentrations of RNAP inhibitors.
Collapse
|
8
|
Similarities and differences between 6S RNAs from Bradyrhizobium japonicum and Sinorhizobium meliloti. J Microbiol 2020; 58:945-956. [PMID: 33125669 DOI: 10.1007/s12275-020-0283-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
6S RNA, a conserved and abundant small non-coding RNA found in most bacteria, regulates gene expression by inhibiting RNA polymerase (RNAP) holoenzyme. 6S RNAs from α-proteobacteria have been studied poorly so far. Here, we present a first in-depth analysis of 6S RNAs from two α-proteobacteria species, Bradyrhizobium japonicum and Sinorhizobium meliloti. Although both belong to the order Rhizobiales and are typical nitrogen-fixing symbionts of legumes, their 6S RNA expression profiles were found to differ: B. japonicum 6S RNA accumulated in the stationary phase, thus being reminiscent of Escherichia coli 6S RNA, whereas S. meliloti 6S RNA level peaked at the transition to the stationary phase, similarly to Rhodobacter sphaeroides 6S RNA. We demonstrated in vitro that both RNAs have hallmarks of 6S RNAs: they bind to the σ70-type RNAP holoenzyme and serve as templates for de novo transcription of so-called product RNAs (pRNAs) ranging in length from ∼13 to 24 nucleotides, with further evidence of the synthesis of even longer pRNAs. Likewise, stably bound pRNAs were found to rearrange the 6S RNA structure to induce its dissociation from RNAP. Compared with B. japonicum 6S RNA, considerable conformational heterogeneity was observed for S. meliloti 6S RNA and its complexes with pRNAs, even though the two 6S RNAs share ∼75% sequence identity. Overall, our findings suggest that the two rhizobial 6S RNAs have diverged with respect to their regulatory impact on gene expression throughout the bacterial life cycle.
Collapse
|