1
|
Zhang F, Wan W, Li Y, Wang B, Shao Y, Di X, Zhang H, Cai W, Wei Y, Ma X. Construction of a Full-Length transcriptome resource for the African sharptooth catfish (Clarias gariepinus), a prototypical air-breathing Fish, based on isoform sequencing (Iso-Seq). Gene 2024; 930:148802. [PMID: 39094712 DOI: 10.1016/j.gene.2024.148802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The African sharptooth catfish (Clarias gariepinus) assumes significance in aquaculture, given its role as a farmed freshwater species with modified gill structures functioning as an air-breathing organ (ABO). To provide a scientific basis for further elucidating the air-breathing formation mechanism and deeply utilizing the genetic resources of Clarias gariepinus, we utilized the PacBio sequencing platform to acquire a comprehensive full-length transcriptome from five juvenile developmental stages and various adult tissues, including the ABO, gills, liver, skin, and muscle. We generated 25,766,688 high-quality reads, with an average length of 2,006 bp and an N50 of 2,241 bp. Following rigorous quality control, 34,890 (97.7 %) of the high-quality isoforms were mapped to the reference genome for gene and transcript annotation, yielding 387 novel isoforms and 14,614 new isoforms. Additionally, we identified 28,582 open reading frames, 48 SNPs, 5,464 variable splices, and 6,141 variable polyadenylation sites, along with 475 long non-coding RNAs. Many DEGs were involved with low oxygen GO terms and KEGG pathways, such as response to stimulus, biological regulation and catalytic activities. Furthermore, it was found that transcription factors such as zf-C2H2, Homeobox, bHLH, and MYB could underpin the African sharptooth catfish's developmental plasticity and its capacity to adapt its morphology and function to its environment. Through the comprehensive analysis of its genomic characteristics, it was found that the African sharptooth catfish has developed a series of unique respiratory adaptive mechanisms during the evolutionary process, These results not only advances the understanding of genetic adaptations to hypoxia in Clarias fish but also provides a valuable framework for future studies aimed at improving aquaculture practices,besides provide important references and inspirations for the evolution of aquatic organisms.
Collapse
Affiliation(s)
- Feiran Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Wenjing Wan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Yang Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Bo Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Yiting Shao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Xiangyi Di
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Han Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Yiliang Wei
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China.
| | - Xiaoli Ma
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China.
| |
Collapse
|
2
|
Qin S, Wei G, Lin Q, Tang D, Li C, Tan Z, Yao L, Huang L, Wei F, Liang Y. Analysis of the Spatholobus suberectus full-length transcriptome identified an R2R3-MYB transcription factor-encoding gene SsMYB158 that regulates flavonoid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108929. [PMID: 39002304 DOI: 10.1016/j.plaphy.2024.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Spatholobus suberectus Dunn (Leguminosae) has been used for medicinal purposes for a long period. Flavonoids are the major bioactive components of S. suberectus. However, there is still limited knowledge of the exact method via which transcription factors (TFs) regulate flavonoid biosynthesis. The full-length transcriptome of S. suberectus was analyzed using SMRT sequencing; 61,548 transcripts were identified, including 12,311 new gene loci, 53,336 novel transcripts, 44,636 simple sequence repeats, 36,414 complete coding sequences, 871 long non-coding RNAs and 6781 TFs. The SsMYB158 TF, which is associated with flavonoid biosynthesis, belongs to the R2R3-MYB class and is localized subcellularly to the nucleus. The overexpression of SsMYB158 in Nicotiana benthamiana and the transient overexpression of SsMYB158 in S. suberectus resulted in a substantial enhancement in both flavonoids and catechin levels. In addition, there was a remarkable upregulation in the expression of essential enzyme-coding genes associated with the flavonoid biosynthesis pathways. Our study revealed SsMYB158 as a critical regulator of flavonoid biosynthesis in S. suberectus and laying the foundation for its molecular breeding.
Collapse
Affiliation(s)
- Shuangshuang Qin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| | - Guili Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Quan Lin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Cui Li
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhien Tan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lixiang Yao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lirong Huang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| |
Collapse
|
3
|
Fu Q, Zhang P, Zhao S, Li Y, Li X, Cao M, Yang N, Li C. A novel full-length transcriptome resource from multiple immune-related tissues in turbot (Scophthalmus maximus) using Pacbio SMART sequencing. FISH & SHELLFISH IMMUNOLOGY 2022; 129:106-113. [PMID: 35995372 DOI: 10.1016/j.fsi.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Turbot (Scophthalmus maximus) is an important cold-water economic fish. However, the production and development of turbot industry has been constantly hindered by the frequent occurrence of some diseases. Lacking full-length transcriptome for turbot limits immune gene discoveries and gene structures analysis. Therefore, we generated a full-length transcriptome using mixed immune-related tissues of turbot with PacBio Sequel platform. In this study, a total of 31.7 Gb high quality data were generated with the average subreads length of 2618 bp. According to the presence of 5' and 3' primers as well as poly (A) tails, FL (Full-length) and NFL (Non-full-length) isoforms were obtained. Meanwhile, we identified 32,003 non-redundant transcripts, 76.02% of which was novel isoforms of known genes. In addition, 12,176 alternative splicing (AS) events, 6614 polyadenylation (APA) events, 1905 transcription factors, and 2703 lncRNAs were identified. This work is a comprehensive report on the full-length transcriptome of immune-related tissues of turbot, and it also provides valuable molecular resources for future research on the adaptation mechanisms and functional genomics of turbot.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xingchun Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Dynamic Transcriptional Landscape of Grass Carp (Ctenopharyngodon idella) Reveals Key Transcriptional Features Involved in Fish Development. Int J Mol Sci 2022; 23:ijms231911547. [PMID: 36232849 PMCID: PMC9569805 DOI: 10.3390/ijms231911547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
A high-quality baseline transcriptome is a valuable resource for developmental research as well as a useful reference for other studies. We gathered 41 samples representing 11 tissues/organs from 22 important developmental time points within 197 days of fertilization of grass carp eggs in order to systematically examine the role of lncRNAs and alternative splicing in fish development. We created a high-quality grass carp baseline transcriptome with a completeness of up to 93.98 percent by combining strand-specific RNA sequencing and single-molecule real-time RNA sequencing technologies, and we obtained temporal expression profiles of 33,055 genes and 77,582 transcripts during development and tissue differentiation. A family of short interspersed elements was preferentially expressed at the early stage of zygotic activation in grass carp, and its possible regulatory components were discovered through analysis. Additionally, after thoroughly analyzing alternative splicing events, we discovered that retained intron (RI) alternative splicing events change significantly in both zygotic activation and tissue differentiation. During zygotic activation, we also revealed the precise regulatory characteristics of the underlying functional RI events.
Collapse
|
5
|
Yan C, Zhang N, Wang Q, Fu Y, Zhao H, Wang J, Wu G, Wang F, Li X, Liao H. Full-length transcriptome sequencing reveals the molecular mechanism of potato seedlings responding to low-temperature. BMC PLANT BIOLOGY 2022; 22:125. [PMID: 35300606 PMCID: PMC8932150 DOI: 10.1186/s12870-022-03461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is one of the world's most important crops, the cultivated potato is frost-sensitive, and low-temperature severely influences potato production. However, the mechanism by which potato responds to low-temperature stress is unclear. In this research, we apply a combination of second-generation sequencing and third-generation sequencing technologies to sequence full-length transcriptomes in low-temperature-sensitive cultivars to identify the important genes and main pathways related to low-temperature resistance. RESULTS In this study, we obtained 41,016 high-quality transcripts, which included 15,189 putative new transcripts. Amongst them, we identified 11,665 open reading frames, 6085 simple sequence repeats out of the potato dataset. We used public available genomic contigs to analyze the gene features, simple sequence repeat, and alternative splicing event of 24,658 non-redundant transcript sequences, predicted the coding sequence and identified the alternative polyadenylation. We performed cluster analysis, GO, and KEGG functional analysis of 4518 genes that were differentially expressed between the different low-temperature treatments. We examined 36 transcription factor families and identified 542 transcription factors in the differentially expressed genes, and 64 transcription factors were found in the AP2 transcription factor family which was the most. We measured the malondialdehyde, soluble sugar, and proline contents and the expression genes changed associated with low temperature resistance in the low-temperature treated leaves. We also tentatively speculate that StLPIN10369.5 and StCDPK16 may play a central coordinating role in the response of potatoes to low temperature stress. CONCLUSIONS Overall, this study provided the first large-scale full-length transcriptome sequencing of potato and will facilitate structure-function genetic and comparative genomics studies of this important crop.
Collapse
Affiliation(s)
- Chongchong Yan
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| | - Nan Zhang
- Anhui Vocational College of City Management, Hefei, 231635, Anhui, China
| | - Qianqian Wang
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Yuying Fu
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Hongyuan Zhao
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Jiajia Wang
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Gang Wu
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Feng Wang
- Jieshou County Agricultural Technology Promotion Center, Jieshou, 236500, Anhui, China
| | - Xueyan Li
- Funan County Agricultural Technology Promotion Center, Funan, 236300, Anhui, China
| | - Huajun Liao
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
6
|
Gao Y, Suding Z, Wang L, Liu D, Su S, Xu J, Hu J, Tao J. Full-length transcriptome analysis and identification of transcript structures in Eimeria necatrix from different developmental stages by single-molecule real-time sequencing. Parasit Vectors 2021; 14:502. [PMID: 34579769 PMCID: PMC8474931 DOI: 10.1186/s13071-021-05015-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/14/2021] [Indexed: 03/08/2023] Open
Abstract
Background Eimeria necatrix is one of the most pathogenic parasites, causing high mortality in chickens. Although its genome sequence has been published, the sequences and complete structures of its mRNA transcripts remain unclear, limiting exploration of novel biomarkers, drug targets and genetic functions in E. necatrix. Methods Second-generation merozoites (MZ-2) of E. necatrix were collected using Percoll density gradients, and high-quality RNA was extracted from them. Single-molecule real-time (SMRT) sequencing and Illumina sequencing were combined to generate the transcripts of MZ-2. Combined with the SMRT sequencing data of sporozoites (SZ) collected in our previous study, the transcriptome and transcript structures of E. necatrix were studied. Results SMRT sequencing yielded 21,923 consensus isoforms in MZ-2. A total of 17,151 novel isoforms of known genes and 3918 isoforms of novel genes were successfully identified. We also identified 2752 (SZ) and 3255 (MZ-2) alternative splicing (AS) events, 1705 (SZ) and 1874 (MZ-2) genes with alternative polyadenylation (APA) sites, 4019 (SZ) and 2588 (MZ-2) fusion transcripts, 159 (SZ) and 84 (MZ-2) putative transcription factors (TFs) and 3581 (SZ) and 2039 (MZ-2) long non-coding RNAs (lncRNAs). To validate fusion transcripts, reverse transcription-PCR was performed on 16 candidates, with an accuracy reaching up to 87.5%. Sanger sequencing of the PCR products further confirmed the authenticity of chimeric transcripts. Comparative analysis of transcript structures revealed a total of 3710 consensus isoforms, 815 AS events, 1139 genes with APA sites, 20 putative TFs and 352 lncRNAs in both SZ and MZ-2. Conclusions We obtained many long-read isoforms in E. necatrix SZ and MZ-2, from which a series of lncRNAs, AS events, APA events and fusion transcripts were identified. Information on TFs will improve understanding of transcriptional regulation, and fusion event data will greatly improve draft versions of gene models in E. necatrix. This information offers insights into the mechanisms governing the development of E. necatrix and will aid in the development of novel strategies for coccidiosis control. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05015-7.
Collapse
Affiliation(s)
- Yang Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zeyang Suding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Hinman MN, Richardson JI, Sockol RA, Aronson ED, Stednitz SJ, Murray KN, Berglund JA, Guillemin K. Zebrafish mbnl mutants model physical and molecular phenotypes of myotonic dystrophy. Dis Model Mech 2021; 14:dmm045773. [PMID: 34125183 PMCID: PMC8246264 DOI: 10.1242/dmm.045773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The muscleblind RNA-binding proteins (MBNL1, MBNL2 and MBNL3) are highly conserved across vertebrates and are important regulators of RNA alternative splicing. Loss of MBNL protein function through sequestration by CUG or CCUG RNA repeats is largely responsible for the phenotypes of the human genetic disorder myotonic dystrophy (DM). We generated the first stable zebrafish (Danio rerio) models of DM-associated MBNL loss of function through mutation of the three zebrafish mbnl genes. In contrast to mouse models, zebrafish double and triple homozygous mbnl mutants were viable to adulthood. Zebrafish mbnl mutants displayed disease-relevant physical phenotypes including decreased body size and impaired movement. They also exhibited widespread alternative splicing changes, including the misregulation of many DM-relevant exons. Physical and molecular phenotypes were more severe in compound mbnl mutants than in single mbnl mutants, suggesting partially redundant functions of Mbnl proteins. The high fecundity and larval optical transparency of this complete series of zebrafish mbnl mutants will make them useful for studying DM-related phenotypes and how individual Mbnl proteins contribute to them, and for testing potential therapeutics. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Melissa N. Hinman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Jared I. Richardson
- RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, University of Florida, Gainesville, FL 32611, USA
| | - Rose A. Sockol
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Eliza D. Aronson
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Sarah J. Stednitz
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Katrina N. Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA
| | - J. Andrew Berglund
- RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, University of Florida, Gainesville, FL 32611, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Humans and the Microbiome Program, CIFAR, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
8
|
Trivellin G, Tirosh A, Hernández-Ramírez LC, Gupta T, Tsai-Morris CH, Faucz FR, Burgess HA, Feldman B, Stratakis CA. The X-linked acrogigantism-associated gene gpr101 is a regulator of early embryonic development and growth in zebrafish. Mol Cell Endocrinol 2021; 520:111091. [PMID: 33248229 PMCID: PMC8771005 DOI: 10.1016/j.mce.2020.111091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022]
Abstract
We recently described X-linked acrogigantism (X-LAG), a condition of early childhood-onset pituitary gigantism associated with microduplications of the GPR101 receptor. The expression of GPR101 in hyperplastic pituitary regions and tumors in X-LAG patients, and GPR101's normally transient pituitary expression during fetal development, suggest a role in the regulation of growth. Nevertheless, little is still known about GPR101's physiological functions, especially during development. By using zebrafish models, we investigated the role of gpr101 during embryonic development and somatic growth. Transient ectopic gpr101 expression perturbed the embryonic body plan but did not affect growth. Loss of gpr101 led to a significant reduction in body size that was even more pronounced in the absence of maternal transcripts, as well as subfertility. These changes were accompanied by gastrulation and hypothalamic defects. In conclusion, both gpr101 loss- and gain-of-function affect, in different ways, fertility, embryonic patterning, growth and brain development.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA; Laboratory of Cellular and Molecular Endocrinology and Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Mi, Italy.
| | - Amit Tirosh
- NET Service and Endocrine Oncology Bioinformatics Lab, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tripti Gupta
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | | | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Harold A Burgess
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | - Benjamin Feldman
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
9
|
Luo W, Zhou Y, Wang J, Yu X, Tong J. Identifying Candidate Genes Involved in the Regulation of Early Growth Using Full-Length Transcriptome and RNA-Seq Analyses of Frontal and Parietal Bones and Vertebral Bones in Bighead Carp ( Hypophthalmichthys nobilis). Front Genet 2021; 11:603454. [PMID: 33519908 PMCID: PMC7844397 DOI: 10.3389/fgene.2020.603454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Growth, one of the most important traits monitored in domestic animals, is essentially associated with bone development. To date, no large-scale transcriptome studies investigating bone development in bighead carp have been reported. In this study, we applied Isoform-sequencing technology to uncover the entire transcriptomic landscape of the bighead carp (Hypophthalmichthys nobilis) in early growth stage, and obtained 63,873 non-redundant transcripts, 20,907 long non-coding RNAs, and 1,579 transcription factors. A total of 381 alternative splicing events were seen in the frontal and parietal bones with another 784 events simultaneously observed in the vertebral bones. Coupling this to RNA sequencing (RNA-seq) data, we identified 27 differentially expressed unigenes (DEGs) in the frontal and parietal bones and 45 DEGs in the vertebral bones in the fast-growing group of fish, when compared to the slow-growing group of fish. Finally, 15 key pathways and 20 key DEGs were identified and found to be involved in regulation of early growth such as energy metabolism, immune function, and cytoskeleton function and important cellular pathways such as the arginine and proline metabolic pathway (p4ha1), FoxO signaling pathway (sgk1), cell adhesion molecules (b2m, ptprc, and mhcII), and peroxisome proliferator-activated receptor signaling pathway (scd). We established a novel full-length transcriptome resource and combined it with RNA-seq to elucidate the mechanism of genetic regulation of differential growth in bighead carp. The key DEGs identified in this study could fuel further studies investigating associations between growth and bone development and serve as a source of potential candidate genes for marker-assisted breeding programs.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
10
|
Rizzo P, Altschmied L, Ravindran BM, Rutten T, D’Auria JC. The Biochemical and Genetic Basis for the Biosynthesis of Bioactive Compounds in Hypericum Perforatum L., One of the Largest Medicinal Crops in Europe. Genes (Basel) 2020; 11:E1210. [PMID: 33081197 PMCID: PMC7602838 DOI: 10.3390/genes11101210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023] Open
Abstract
Hypericum perforatum L. commonly known as Saint John's Wort (SJW), is an important medicinal plant that has been used for more than 2000 years. Although H. perforatum produces several bioactive compounds, its importance is mainly linked to two molecules highly relevant for the pharmaceutical industry: the prenylated phloroglucinol hyperforin and the naphtodianthrone hypericin. The first functions as a natural antidepressant while the second is regarded as a powerful anticancer drug and as a useful compound for the treatment of Alzheimer's disease. While the antidepressant activity of SJW extracts motivate a multi-billion dollar industry around the world, the scientific interest centers around the biosynthetic pathways of hyperforin and hypericin and their medical applications. Here, we focus on what is known about these processes and evaluate the possibilities of combining state of the art omics, genome editing, and synthetic biology to unlock applications that would be of great value for the pharmaceutical and medical industries.
Collapse
Affiliation(s)
| | | | | | | | - John C. D’Auria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (P.R.); (L.A.); (B.M.R.); (T.R.)
| |
Collapse
|
11
|
Chen D, Du Y, Fan X, Zhu Z, Jiang H, Wang J, Fan Y, Chen H, Zhou D, Xiong C, Zheng Y, Xu X, Luo Q, Guo R. Reconstruction and functional annotation of Ascosphaera apis full-length transcriptome utilizing PacBio long reads combined with Illumina short reads. J Invertebr Pathol 2020; 176:107475. [PMID: 32976816 DOI: 10.1016/j.jip.2020.107475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 01/19/2023]
Abstract
Ascosphaera apis is a widespread fungal pathogen of honeybee larvae that results in chalkbrood disease, leading to heavy losses for the beekeeping industry in China and many other countries. This work was aimed at generating a full-length transcriptome of A. apis using PacBio single-molecule real-time (SMRT) sequencing. Here, more than 23.97 Gb of clean reads was generated from long-read sequencing of A. apis mycelia, including 464,043 circular consensus sequences (CCS) and 394,142 full-length non-chimeric (FLNC) reads. In total, we identified 174,095 high-confidence transcripts covering 5141 known genes with an average length of 2728 bp. We also discovered 2405 genic loci and 11,623 isoforms that have not been annotated yet within the current reference genome. Additionally, 16,049, 10,682, 4520 and 7253 of the discovered transcripts have annotations in the Non-redundant protein (Nr), Clusters of Eukaryotic Orthologous Groups (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Moreover, 1205 long non-coding RNAs (lncRNAs) were identified, which have less exons, shorter exon and intron lengths, shorter transcript lengths, lower GC percent, lower expression levels, and fewer alternative splicing (AS) evens, compared with protein-coding transcripts. A total of 253 members from 17 transcription factor (TF) families were identified from our transcript datasets. Finally, the expression of A. apis isoforms was validated using a molecular approach. Overall, this is the first report of a full-length transcriptome of entomogenous fungi including A. apis. Our data offer a comprehensive set of reference transcripts and hence contributes to improving the genome annotation and transcriptomic study of A. apis.
Collapse
Affiliation(s)
- Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Yu Du
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Zhiwei Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Haibin Jiang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Jie Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Yuanchan Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Huazhi Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Dingding Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Cuiling Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Yanzhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Xijian Xu
- Jiangxi Province Institute of Apiculture, 330201 Nanchang, Jiangxi, China
| | - Qun Luo
- Jiangxi Province Institute of Apiculture, 330201 Nanchang, Jiangxi, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China; Engineering Research Center of Processing and Application of Bee Products of Ministry of Education, Fuzhou 350002, Fujian Province, China.
| |
Collapse
|
12
|
Proteomics Analysis of Early Developmental Stages of Zebrafish Embryos. Int J Mol Sci 2019; 20:ijms20246359. [PMID: 31861170 PMCID: PMC6940819 DOI: 10.3390/ijms20246359] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/15/2023] Open
Abstract
Zebrafish is a well-recognized organism for investigating vertebrate development and human diseases. However, the data on zebrafish proteome are scarce, particularly during embryogenesis. This is mostly due to the overwhelming abundance of egg yolk proteins, which tend to mask the detectable presence of less abundant proteins. We developed an efficient procedure to reduce the amount of yolk in zebrafish early embryos to improve the Liquid chromatography-tandem mass spectrometry (LC-MS)-based shotgun proteomics analysis. We demonstrated that the deyolking procedure resulted in a greater number of proteins being identified. This protocol resulted in approximately 2-fold increase in the number of proteins identified in deyolked samples at cleavage stages, and the number of identified proteins increased greatly by 3-4 times compared to non-deyolked samples in both oblong and bud stages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed a high number of functional proteins differentially accumulated in the deyolked versus non-deyolked samples. The most prominent enrichments after the deyolking procedure included processes, functions, and components related to cellular organization, cell cycle, control of replication and translation, and mitochondrial functions. This deyolking procedure improves both qualitative and quantitative proteome analyses and provides an innovative tool in molecular embryogenesis of polylecithal animals, such as fish, amphibians, reptiles, or birds.
Collapse
|