1
|
Wang W, Li S, Zhu Y, Cui X, Sheng Z, Wang H, Cheng Z. Antioxidant and Neuroprotective Effects of Seed Oils from Trichosanthes kirilowii and T. laceribractea in Caenorhabditis elegans: A Comparative Analysis and Mechanism Study. Antioxidants (Basel) 2024; 13:861. [PMID: 39061929 PMCID: PMC11273834 DOI: 10.3390/antiox13070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Excess reactive oxygen species (ROS) can accelerate amyloid β (Aβ) aggregation and tau protein hyperphosphorylation in neuron cells, which further leads to neurodegenerative diseases such as Alzheimer's disease (AD). Therefore, there is an urgent need to find natural and safe antioxidants for preventing or treating such neurodegenerative diseases. The seeds of Trichosanthes kirilowii Maxim and T. laceribractea Hayata have long been used for medicinal and edible purposes in China. However, the antioxidant and neuroprotective activities and underlying mechanisms of their seed oils still remain unclear. Herein, we examine the antioxidant and neuroprotective effects of seed oils extracted from different germplasms, T. kirilowii (YNHH and SDJN) and T. laceribractea (ZJQT and SXHZ), on ROS levels and neuroprotective activities in C. elegans. The results demonstrated that the seed oils significantly reduced the ROS levels in C. elegans by 17.03-42.74%, with T. kirilowii (YNHH and SDJN) exhibiting significantly stronger ROS scavenging abilities than T. laceribractea (ZJQT and SXHZ). The seed oils from T. kirilowii (YNHH and SDJN) alleviated the production and aggregation of Aβ and the phosphorylation and polymerization of tau, suggesting a potential neuroprotective role. Conversely, seed oils from T. laceribractea (ZJQT and SXHZ) show minimal neuroprotective effects in C. elegans. These differential outcomes might stem from distinct mechanisms underlying antioxidant and neuroprotective effects, with the ctl-2 gene implicated as pivotal in mediating the significant neuroprotective effects of seed oils from T. kirilowii (YNHH and SDJN). Our findings have provided valuable insights into the antioxidant and neuroprotective properties of T. kirilowii seed oils, paving the way for further research aimed at elucidating the underlying mechanisms and exploring their potential therapeutic applications in combating neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhou Cheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (W.W.); (S.L.); (Y.Z.); (X.C.); (Z.S.); (H.W.)
| |
Collapse
|
2
|
Vogt MC, Hobert O. Starvation-induced changes in somatic insulin/IGF-1R signaling drive metabolic programming across generations. SCIENCE ADVANCES 2023; 9:eade1817. [PMID: 37027477 PMCID: PMC10081852 DOI: 10.1126/sciadv.ade1817] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/08/2023] [Indexed: 05/30/2023]
Abstract
Exposure to adverse nutritional and metabolic environments during critical periods of development can exert long-lasting effects on health outcomes of an individual and its descendants. Although such metabolic programming has been observed in multiple species and in response to distinct nutritional stressors, conclusive insights into signaling pathways and mechanisms responsible for initiating, mediating, and manifesting changes to metabolism and behavior across generations remain scarce. By using a starvation paradigm in Caenorhabditis elegans, we show that starvation-induced changes in dauer formation-16/forkhead box transcription factor class O (DAF-16/FoxO) activity, the main downstream target of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling, are responsible for metabolic programming phenotypes. Tissue-specific depletion of DAF-16/FoxO during distinct developmental time points demonstrates that DAF-16/FoxO acts in somatic tissues, but not directly in the germline, to both initiate and manifest metabolic programming. In conclusion, our study deciphers multifaceted and critical roles of highly conserved insulin/IGF-1 receptor signaling in determining health outcomes and behavior across generations.
Collapse
|
3
|
Khan KM, Balasubramanian N, Gaudencio G, Wang R, Selvakumar GP, Kolling L, Pierson S, Tadinada SM, Abel T, Hefti M, Marcinkiewcz CA. Human tau-overexpressing mice recapitulate brainstem involvement and neuropsychiatric features of early Alzheimer's disease. Acta Neuropathol Commun 2023; 11:57. [PMID: 37009893 PMCID: PMC10069039 DOI: 10.1186/s40478-023-01546-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023] Open
Abstract
Alzheimer's disease (AD) poses an ever-increasing public health concern as the population ages, affecting more than 6 million Americans. AD patients present with mood and sleep changes in the prodromal stages that may be partly driven by loss of monoaminergic neurons in the brainstem, but a causal relationship has not been firmly established. This is due in part to a dearth of animal models that recapitulate early AD neuropathology and symptoms. The goal of the present study was to evaluate depressive and anxiety-like behaviors in a mouse model of AD that overexpresses human wild-type tau (htau) prior to the onset of cognitive impairments and assess these behavior changes in relationship to tau pathology, neuroinflammation, and monoaminergic dysregulation in the dorsal raphe nucleus (DRN) and locus coeruleus (LC). We observed depressive-like behaviors at 4 months in both sexes and hyperlocomotion in male htau mice. Deficits in social interaction persisted at 6 months and were accompanied by an increase in anxiety-like behavior in males. The behavioral changes at 4 months coincided with a lower density of serotonergic (5-HT) neurons, downregulation of 5-HT markers, reduced excitability of 5-HT neurons, and hyperphosphorylated tau in the DRN. Inflammatory markers were also upregulated in the DRN along with protein kinases and transglutaminase 2, which may promote tau phosphorylation and aggregation. Loss of 5-HT innervation to the entorhinal cortex and dentate gyrus of the hippocampus was also observed and may have contributed to depressive-like behaviors. There was also reduced expression of noradrenergic markers in the LC along with elevated phospho-tau expression, but this did not translate to a functional change in neuronal excitability. In total, these results suggest that tau pathology in brainstem monoaminergic nuclei and the resulting loss of serotonergic and/or noradrenergic drive may underpin depressive- and anxiety-like behaviors in the early stages of AD.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
- Psychological Sciences Department, Daemen University, Amherst, NY, 14226, USA
| | - Nagalakshmi Balasubramanian
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Gabriel Gaudencio
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | | | - Louis Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Samantha Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Satya M Tadinada
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Marco Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults. Cell Rep 2022; 38:110350. [PMID: 35139369 DOI: 10.1016/j.celrep.2022.110350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
The protein homeostasis (proteostasis) network (PN) encompasses mechanisms that maintain proteome integrity by controlling various biological functions. Loss of proteostasis leads to toxic protein aggregation (proteotoxicity), which underlies the manifestation of neurodegeneration. How the PN responds to dissimilar proteotoxic challenges and how these responses are regulated at the organismal level are largely unknown. Here, we report that, while torsin chaperones protect from the toxicity of neurodegeneration-causing polyglutamine stretches, they exacerbate the toxicity of the Alzheimer's disease-causing Aβ peptide in neurons and muscles. These opposing effects are accompanied by differential modulations of gene expression, including that of three neuropeptides that are involved in tailoring the organismal response to dissimilar proteotoxic insults. This mechanism is regulated by insulin/IGF signaling and the transcription factor SKN-1/NRF. Our work delineates a mechanism by which the PN orchestrates differential responses to dissimilar proteotoxic challenges and points at potential targets for therapeutic interventions.
Collapse
|
5
|
Green CL, Englund DA, Das S, Herrerias MM, Yousefzadeh MJ, Grant RA, Clark J, Pak HH, Liu P, Bai H, Prahlad V, Lamming DW, Chusyd DE. The Second Annual Symposium of the Midwest Aging Consortium: The Future of Aging Research in the Midwestern United States. J Gerontol A Biol Sci Med Sci 2021; 76:2156-2161. [PMID: 34323268 PMCID: PMC8599030 DOI: 10.1093/gerona/glab210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 01/07/2023] Open
Abstract
While the average human life span continues to increase, there is little evidence that this is leading to a contemporaneous increase in "healthy years" experienced by our aging population. Consequently, many scientists focus their research on understanding the process of aging and trialing interventions that can promote healthspan. The 2021 Midwest Aging Consortium consensus statement is to develop and further the understanding of aging and age-related disease using the wealth of expertise across universities in the Midwestern United States. This report summarizes the cutting-edge research covered in a virtual symposium held by a consortium of researchers in the Midwestern United States, spanning topics such as senescence biomarkers, serotonin-induced DNA protection, immune system development, multisystem impacts of aging, neural decline following severe infection, the unique transcriptional impact of calorie restriction of different fat depots, the pivotal role of fasting in calorie restriction, the impact of peroxisome dysfunction, and the influence of early life trauma on health. The symposium speakers presented data from studies conducted in a variety of common laboratory animals as well as less-common species, including Caenorhabditis elegans, Drosophila, mice, rhesus macaques, elephants, and humans. The consensus of the symposium speakers is that this consortium highlights the strength of aging research in the Midwestern United States as well as the benefits of a collaborative and diverse approach to geroscience.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Davis A Englund
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Srijit Das
- Department of Biology, Aging Mind & Brain Initiative, University of Iowa, Iowa City, Iowa, USA
| | - Mariana M Herrerias
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Matthew J Yousefzadeh
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Josef Clark
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Peiduo Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind & Brain Initiative, University of Iowa, Iowa City, Iowa, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Daniella E Chusyd
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, Bloomington, Indiana, USA,Address correspondence to: Daniella E. Chusyd, PhD, School of Public Health, Indiana University-Bloomington, 701 E. Kirkwood Ave., Bloomington, IN 47405-7100, USA. E-mail:
| |
Collapse
|
6
|
Chen CH, Patel R, Bortolami A, Sesti F. A novel assay for drug screening that utilizes the heat shock response of Caenorhabditis elegans nematodes. PLoS One 2020; 15:e0240255. [PMID: 33035268 PMCID: PMC7546469 DOI: 10.1371/journal.pone.0240255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023] Open
Abstract
Biological organisms respond to environmental stressors by recruiting multiple cellular cascades that act to mitigate damage and ultimately enhance survival. This implies that compounds that interact with any of those pathways might improve organism's survival. Here, we report on an initial attempt to develop a drug screening assay based on the heat shock (HS) response of Caenorhabditis elegans nematodes. The protocol works by subjecting the worms to two HS conditions in the absence/presence of the test compounds. Post-heat shock survival is quantified manually or in semi-automatic manner by analyzing z-stack pictures. We blindly screened a cassette of 72 compounds in different developmental stages provided by Eli Lilly through their Open Innovation Drug Discovery program. The analysis indicated that, on average, therapeutically useful drugs increase survival to HS compared to compounds used in non-clinical settings. We developed a formalism that estimates the probability of a compound to enhance survival based on a comparison with a set of parameters calculated from a pool of 35 FDA-approved drugs. The method correctly identified the developmental stages of the Lilly compounds based on their relative abilities to enhance survival to the HS. Taken together these data provide proof of principle that an assay that measures the HS response of C. elegans can offer physiological and pharmacological insight in a cost- and time-efficient manner.
Collapse
Affiliation(s)
- Chih-Hsiung Chen
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States of America
| | - Rahul Patel
- Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States of America
| | - Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States of America
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States of America
- * E-mail:
| |
Collapse
|
7
|
Prahlad V. The discovery and consequences of the central role of the nervous system in the control of protein homeostasis. J Neurogenet 2020; 34:489-499. [PMID: 32527175 PMCID: PMC7736053 DOI: 10.1080/01677063.2020.1771333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
Abstract
Organisms function despite wide fluctuations in their environment through the maintenance of homeostasis. At the cellular level, the maintenance of proteins as functional entities at target expression levels is called protein homeostasis (or proteostasis). Cells implement proteostasis through universal and conserved quality control mechanisms that surveil and monitor protein conformation. Recent studies that exploit the powerful ability to genetically manipulate specific neurons in C. elegans have shown that cells within this metazoan lose their autonomy over this fundamental survival mechanism. These studies have uncovered novel roles for the nervous system in controlling how and when cells activate their protein quality control mechanisms. Here we discuss the conceptual underpinnings, experimental evidence and the possible consequences of such a control mechanism. PRELUDE: Whether the detailed examination of parts of the nervous system and their selective perturbation is sufficient to reconstruct how the brain generates behavior, mental disease, music and religion remains an open question. Yet, Sydney Brenner's development of C. elegans as an experimental organism and his faith in the bold reductionist approach that 'the understanding of wild-type behavior comes best after the discovery and analysis of mutations that alter it', has led to discoveries of unexpected roles for neurons in the biology of organisms.
Collapse
Affiliation(s)
- Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Alcedo J, Prahlad V. Neuromodulators: an essential part of survival. J Neurogenet 2020; 34:475-481. [PMID: 33170042 PMCID: PMC7811185 DOI: 10.1080/01677063.2020.1839066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
The coordination between the animal's external environment and internal state requires constant modulation by chemicals known as neuromodulators. Neuromodulators, such as biogenic amines, neuropeptides and cytokines, promote organismal homeostasis. Over the past several decades, Caenorhabditiselegans has grown into a powerful model organism that allows the elucidation of the mechanisms of action of neuromodulators that are conserved across species. In this perspective, we highlight a collection of articles in this issue that describe how neuromodulators optimize C. elegans survival.
Collapse
Affiliation(s)
- Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Das S, Ooi FK, Cruz Corchado J, Fuller LC, Weiner JA, Prahlad V. Serotonin signaling by maternal neurons upon stress ensures progeny survival. eLife 2020; 9:e55246. [PMID: 32324136 PMCID: PMC7237211 DOI: 10.7554/elife.55246] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | | | | | - Joshua A Weiner
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| |
Collapse
|