1
|
Vaghefi N, Bar I, Lawley JW, Sambasivam PT, Christie M, Ford R. Population-level whole-genome sequencing of Ascochyta rabiei identifies genomic loci associated with isolate aggressiveness. Microb Genom 2024; 10. [PMID: 39576742 DOI: 10.1099/mgen.0.001326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Ascochyta blight caused by the ascomycete Ascochyta rabiei poses a major biotic threat to chickpea (Cicer arietinum) industries worldwide and incurs substantial costs to the Australian multimillion-dollar chickpea industry in both disease control and yield loss. The fungus was introduced to Australia in the 1970s from an unknown source population and, within a few decades, successfully established in all Australian agroecological chickpea-growing regions. Although genetically highly clonal, a broad range of phenotypic variation in terms of aggressiveness exists among the Australian A. rabiei isolates. More recently, highly aggressive isolates capable of causing severe disease symptoms on moderate to highly resistant chickpea cultivars have increased in frequency. To identify genetic loci potentially associated with A. rabiei aggressiveness on Australian chickpea cultivars, we performed deep genome sequencing of 230 isolates collected from a range of agroecological chickpea-growing regions between 2013 and 2020. Population genetic analyses using genome-wide SNP data identified three main clusters of genetically closely related isolates in Australia. Phylogenetic analyses showed that highly aggressive phenotypes developed multiple times independently throughout the phylogeny. The results point to a minor contribution of multiple genetic regions and most likely epigenomic variations to aggressiveness of A. rabiei isolates on Australian chickpea cultivars.
Collapse
Affiliation(s)
- Niloofar Vaghefi
- Faculty of Science, University of Melbourne, Parkville, Vic 3010, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Qld 4350, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Jonathan Wanderley Lawley
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Prabhakaran Thanjavur Sambasivam
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Melody Christie
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Qld 4111, Australia
| |
Collapse
|
2
|
Tan C, Feng Y, Peng J, Li J, Zhang X, Fu A, Tang W. The complete mitogenome of Alternaria tenuissima (Kunze) Wiltshire 1933 (Pleosporaceae), a fungus causing apple leaf blotch disease. Mitochondrial DNA B Resour 2024; 9:1445-1449. [PMID: 39450204 PMCID: PMC11500555 DOI: 10.1080/23802359.2024.2419449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Alternaria tenuissima (Kunze) Wiltshire 1933 is a plant pathogenic fungus mainly causing leaf blotch disease. Here, we de novo assembled mitochondrial genome of A. tenuissima isolate AT-1224. The total mitogenome size is 57,475 bp with 29.00% G + C content. The genome contained 12 coding genes and 15 hypothetical proteins, 34 transfer RNA (tRNA) genes and 2 ribosomal RNA (rRNA). There are 227 SSR repeats, range from 2 to 4 base pairs, most five repeats were AT (144), AAT (54), AG (33), AC (13) and AAG (5). The results also found 13 tandem repeats (>100 bp), the largest repeat were forward 2 times located from 13,405 to 20,024 bp and 25,549 to 32,168 bp. Phylogenetic analysis based on 17 species complete mitogenomes indicated that A. tenuissima mitogenome was closest to 2 species, A. solani and A. alternata, sister clade to 6 species, representing Curvularia clavate, Exserohilum rostratum, Exserohilum turcicum, Bipolaris cookie, Bipolaris oryzae and Bipolaris sorokiniana. Further analysis among common fungus in local apple orchards using mitochondrial protein-coding genes revealed A. tenuissima were closing to 2 Alternaria fungi and a fungus representing Phoma sp. These results provide a basic reference for identification and evolution studies of A. tenuissima on apple trees.
Collapse
Affiliation(s)
- Chen Tan
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Yan Feng
- School of Economics, Yunnan Normal University, Kunming, China
| | - Jing Peng
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Jianmei Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Xiangdong Zhang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Aihua Fu
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Wei Tang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Science, Yunnan Normal University, Kunming, China
| |
Collapse
|
3
|
Dyussembayev K, Akpe V, Yechshzhanov T, Cheesman MJ, Kim TH, Cock IE. Amplification-free detection of Ascochyta blight in chickpea using a simple molecular beacon assay. Sci Rep 2024; 14:23846. [PMID: 39394375 PMCID: PMC11470000 DOI: 10.1038/s41598-024-74564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Ascochyta blight is a major biotic stress that limits chickpea production globally. Fungicide application remains one of the effective control measures for the endemic spread. Due to the serious threat that synthetic fungicides pose to crop quality, early diagnosis of the pathogen is imperative. Whilst there have previously been several conventional lab-based diagnostic methods developed for early detection of Ascochyta rabiei, they require long assay times, specialised equipment and facilities, and trained personnel to process the samples. To overcome this challenge, a rapid amplification-free detection assay using a molecular beacon probe was developed. The method consists of a simple assembly assay that accurately detects pathogen within 30 min. The developed assay is species-specific and has a similar sensitivity level as conventional amplification-based methods. Although it is still a lab-based technique, considering the simplicity of the assay, it has a great potential to be developed further as a reliable in-field diagnostic device for early detection and quantification of fungal pathogen spores.
Collapse
Affiliation(s)
- Kazbek Dyussembayev
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
- L.N. Gumilyov Eurasian National University, Astana, 010000, Kazakhstan
| | - Victor Akpe
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Talgat Yechshzhanov
- Pedagogical Institute, Astana International University, Astana, 010000, Kazakhstan
| | - Matthew J Cheesman
- Menzies Institute, Griffith University, Nathan, QLD, 4111, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Tak H Kim
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Ian E Cock
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
4
|
Wang G, Zhang G, Lv X, Wang Y, Long Y, Wang X, Liu H. First complete mitogenome of Massarineae and its contribution to phylogenetic implications in Pleosporales. Sci Rep 2023; 13:22431. [PMID: 38104200 PMCID: PMC10725480 DOI: 10.1038/s41598-023-49822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Endophytic fungi play an important role in the growth and development of traditional Chinese medicine plants. We isolated a strain of Acrocalymma vagum from the endophytic fungi of the traditional Chinese plants Paris. To accurately identify this endophytic fungal species of interest, we sequenced the mitochondrial genome of A. vagum, which is the first discovered mitochondrial genome in Massarineae. The A. vagum mitochondrial genome consists of a 35,079-bp closed circular DNA molecule containing 36 genes. Then, we compared the general sequence characteristics of A. vagum with those of Pleosporales, and the second structure of the 22 tRNAs was predicted. The phylogenetic relationship of A. vagum was constructed using two different data sets (protein-coding genes and amino acids). The phylogenetic tree shows that A. vagum is located at the root of Pleosporales. The analysis of introns shows that the number of introns increases with the increase in branch length. The results showed that monophyly was confirmed for all families in Pleosporales except for Pleosporaceae. A. vagum is an ancient species in the Pleosporales, and Pleosporaceae may require further revision. In Pleosporales, the number of introns is positively correlated with branch length, providing data for further study on the origin of introns.
Collapse
Affiliation(s)
- Guangying Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Gongyou Zhang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guiyang, China
| | - Xiaoying Lv
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yaping Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yaohang Long
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xianyi Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China.
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guiyang, China.
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China.
| | - Hongmei Liu
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China.
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guiyang, China.
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China.
- School of Basic Medicine Science, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
Singh SK, Shree A, Verma S, Singh K, Kumar K, Srivastava V, Singh R, Saxena S, Singh AP, Pandey A, Verma PK. The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility. THE PLANT CELL 2023; 35:1134-1159. [PMID: 36585808 PMCID: PMC10015165 DOI: 10.1093/plcell/koac372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 05/29/2023]
Abstract
Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaβLIM1a. CaβLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaβLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.
Collapse
Affiliation(s)
- Shreenivas Kumar Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sandhya Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kunal Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Samiksha Saxena
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Agam Prasad Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Pandey
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Liu N, Liu C, Song Y, Han X, Zhang G, Feng Z, Wang B, Bu Y, Ou J, Gong Y. Genome and Transcriptome Analysis of Ascochyta pisi Provides Insights into the Pathogenesis of Ascochyta Blight of Pea. Microbiol Spectr 2023; 11:e0448822. [PMID: 36645309 PMCID: PMC9927284 DOI: 10.1128/spectrum.04488-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023] Open
Abstract
Ascochyta blight caused by Ascochyta pisi is a major constraint to pea (Pisum sativum L.) production worldwide. Deciphering the pathogenic mechanism of A. pisi on peas will help in breeding resistant pea varieties and developing effective approaches for disease management. However, little is known about the genomic features and pathogenic factors of A. pisi. In this study, we first report that A. pisi is one of the causal agents of ascochyta blight disease of pea in China. The genome of the representative isolate A. pisi HNA23 was sequenced using PacBio and Illumina sequencing technologies. The HNA23 genome assembly is almost 41.5 Mb in size and harbors 10,796 putative protein-encoding genes. We predicted 555 carbohydrate-active enzymes (CAZymes), 1,008 secreted proteins, 74 small secreted cysteine-rich proteins (SSCPs), and 26 secondary metabolite biosynthetic gene clusters (SMGCs). A comparison of A. pisi genome features with the features of 6 other available genomes of Ascochyta species showed that CAZymes, the secretome, and SMGCs of this genus are considerably conserved. Importantly, the transcriptomes of HNA23 during infection of peas at three stages were further analyzed. We found that 245 CAZymes and 29 SSCPs were upregulated at all three tested infection stages. SMGCs were also trigged, but most of them were induced at only one stage of infection. Together, our results provide important genomic information on Ascochyta spp. and offer insights into the pathogenesis of A. pisi. IMPORTANCE Ascochyta blight is a major disease of legumes worldwide. Ascochyta pisi and other Ascochyta species have been identified as pathogens of ascochyta blight. Here, we first report that A. pisi causes ascochyta blight of pea in China, and we report the high-quality, fully annotated genome of A. pisi. Comparative genome analysis was performed to elucidate the differences and similarities among 7 Ascochyta species. We predict abundant CAZymes (569 per species), secreted proteins (851 per species), and prolific secondary metabolite gene clusters (29 per species) in these species. We identified a set of genes that may be responsible for fungal virulence based on transcriptomes in planta, including CAZymes, SSCPs, and secondary metabolites. The findings from the comparative genome analysis highlight the genetic diversity and help in understanding the evolutionary relationship of Ascochyta species. In planta transcriptome analysis provides reliable information for further investigation of the mechanism of the interaction between Ascochyta spp. and legumes.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Yajing Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xingmin Han
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou, China
| | - Guwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhijuan Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanpeng Bu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinwen Ou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaming Gong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Wingfield BD, Berger DK, Coetzee MPA, Duong TA, Martin A, Pham NQ, van den Berg N, Wilken PM, Arun-Chinnappa KS, Barnes I, Buthelezi S, Dahanayaka BA, Durán A, Engelbrecht J, Feurtey A, Fourie A, Fourie G, Hartley J, Kabwe ENK, Maphosa M, Narh Mensah DL, Nsibo DL, Potgieter L, Poudel B, Stukenbrock EH, Thomas C, Vaghefi N, Welgemoed T, Wingfield MJ. IMA genome‑F17 : Draft genome sequences of an Armillaria species from Zimbabwe, Ceratocystis colombiana, Elsinoë necatrix, Rosellinia necatrix, two genomes of Sclerotinia minor, short‑read genome assemblies and annotations of four Pyrenophora teres isolates from barley grass, and a long-read genome assembly of Cercospora zeina. IMA Fungus 2022; 13:19. [PMID: 36411457 PMCID: PMC9677705 DOI: 10.1186/s43008-022-00104-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Brenda D. Wingfield
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Dave K. Berger
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Martin P. A. Coetzee
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A. Duong
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Anke Martin
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Nam Q. Pham
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Noelani van den Berg
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Kiruba Shankari Arun-Chinnappa
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia ,PerkinElmer Pty Ltd., Level 2, Building 5, Brandon Business Park, 530‑540, Springvale Road, Glen Waverley, VIC 3150 Australia
| | - Irene Barnes
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sikelela Buthelezi
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Alvaro Durán
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd. (APRIL), Pangkalan Kerinci, Riau 28300 Indonesia
| | - Juanita Engelbrecht
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Alice Feurtey
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Arista Fourie
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Gerda Fourie
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jesse Hartley
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Eugene N. K. Kabwe
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Mkhululi Maphosa
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Deborah L. Narh Mensah
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa ,grid.423756.10000 0004 1764 1672CSIR, Food Research Institute, Accra, Ghana
| | - David L. Nsibo
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Lizel Potgieter
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Barsha Poudel
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Eva H. Stukenbrock
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Chanel Thomas
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Niloofar Vaghefi
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia ,grid.1008.90000 0001 2179 088XSchool of Agriculture and Food, University of Melbourne, Parkville, VIC 3010 Australia
| | - Tanya Welgemoed
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| |
Collapse
|
8
|
Ma W, Yang J, Ding J, Zhao W, Peng YL, Bhadauria V. Gapless reference genome assembly of Didymella glomerata, a new fungal pathogen of maize causing Didymella leaf blight. FRONTIERS IN PLANT SCIENCE 2022; 13:1022819. [PMID: 36388559 PMCID: PMC9643772 DOI: 10.3389/fpls.2022.1022819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Didymella leaf blight (DLB) caused by Didymella glomerata is a new fungal disease of maize (Zea mays), first detected in 2021 in Panjin, Liaoning province of China. Here we report the reference genome assembly of D. glomerata to unravel how the fungal pathogen controls its virulence on maize at the molecular level. A maize-infecting strain Pj-2 of the pathogen was sequenced on the Illumina NovaSeq 6000 and PacBio Sequel II platforms at a 575-fold genomic coverage. The 33.17 Mb gapless genome assembly comprises 32 scaffolds with L/N50 of 11/1.36 Mb, four of which represent full-length chromosomes. The Pj-2 genome is predicted to contain 10,334 protein-coding genes, of which 211, 12 and 134 encode effector candidates, secondary metabolite backbone-forming enzymes and CAZymes, respectively. Some of these genes are potentially implicated in niche adaptation and expansion, such as colonizing new hosts like maize. Phylogenomic analysis of eight strains of six Didymella spp., including three sequenced strains of D. glomerata, reveals that the maize (Pj-2)- and Chrysanthemum (CBS 528.66)-infecting strains of D. glomerata are genetically similar (sharing 92.37% genome with 98.89% identity), whereas Pj-2 shows truncated collinearity with extensive chromosomal rearrangements with the Malus-infecting strain M27-16 of D. glomerata (sharing only 55.01% genome with 88.20% identity). Pj-2 and CBS 528.66 carry four major reciprocal translocations in their genomes, which may enable them to colonize the different hosts. Furthermore, germplasm screening against Pj-2 led to the identification of three sources of DLB resistance in maize, including a tropical inbred line CML496. DLB resistance in the line is attributed to the accumulation of ROS H2O2 in the apoplastic space of the infected cells, which likely restricts the fungal growth and proliferation.
Collapse
Affiliation(s)
- Wendi Ma
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Junqiang Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Wensheng Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - You-Liang Peng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Singh R, Kumar K, Purayannur S, Chen W, Verma PK. Ascochyta rabiei: A threat to global chickpea production. MOLECULAR PLANT PATHOLOGY 2022; 23:1241-1261. [PMID: 35778851 PMCID: PMC9366070 DOI: 10.1111/mpp.13235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED The necrotrophic fungus Ascochyta rabiei causes Ascochyta blight (AB) disease in chickpea. A. rabiei infects all aerial parts of the plant, which results in severe yield loss. At present, AB disease occurs in most chickpea-growing countries. Globally increased incidences of A. rabiei infection and the emergence of new aggressive isolates directed the interest of researchers toward understanding the evolution of pathogenic determinants in this fungus. In this review, we summarize the molecular and genetic studies of the pathogen along with approaches that are helping in combating the disease. Possible areas of future research are also suggested. TAXONOMY kingdom Mycota, phylum Ascomycota, class Dothideomycetes, subclass Coelomycetes, order Pleosporales, family Didymellaceae, genus Ascochyta, species rabiei. PRIMARY HOST A. rabiei survives primarily on Cicer species. DISEASE SYMPTOMS A. rabiei infects aboveground parts of the plant including leaves, petioles, stems, pods, and seeds. The disease symptoms first appear as watersoaked lesions on the leaves and stems, which turn brown or dark brown. Early symptoms include small circular necrotic lesions visible on the leaves and oval brown lesions on the stem. At later stages of infection, the lesions may girdle the stem and the region above the girdle falls off. The disease severity increases at the reproductive stage and rounded lesions with concentric rings, due to asexual structures called pycnidia, appear on leaves, stems, and pods. The infected pod becomes blighted and often results in shrivelled and infected seeds. DISEASE MANAGEMENT STRATEGIES Crop failures may be avoided by judicious practices of integrated disease management based on the use of resistant or tolerant cultivars and growing chickpea in areas where conditions are least favourable for AB disease development. Use of healthy seeds free of A. rabiei, seed treatments with fungicides, and proper destruction of diseased stubbles can also reduce the fungal inoculum load. Crop rotation with nonhost crops is critical for controlling the disease. Planting moderately resistant cultivars and prudent application of fungicides is also a way to combat AB disease. However, the scarcity of AB-resistant accessions and the continuous evolution of the pathogen challenges the disease management process. USEFUL WEBSITES https://www.ndsu.edu/pubweb/pulse-info/resourcespdf/Ascochyta%20blight%20of%20chickpea.pdf https://saskpulse.com/files/newsletters/180531_ascochyta_in_chickpeas-compressed.pdf http://www.pulseaus.com.au/growing-pulses/bmp/chickpea/ascochyta-blight http://agriculture.vic.gov.au/agriculture/pests-diseases-and-weeds/plant-diseases/grains-pulses-and-cereals/ascochyta-blight-of-chickpea http://www.croppro.com.au/crop_disease_manual/ch05s02.php https://www.northernpulse.com/uploads/resources/722/handout-chickpeaascochyta-nov13-2011.pdf http://oar.icrisat.org/184/1/24_2010_IB_no_82_Host_Plant https://www.crop.bayer.com.au/find-crop-solutions/by-pest/diseases/ascochyta-blight.
Collapse
Affiliation(s)
- Ritu Singh
- Plant Immunity LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| | - Kamal Kumar
- Plant Immunity LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
- Department of Plant Molecular BiologyUniversity of Delhi (South Campus)New DelhiIndia
| | - Savithri Purayannur
- Plant Immunity LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Weidong Chen
- Grain Legume Genetics and Physiology Research Unit, USDA Agricultural Research Service, and Department of Plant PathologyWashington State UniversityPullmanWashingtonUSA
| | - Praveen Kumar Verma
- Plant Immunity LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
- Plant Immunity Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
10
|
Ogaji YO, Lee RC, Sawbridge TI, Cocks BG, Daetwyler HD, Kaur S. De Novo Long-Read Whole-Genome Assemblies and the Comparative Pan-Genome Analysis of Ascochyta Blight Pathogens Affecting Field Pea. J Fungi (Basel) 2022; 8:884. [PMID: 36012871 PMCID: PMC9410150 DOI: 10.3390/jof8080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ascochyta Blight (AB) is a major disease of many cool-season legumes globally. In field pea, three fungal pathogens have been identified to be responsible for this disease in Australia, namely Peyronellaea pinodes, Peyronellaea pinodella and Phoma koolunga. Limited genomic resources for these pathogens have been generated, which has hampered the implementation of effective management strategies and breeding for resistant cultivars. Using Oxford Nanopore long-read sequencing, we report the first high-quality, fully annotated, near-chromosome-level nuclear and mitochondrial genome assemblies for 18 isolates from the Australian AB complex. Comparative genome analysis was performed to elucidate the differences and similarities between species and isolates using phylogenetic relationships and functional diversity. Our data indicated that P. pinodella and P. koolunga are heterothallic, while P. pinodes is homothallic. More homology and orthologous gene clusters are shared between P. pinodes and P. pinodella compared to P. koolunga. The analysis of the repetitive DNA content showed differences in the transposable repeat composition in the genomes and their expression in the transcriptomes. Significant repeat expansion in P. koolunga's genome was seen, with strong repeat-induced point mutation (RIP) activity being evident. Phylogenetic analysis revealed that genetic diversity can be exploited for species marker development. This study provided the much-needed genetic resources and characterization of the AB species to further drive research in key areas such as disease epidemiology and host-pathogen interactions.
Collapse
Affiliation(s)
- Yvonne O. Ogaji
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Robert C. Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Tim I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Benjamin G. Cocks
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
11
|
Lee RC, Farfan-Caceres L, Debler JW, Williams AH, Syme RA, Henares BM. Reference genome assembly for Australian Ascochyta lentis isolate Al4. G3-GENES GENOMES GENETICS 2021; 11:6114462. [PMID: 33604672 PMCID: PMC8022934 DOI: 10.1093/g3journal/jkab006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Ascochyta lentis causes ascochyta blight in lentil (Lens culinaris Medik.) and yield loss can be as high as 50%. With careful agronomic management practices, fungicide use, and advances in breeding resistant lentil varieties, disease severity and impact to farmers have been largely controlled. However, evidence from major lentil producing countries, Canada and Australia, suggests that A. lentis isolates can change their virulence profile and level of aggressiveness over time and under different selection pressures. In this paper, we describe the first genome assembly for A. lentis for the Australian isolate Al4, through the integration of data from Illumina and PacBio SMRT sequencing. The Al4 reference genome assembly is almost 42 Mb in size and encodes 11,638 predicted genes. The Al4 genome comprises 21 full-length and gapless chromosomal contigs and two partial chromosome contigs each with one telomere. We predicted 31 secondary metabolite clusters, and 38 putative protein effectors, many of which were classified as having an unknown function. Comparison of A. lentis genome features with the recently published reference assembly for closely related A. rabiei show that genome synteny between these species is highly conserved. However, there are several translocations and inversions of genome sequence. The location of secondary metabolite clusters near transposable element and repeat-rich genomic regions was common for A. lentis as has been reported for other fungal plant pathogens.
Collapse
Affiliation(s)
- Robert C Lee
- Corresponding authors: Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia. (B.M.H.); (R.C.L.)
| | - Lina Farfan-Caceres
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Johannes W Debler
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Angela H Williams
- Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia
| | - Robert A Syme
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bernadette M Henares
- Corresponding authors: Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia. (B.M.H.); (R.C.L.)
| |
Collapse
|
12
|
Debler JW, Henares BM, Lee RC. Agroinfiltration for transient gene expression and characterisation of fungal pathogen effectors in cool-season grain legume hosts. PLANT CELL REPORTS 2021; 40:805-818. [PMID: 33811500 PMCID: PMC8058004 DOI: 10.1007/s00299-021-02671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/30/2021] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Modified pEAQ-HT-DEST1 vectors were used for agroinfiltration in legumes. We demonstrate protein expression and export in pea, lentil, and faba bean; however, the method for chickpea was not successful. Agroinfiltration is a valuable research method for investigating virulence and avirulence effector proteins from pathogens and pests, where heterologous effector proteins are transiently expressed in plant leaves and hypersensitive necrosis responses and other effector functions can be assessed. Nicotiana benthamiana is widely used for agroinfiltration and the characterisation of broad-spectrum effectors. The method has also been used in other plant species including field pea, but not yet developed for chickpea, lentil, or faba bean. Here, we have modified the pEAQ-HT-DEST1 vector for expression of 6 × histidine-tagged green-fluorescent protein (GFP) and the known necrosis-inducing broad-spectrum effector necrosis and ethylene-inducing peptide (Nep1)-like protein (NLP). Modified pEAQ-based vectors were adapted to encode signal peptide sequences for apoplast targeting of expressed proteins. We used confocal microscopy to assess the level of GFP expression in agroinfiltrated leaves. While at 3 days after infiltration in N. benthamiana, GFP was expressed at a relatively high level, expression in field pea and faba bean at the same time point was relatively low. In lentil, an expression level of GFP similar to field pea and faba bean at 3 days was only observed after 5 days. Chickpea leaf cells were transformed at low frequency and agroinfiltration was concluded to not be successful for chickpea. We concluded that the pEAQ vector is suitable for testing host-specific effectors in field pea, lentil, and faba bean, but low transformation efficiency limits the utility of the method for chickpea.
Collapse
Affiliation(s)
- Johannes W Debler
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, 1 Kent St, Bentley, WA, 6102, Australia
| | - Bernadette M Henares
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, 1 Kent St, Bentley, WA, 6102, Australia
| | - Robert C Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, 1 Kent St, Bentley, WA, 6102, Australia.
| |
Collapse
|
13
|
Chandra A, Singh D, Joshi D, Pathak AD, Singh RK, Kumar S. A highly contiguous reference genome assembly for Colletotrichum falcatum pathotype Cf08 causing red rot disease in sugarcane. 3 Biotech 2021; 11:148. [PMID: 33732569 DOI: 10.1007/s13205-021-02695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 11/24/2022] Open
Abstract
Among the biotic factors, which affect the productivity and quality of sugarcane, red rot disease caused by the fungal pathogen, Colletotrichum falcatum is the most devastating that cause enormous loss to millers as well as cane growers. We present a highly contiguous genome assembly of C. falcatum pathotype Cf08 which is virulent to popular sugarcane varieties grown in more than 3 million hectares in sub-tropical India. By performing long read sequencing on PacBio RSII system, 56.06 Mb assemblies with 238 contigs having N50 of 0.51 Mb and L50 of 34 was produced. A BUSCO completeness score of 97.24% (including 4.1% fragmented) of the entire C. falcatum Cf08 nuclear genome, greatly improved contiguity compared to an existing highly fragmented draft of C. falcatum Cf671 genome (48.13 Mb) was obtained. This Cf08 assembly had 54.14% GC content and possessed < 1% repetitive elements. A total of 18,635 protein-coding genes were predicted compared with 12,270 for Cf671. Among 617 CAZymes predicted, glycoside hydrolases were the predominant (298), and among 7264 genes associated with pathogenicity/virulence, 77 genes having effector functions were identified. The assembled genome showed its similarity with the genome of C. graminicola and C. higginsianum, the causal organisms of anthracnose in maize and in members of Brassicaceae, respectively. A total of 94 large sequences (> 100 kb) of Cf08 were mapped over C. higginsianum 10 of 12 chromosomes with 106 synteny blocks. Results discussed here would provide an important tool for future studies of evolutionary and functional genomics in C. falcatum. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02695-x.
Collapse
Affiliation(s)
- Amaresh Chandra
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Dinesh Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Deeksha Joshi
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Ashwini D Pathak
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| | - Ram K Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001 India
| | - Sanjeev Kumar
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, 226002 India
| |
Collapse
|