1
|
Moerdyk-Schauwecker MJ, Jahahn EK, Muñoz ZI, Robinson KJ, Phillips PC. Expansion of the split hygromycin toolkit for transgene insertion in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001091. [PMID: 38351905 PMCID: PMC10862133 DOI: 10.17912/micropub.biology.001091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Engineered sites for genetic transformation have simplified transgene insertion in Caenorhabditis elegans . These strategies include our split hygromycin system (Stevenson et al. 2020) which allows for integration-specific selection of transgenes. Here we have expanded the split hygromycin selection system to include two additional chromosomal locations, both of which are permissive for germline expression, as well as engineered landing pads in three additional natural isolates. Corresponding guide and empty repair template plasmids are also available for each of these sites.
Collapse
Affiliation(s)
| | - Erin K Jahahn
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States
| | - Zachariah I Muñoz
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States
| | - Kristin J Robinson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
2
|
Toperzer KM, Brennan SJ, Carroll DJ, Guisbert EA, Kim Guisbert KS. Visualization of the biphasic calcium wave during fertilization in Caenorhabditis elegans using a genetically encoded calcium indicator. Biol Open 2023; 12:bio059832. [PMID: 37602653 PMCID: PMC10655868 DOI: 10.1242/bio.059832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Fertilization is a critical step in development, yet internal fertilization events are notoriously difficult to visualize. Taking advantage of the calcium response that is a hallmark of sperm-egg fusion, we adapted the genetically encoded calcium indicator jGCaMP7s to visualize the moment of fertilization in Caenorhabditis elegans using fluorescence. We termed this tool the 'CaFE' reporter, for 'calcium during fertilization in C. elegans'. The CaFE reporter produced a robust signal that recapitulated the previously reported, biphasic nature of the calcium wave and had no significant deleterious effects on worm physiology or fecundity. Calcium waves were not observed at the restrictive temperature in the spe-9(hc88) strain, in which sperm can still trigger meiotic maturation but can no longer fuse with the oocyte. Demonstrating the utility of the CaFE reporter, we analyzed polyspermy induced by inhibition of egg-3 via RNAi and observed late calcium waves in the uterus. This finding provides support to the idea that calcium release is not restricted to the first sperm fusion event during polyspermy. Establishment of the CaFE reporter in the genetically tractable and optically transparent worm provides a powerful tool to dissect the oocyte-to-embryo transition inside a living animal.
Collapse
Affiliation(s)
- Katie M. Toperzer
- Florida Institute of Technology, Biomedical Sciences Program, 150 W. University Blvd, Melbourne, FL 32901, USA
| | - Savannah J. Brennan
- Florida Institute of Technology, Biomedical Sciences Program, 150 W. University Blvd, Melbourne, FL 32901, USA
| | - David J. Carroll
- Midwestern University, Department of Biochemistry and Molecular Genetics, 19555 N 59th Ave, Glendale, AZ 85308, USA
| | - Eric A. Guisbert
- Florida Institute of Technology, Biomedical Sciences Program, 150 W. University Blvd, Melbourne, FL 32901, USA
| | - Karen S. Kim Guisbert
- Florida Institute of Technology, Biomedical Sciences Program, 150 W. University Blvd, Melbourne, FL 32901, USA
| |
Collapse
|
3
|
Nonet ML. Rapid generation of Caenorhabditis elegans single-copy transgenes combining recombination-mediated cassette exchange and drug selection. Genetics 2023; 224:iyad072. [PMID: 37079426 PMCID: PMC10324946 DOI: 10.1093/genetics/iyad072] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
I outline a streamlined method to insert large, single-copy transgenes into the Caenorhabditis elegans genome using recombination-mediated cassette exchange (RMCE) that relies solely on drug selection yielding a homozygous fluorescent protein (FP) marked transgene in 3 generations (8 days) at high efficiency (>1 insertion per 2 injected P0 animals). Landing sites for this approach are available on four chromosomes in several configurations which yield lines marked in distinct cell types. An array of vectors permit creating transgenes using a variety of selection methods (HygR, NeoR, PuroR, and unc-119) that yield lines expressing different colored FPs (BFP, GFP, mNG, and Scarlet). Although these transgenes retain a plasmid backbone and a selection marker, the inclusion of these sequences typically does not alter the expression of several cell-specific promoters tested. However, in certain orientations, promoters exhibit crosstalk with adjacent transcription units. In cases where crosstalk is problematic, the loxP-flanked fluorescent marker, plasmid backbone, and hygR gene can be excised by crossing through germline Cre expressing lines also created using this technique. Finally, genetic and molecular reagents designed to facilitate customization of both targeting vectors and landing sites are also described. Together, the rapid RMCE toolbox provides a platform for developing further innovative uses of RMCE to create complex genetically engineered tools.
Collapse
Affiliation(s)
- Michael L Nonet
- Department of Neuroscience, Washington University Medical School, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Stevenson ZC, Moerdyk-Schauwecker MJ, Banse SA, Patel DS, Lu H, Phillips PC. High-throughput library transgenesis in Caenorhabditis elegans via Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS). eLife 2023; 12:RP84831. [PMID: 37401921 PMCID: PMC10328503 DOI: 10.7554/elife.84831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
High-throughput transgenesis using synthetic DNA libraries is a powerful method for systematically exploring genetic function. Diverse synthesized libraries have been used for protein engineering, identification of protein-protein interactions, characterization of promoter libraries, developmental and evolutionary lineage tracking, and various other exploratory assays. However, the need for library transgenesis has effectively restricted these approaches to single-cell models. Here, we present Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS), a simple yet powerful approach to large-scale transgenesis that overcomes typical limitations encountered in multicellular systems. TARDIS splits the transgenesis process into a two-step process: creation of individuals carrying experimentally introduced sequence libraries, followed by inducible extraction and integration of individual sequences/library components from the larger library cassette into engineered genomic sites. Thus, transformation of a single individual, followed by lineage expansion and functional transgenesis, gives rise to thousands of genetically unique transgenic individuals. We demonstrate the power of this system using engineered, split selectable TARDIS sites in Caenorhabditis elegans to generate (1) a large set of individually barcoded lineages and (2) transcriptional reporter lines from predefined promoter libraries. We find that this approach increases transformation yields up to approximately 1000-fold over current single-step methods. While we demonstrate the utility of TARDIS using C. elegans, in principle the process is adaptable to any system where experimentally generated genomic loci landing pads and diverse, heritable DNA elements can be generated.
Collapse
Affiliation(s)
| | | | - Stephen A Banse
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Dhaval S Patel
- School of Chemical & Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| |
Collapse
|
5
|
Witten G, DeMott E, Huang G, Zelasko F, de Jesus B, Mulchand C, Schuck L, Pullman S, Perez A, Mahableshwarkar P, Wu Z, Cardona EA, Pierce JT, Dickinson DJ, Doonan R. mScarlet and split fluorophore mScarlet resources for plasmid-based CRISPR/Cas9 knock-in in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000871. [PMID: 37396790 PMCID: PMC10308244 DOI: 10.17912/micropub.biology.000871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Fluorescent proteins allow the expression of a gene and the behavior of its protein product to be observed in living animals. The ability to create endogenous fluorescent protein tags via CRISPR genome engineering has revolutionized the authenticity of this expression, and mScarlet is currently our first-choice red fluorescent protein (RFP) for visualizing gene expression in vivo . Here, we have cloned versions of mScarlet and split fluorophore mScarlet previously optimized for C. elegans into the SEC-based system of plasmids for CRISPR/Cas9 knock-in. Ideally, an endogenous tag will be easily visible while not interfering with the normal expression and function of the targeted protein. For low molecular weight proteins that are a fraction of the size of a fluorescent protein tag (e.g. GFP or mCherry) and/or proteins known to be non-functional when tagged in this way, split fluorophore tagging could be an alternative. Here, we used CRISPR/Cas9 knock-in to tag three such proteins with split-fluorophore wrmScarlet: HIS-72, EGL-1, and PTL-1. Although we find that split fluorophore tagging does not disrupt the function of any of these proteins, we were unfortunately unable to observe the expression of most of these tags with epifluorescence, suggesting that split fluorophore tags are often very limited as endogenous reporters. Nevertheless, our plasmid toolkit provides a new resource that enables straightforward knock-in of either mScarlet or split mScarlet in C. elegans.
Collapse
Affiliation(s)
- Gillian Witten
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Ella DeMott
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - George Huang
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Francis Zelasko
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Bailey de Jesus
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Chandi Mulchand
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Liam Schuck
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Stephen Pullman
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Amelie Perez
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Priya Mahableshwarkar
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Zheng Wu
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Eric Andrew Cardona
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Jonathan T Pierce
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel J Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Ryan Doonan
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
El Mouridi S, Alkhaldi F, Frøkjær-Jensen C. Modular safe-harbor transgene insertion for targeted single-copy and extrachromosomal array integration in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac184. [PMID: 35900171 PMCID: PMC9434227 DOI: 10.1093/g3journal/jkac184] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022]
Abstract
Efficient and reproducible transgenesis facilitates and accelerates research using genetic model organisms. Here, we describe a modular safe-harbor transgene insertion (MosTI) for use in Caenorhabditis elegans which improves targeted insertion of single-copy transgenes by homology directed repair and targeted integration of extrachromosomal arrays by nonhomologous end-joining. MosTI allows easy conversion between selection markers at insertion site and a collection of universal targeting vectors with commonly used promoters and fluorophores. Insertions are targeted at three permissive safe-harbor intergenic locations and transgenes are reproducibly expressed in somatic and germ cells. Chromosomal integration is mediated by CRISPR/Cas9, and positive selection is based on a set of split markers (unc-119, hygroR, and gfp) where only animals with chromosomal insertions are rescued, resistant to antibiotics, or fluorescent, respectively. Single-copy insertion is efficient using either constitutive or heat-shock inducible Cas9 expression (25-75%) and insertions can be generated from a multiplexed injection mix. Extrachromosomal array integration is also efficient (7-44%) at modular safe-harbor transgene insertion landing sites or at the endogenous unc-119 locus. We use short-read sequencing to estimate the plasmid copy numbers for 8 integrated arrays (6-37 copies) and long-read Nanopore sequencing to determine the structure and size (5.4 Mb) of 1 array. Using universal targeting vectors, standardized insertion strains, and optimized protocols, it is possible to construct complex transgenic strains which should facilitate the study of increasingly complex biological problems in C. elegans.
Collapse
Affiliation(s)
- Sonia El Mouridi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Faisal Alkhaldi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christian Frøkjær-Jensen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Fakieh R, Duong T, Wu Y, Rasmussen N, Reiner D. A simple strategy for addition of degron tags to endogenous genes harboring prior insertions of fluorescent protein. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000622. [PMID: 36035777 PMCID: PMC9412190 DOI: 10.17912/micropub.biology.000622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/13/2022]
Abstract
There exist insufficient validated "entry portal" sites in the C. elegans genome for CRISPR/Cas9-dependent insertion into endogenous genes to confer diverse spatiotemporal patterns and levels of expression on exogenous sequences. Consequently, we recognized the most common potential "entry portal" sequences: genes previously tagged with fluorescent proteins using CRISPR/Cas9. As proof of concept, we used existing mKate2-encoding sequences inserted in the 5' end of genes as an insertion point for the auxin inducible degron, AID*. This sequence permits reasonably efficient insertion that can be employed using a variety of approaches for different end goals. Our strategy is thus generalizable to many needs.
Collapse
Affiliation(s)
| | | | | | | | - David Reiner
- Texas A&M University
,
Correspondence to: David Reiner (
)
| |
Collapse
|
8
|
Kasimatis KR, Moerdyk-Schauwecker MJ, Lancaster R, Smith A, Willis JH, Phillips PC. Post-insemination selection dominates pre-insemination selection in driving rapid evolution of male competitive ability. PLoS Genet 2022; 18:e1010063. [PMID: 35157717 PMCID: PMC8880957 DOI: 10.1371/journal.pgen.1010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/25/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual reproduction is a complex process that contributes to differences between the sexes and divergence between species. From a male’s perspective, sexual selection can optimize reproductive success by acting on the variance in mating success (pre-insemination selection) as well as the variance in fertilization success (post-insemination selection). The balance between pre- and post-insemination selection has not yet been investigated using a strong hypothesis-testing framework that directly quantifies the effects of post-insemination selection on the evolution of reproductive success. Here we use experimental evolution of a uniquely engineered genetic system that allows sperm production to be turned off and on in obligate male-female populations of Caenorhabditis elegans. We show that enhanced post-insemination competition increases the efficacy of selection and surpasses pre-insemination sexual selection in driving a polygenic response in male reproductive success. We find that after 10 selective events occurring over 30 generations post-insemination selection increased male reproductive success by an average of 5- to 7-fold. Contrary to expectation, enhanced pre-insemination competition hindered selection and slowed the rate of evolution. Furthermore, we found that post-insemination selection resulted in a strong polygenic response at the whole-genome level. Our results demonstrate that post-insemination sexual selection plays a critical role in the rapid optimization of male reproductive fitness. Therefore, explicit consideration should be given to post-insemination dynamics when considering the population effects of sexual selection. Some of the most dramatic and diverse phenotypes observed in nature––such as head-butting in wild sheep and the elaborate tails of peacocks––are sexually dimorphic. These remarkable phenotypes are a result of sexual selection optimizing reproductive success in females and males independently. For males, total reproductive success is comprised of winning a mating event and then translating that mating event into a fertilization event. Therefore, to understand not only how male reproductive success is comprised, but also how it evolves, we must examine the interaction between pre- and post-insemination sexual selection. We combine environmentally-inducible control of sperm production within a highly reproducible factorial experimental evolution design to directly quantify the contribution of post-insemination selection to male reproductive evolution. We demonstrate that enhanced sperm competition increases the efficacy of selection and enhances the rate of male evolution. Alternatively, we show that enhanced pre-insemination competition slows the evolutionary rate. Using whole-genome approaches, we identify over 60 genes that contribute to male fertilization success. Brought together, our new approaches and results demonstrate that the unseen world of molecular interactions occurring during post-insemination are as fundamentally important as pre-mating factors.
Collapse
Affiliation(s)
- Katja R. Kasimatis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (KRK); (PCP)
| | | | - Ruben Lancaster
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Alexander Smith
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (KRK); (PCP)
| |
Collapse
|
9
|
Yang FJ, Chen CN, Chang T, Cheng TW, Chang NC, Kao CY, Lee CC, Huang YC, Hsu JC, Li J, Lu MJ, Chan SP, Wang J. phiC31 integrase for recombination mediated single copy insertion and genome manipulation in C. elegans. Genetics 2021; 220:6428549. [PMID: 34791215 DOI: 10.1093/genetics/iyab206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 11/02/2021] [Indexed: 11/14/2022] Open
Abstract
C. elegans benefits from a large set of tools for genome manipulation. Yet, the precise single-copy insertion of very large DNA constructs (>10 kb) and the generation of inversions are still challenging. Here, we adapted the phiC31 integrase system for C. elegans. We generated an integrated phiC31 integrase expressing strain flanked by attP sites that serves as a landing pad for integration of transgenes by recombination mediated cassette exchange (RCME). This strain is unc-119(-) so RMCE integrants can be produced simply by injection of a plasmid carrying attB sites flanking unc-119(+) and the gene(s) of interest. Additionally, phiC31 integrase is removed concomitantly with integration, eliminating the need to outcross away the integrase. Integrations were obtained for insert sizes up to ∼33.4 kb. Taking advantage of this integration method we establish a dual color fluorescent operon reporter system able to study post-transcriptional regulation of mRNA. Last, we show that large chromosomal segments can be inverted using phiC31 integrase. Thus, the phiC31 integrase system should be a useful addition to the C. elegans toolkit.
Collapse
Affiliation(s)
- Fang-Jung Yang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chiao-Nung Chen
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tiffany Chang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Wei Cheng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ni-Chen Chang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Yi Kao
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Chi Lee
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ching Huang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jung-Chen Hsu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jengyi Li
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Meiyeh J Lu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Peng Chan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|