1
|
Backenstose NJC, MacGuigan DJ, Osborne CA, Bernal MA, Thomas EK, Normandeau E, Yule DL, Stott W, Ackiss AS, Albert VA, Bernatchez L, Krabbenhoft TJ. Origin of the Laurentian Great Lakes fish fauna through upward adaptive radiation cascade prior to the Last Glacial Maximum. Commun Biol 2024; 7:978. [PMID: 39134631 PMCID: PMC11319351 DOI: 10.1038/s42003-024-06503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
The evolutionary histories of adaptive radiations can be marked by dramatic demographic fluctuations. However, the demographic histories of ecologically-linked co-diversifying lineages remain understudied. The Laurentian Great Lakes provide a unique system of two such radiations that are dispersed across depth gradients with a predator-prey relationship. We show that the North American Coregonus species complex ("ciscoes") radiated rapidly prior to the Last Glacial Maximum (80-90 kya), a globally warm period, followed by rapid expansion in population size. Similar patterns of demographic expansion were observed in the predator species, Lake Charr (Salvelinus namaycush), following a brief time lag, which we hypothesize was driven by predator-prey dynamics. Diversification of prey into deep water created ecological opportunities for the predators, facilitating their demographic expansion, which is consistent with an upward adaptive radiation cascade. This study provides a new timeline and environmental context for the origin of the Laurentian Great Lakes fish fauna, and firmly establishes this system as drivers of ecological diversification and rapid speciation through cyclical glaciation.
Collapse
Affiliation(s)
| | - Daniel J MacGuigan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Moisés A Bernal
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | | - Eric Normandeau
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, G1V 0A6, Canada
| | - Daniel L Yule
- US Geological Survey, Lake Superior Biological Station, Great Lakes Science Center, Ashland, WI, USA
| | - Wendylee Stott
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Amanda S Ackiss
- US Geological Survey, Great Lakes Science Center, Ann Arbor, MI, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Trevor J Krabbenhoft
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
- RENEW Institute, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
2
|
Campbell MA, Hale MC. Genomic structural variation in Barramundi Perch Lates calcarifer and potential roles in speciation and adaptation. G3 (BETHESDA, MD.) 2024; 14:jkae141. [PMID: 38934850 DOI: 10.1093/g3journal/jkae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Advancements in genome sequencing and assembly techniques have increased the documentation of structural variants in wild organisms. Of these variants, chromosomal inversions are especially prominent due to their large size and active recombination suppression between alternative homokaryotypes. This suppression enables the 2 forms of the inversion to be maintained and allows the preservation of locally adapted alleles. The Barramundi Perch (BP; Lates calcarifer) is a widespread species complex with 3 main genetic lineages located in the biogeographic regions of Australia and New Guinea (AUS + NG), Southeast Asia (SEA), and the Indian Subcontinent (IND). BP are typically considered to be a protandrous sequential hermaphrodite species that exhibits catadromy. Freshwater occupancy and intraspecific variation in life history (e.g. partially migratory populations) exist and provide opportunities for strongly divergent selection associated with, for example, salinity tolerance, swimming ability, and marine dispersal. Herein, we utilize genomic data generated from all 3 genetic lineages to identify and describe 3 polymorphic candidate chromosomal inversions. These candidate chromosomal inversions appear to be fixed for ancestral variants in the IND lineage and for inverted versions in the AUS + NG lineage and exhibit variation in all 3 inversions in the SEA lineage. BP have a diverse portfolio of life history options that includes migratory strategy as well as sexual system (i.e. hermaphroditism and gonochorism). We propose that the some of the life history variabilities observed in BP may be linked to inversions and, in doing so, we present genetic data that might be useful in enhancing aquaculture production and population management.
Collapse
Affiliation(s)
- Matthew A Campbell
- Centre for Carbon, Water and Food, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| | - Matthew C Hale
- Department of Biology, Texas Christian University, 2800 S. University Drive, Fort Worth, TX 76129, USA
| |
Collapse
|
3
|
Kondakova EA, Bogdanova VA, Ottesen O, Alexandrov AA. The development of the digestive system and the fate of the yolk syncytial layer in postembryogenesis of Stenodus leucichthys nelma (Teleostei). J Morphol 2023; 284:e21604. [PMID: 37313770 DOI: 10.1002/jmor.21604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023]
Abstract
Stenodus leucichthys nelma is an economically important species for cold-water aquaculture. Unlike other Coregoninae, S. leucichthys nelma is a piscivore. Here, we describe in detail the development of the digestive system and the yolk syncytial layer from hatching to early juvenile stage using histological and histochemical methods to determine their common and specific characteristics and to test the hypothesis that the digestive system of S. leucichthys nelma rapidly acquires adult features. The digestive tract differentiates at hatching and starts to function before the transition to mixed feeding. The mouth and anus are open, mucous cells and taste buds are present in the buccopharyngeal cavity and esophagus, pharyngeal teeth have erupted, the stomach primordium is seen, the intestinal epithelium with mucous cells is folded and the intestinal valve is observed; the epithelial cells of the postvalvular intestine contain supranuclear vacuoles. The liver blood vessels are filled with blood. The cells of exocrine pancreas are loaded with zymogen granules, and at least two islets of Langerhans are present. However, the larvae remain dependent on maternal yolk and lipids for a long time. The adult features of the digestive system develop gradually, the most significant changes take place approximately from 31 to 42 days posthatching. Then, the gastric glands and pyloric caeca buds appear, the U-shaped stomach with glandular and aglandular regions develops, the swim bladder inflates, the number of islets of Langerhans increases, the pancreas becomes scattered, and the yolk syncytial layer undergoes programmed death during the larval-to-juvenile transition. During postembryonic development, the mucous cells of the digestive system contain neutral mucosubstances.
Collapse
Affiliation(s)
- Ekaterina A Kondakova
- Saint Petersburg State University, Saint Petersburg, Russia
- Saint Petersburg Branch of the FSBSI «VNIRO» («GosNIORKH» named after L.S. Berg), Saint Petersburg, Russia
| | - Vera A Bogdanova
- Saint Petersburg Branch of the FSBSI «VNIRO» («GosNIORKH» named after L.S. Berg), Saint Petersburg, Russia
| | - Oddvar Ottesen
- Faculty of Bioscience and Aquaculture, Nord University, Bodø, Norway
- Akvatik AS, Bodø, Norway
| | - Alexey A Alexandrov
- Saint Petersburg Branch of the FSBSI «VNIRO» («GosNIORKH» named after L.S. Berg), Saint Petersburg, Russia
| |
Collapse
|
4
|
Mérot C, Stenløkk KSR, Venney C, Laporte M, Moser M, Normandeau E, Árnyasi M, Kent M, Rougeux C, Flynn JM, Lien S, Bernatchez L. Genome assembly, structural variants, and genetic differentiation between lake whitefish young species pairs (Coregonus sp.) with long and short reads. Mol Ecol 2023; 32:1458-1477. [PMID: 35416336 DOI: 10.1111/mec.16468] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
Nascent pairs of ecologically differentiated species offer an opportunity to get a better glimpse at the genetic architecture of speciation. Of particular interest is our recent ability to consider a wider range of genomic variants, not only single-nucleotide polymorphisms (SNPs), thanks to long-read sequencing technology. We can now identify structural variants (SVs) such as insertions, deletions and other rearrangements, allowing further insights into the genetic architecture of speciation and how different types of variants are involved in species differentiation. Here, we investigated genomic patterns of differentiation between sympatric species pairs (Dwarf and Normal) belonging to the lake whitefish (Coregonus clupeaformis) species complex. We assembled the first reference genomes for both C. clupeaformis sp. Normal and C. clupeaformis sp. Dwarf, annotated the transposable elements and analysed the genomes in the light of related coregonid species. Next, we used a combination of long- and short-read sequencing to characterize SVs and genotype them at the population scale using genome-graph approaches, showing that SVs cover five times more of the genome than SNPs. We then integrated both SNPs and SVs to investigate the genetic architecture of species differentiation in two different lakes and highlighted an excess of shared outliers of differentiation. In particular, a large fraction of SVs differentiating the two species correspond to insertions or deletions of transposable elements (TEs), suggesting that TE accumulation may represent a key component of genetic divergence between the Dwarf and Normal species. Together, our results suggest that SVs may play an important role in speciation and that, by combining second- and third-generation sequencing, we now have the ability to integrate SVs into speciation genomics.
Collapse
Affiliation(s)
- Claire Mérot
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,UMR 6553 Ecobio, OSUR, CNRS, Université de Rennes, Rennes, France
| | - Kristina S R Stenløkk
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Clare Venney
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Martin Laporte
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Ministère des Forêts, de la Faune et des Parcs (MFFP) du Québec, Québec, Québec, Canada
| | - Michel Moser
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Clément Rougeux
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
5
|
Ackiss AS, Magee MR, Sass GG, Turnquist K, McIntyre PB, Larson WA. Genomic and environmental influences on resilience in a cold-water fish near the edge of its range. Evol Appl 2021; 14:2794-2814. [PMID: 34950230 PMCID: PMC8674893 DOI: 10.1111/eva.13313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Small, isolated populations present a challenge for conservation. The dueling effects of selection and drift in a limited pool of genetic diversity make the responses of small populations to environmental perturbations erratic and difficult to predict. This is particularly true at the edge of a species range, where populations often persist at the limits of their environmental tolerances. Populations of cisco, Coregonus artedi, in inland lakes have experienced numerous extirpations along the southern edge of their range in recent decades, which are thought to result from environmental degradation and loss of cold, well-oxygenated habitat as lakes warm. Yet, cisco extirpations do not show a clear latitudinal pattern, suggesting that local environmental factors and potentially local adaptation may influence resilience. Here, we used genomic tools to investigate the nature of this pattern of resilience. We used restriction site-associated DNA capture (Rapture) sequencing to survey genomic diversity and differentiation in southern inland lake cisco populations and compared the frequency of deleterious mutations that potentially influence fitness across lakes. We also examined haplotype diversity in a region of the major histocompatibility complex involved in stress and immune system response. We correlated these metrics to spatial and environmental factors including latitude, lake size, and measures of oxythermal habitat and found significant relationships between genetic metrics and broad and local factors. High levels of genetic differentiation among populations were punctuated by a phylogeographic break and residual patterns of isolation-by-distance. Although the prevalence of deleterious mutations and inbreeding coefficients was significantly correlated with latitude, neutral and non-neutral genetic diversity were most strongly correlated with lake surface area. Notably, differences among lakes in the availability of estimated oxythermal habitat left no clear population genomic signature. Our results shed light on the complex dynamics influencing these isolated populations and provide valuable information for their conservation.
Collapse
Affiliation(s)
- Amanda S. Ackiss
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
- U.S. Geological SurveyGreat Lakes Science CenterAnn ArborMichiganUSA
| | | | - Greg G. Sass
- Escanaba Lake Research StationWisconsin Department of Natural ResourcesBoulder JunctionWisconsinUSA
| | - Keith Turnquist
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Peter B. McIntyre
- Department of Natural Resources and the EnvironmentCornell UniversityIthacaNew YorkUSA
| | - Wesley A. Larson
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
- National Oceanographic and Atmospheric AdministrationNational Marine Fisheries ServiceAlaska Fisheries Science CenterAuke Bay LaboratoriesJuneauAlaskaUSA
| |
Collapse
|
6
|
Yang L, Naylor GJP, Mayden RL. Deciphering reticulate evolution of the largest group of polyploid vertebrates, the subfamily cyprininae (Teleostei: Cypriniformes). Mol Phylogenet Evol 2021; 166:107323. [PMID: 34634450 DOI: 10.1016/j.ympev.2021.107323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 02/04/2023]
Abstract
Despite the rarity of polyploidy in animals, some groups with polyploid species exhibit complicated and interesting patterns of reticulate evolution. Here we focus on fishes in the subfamily Cyprininae, the largest polyploid group of vertebrates. The large number of polyploid taxa poses significant challenges for phylogenetic and evolutionary studies on this subfamily. In this study, we cloned and sequenced three single-copy nuclear loci to investigate the evolution of polyploidy in the Cyprininae. Topologies of nuclear gene trees were compared with a newly reconstructed mitochondrial tree. The data provided herein corroborate the hybrid origins of the tribes Torini, Cyprinini, Spinibarbini, Barbini, and also Probarbini. Based on results from this study and previous studies, we hypothesize that at least 13 independent polyploidization events have occurred during the evolution of the Cyprininae. We offer hypotheses on the origin of each polyploid group and show that a diploid group or the diploid ancestor of a polyploid group might have served as progenitor of one or two other polyploid groups. The evolutionary history of Cyprinine (since its first divergence) can be divided into three stages: the "Diploid stage" (69.2-43.4 Ma or million years ago), the "Tetraploidization stage" (43.4-18.9 Ma), and the "Hexaploidization stage" (18.9 Ma to present). The second stage is when all tetraploidization events happened, while the last stage is when all hexaploidization events and most genus- or species-specific polyploidization events occurred. The post-polyploidization dynamics of polyploid groups are complicated and warrant more genomic level studies. We showed that the subfamily Cyprininae may represent a more complicated polyploid system than most, if not all, other vertebrates and some plants, if one or more of the following factors are considered: number of polyploid species, number of different ploidy levels, and number and type of independent polyploidization events.
Collapse
Affiliation(s)
- Lei Yang
- Florida Museum of Natural History, 1659 Museum Rd. University of Florida, Gainesville, FL 32611, USA.
| | - Gavin J P Naylor
- Florida Museum of Natural History, 1659 Museum Rd. University of Florida, Gainesville, FL 32611, USA
| | - Richard L Mayden
- Biology Department, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA
| |
Collapse
|
7
|
Hale MC, Campbell MA, McKinney GJ. A candidate chromosome inversion in Arctic charr (Salvelinus alpinus) identified by population genetic analysis techniques. G3 (BETHESDA, MD.) 2021; 11:jkab267. [PMID: 34568922 PMCID: PMC8473973 DOI: 10.1093/g3journal/jkab267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022]
Abstract
The "genomics era" has allowed questions to be asked about genome organization and genome architecture of non-model species at a rate not previously seen. Analyses of these genome-wide datasets have documented many examples of novel structural variants (SVs) such as chromosomal inversions, copy number variants, and chromosomal translocations, many of which have been linked to adaptation. The salmonids are a taxonomic group with abundant genome-wide datasets due to their importance in aquaculture and fisheries. However, the number of documented SVs in salmonids is surprisingly low and is most likely due to removing loci in high linkage disequilibrium when analyzing structure and gene flow. Here we re-analyze RAD-seq data from several populations of Arctic charr (Salvelinus alpinus) and document a novel ∼1.2 MB SV at the distal end of LG12. This variant contains 15 protein-coding genes connected to a wide-range of functions including cell adhesion and signal transduction. Interestingly, we studied the frequency of this polymorphism in four disjointed populations of charr-one each from Nunavut, Newfoundland, Eastern Russia, and Scotland-and found evidence of the variant only in Nunavut, Canada, suggesting the polymorphism is novel and recently evolved.
Collapse
Affiliation(s)
- Matthew C Hale
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Matthew A Campbell
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Garrett J McKinney
- National Research Council Research Associateship Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| |
Collapse
|
8
|
Campbell MA, Buser TJ, Alfaro ME, López JA. Addressing incomplete lineage sorting and paralogy in the inference of uncertain salmonid phylogenetic relationships. PeerJ 2020; 8:e9389. [PMID: 32685284 PMCID: PMC7337038 DOI: 10.7717/peerj.9389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent and continued progress in the scale and sophistication of phylogenetic research has yielded substantial advances in knowledge of the tree of life; however, segments of that tree remain unresolved and continue to produce contradicting or unstable results. These poorly resolved relationships may be the product of methodological shortcomings or of an evolutionary history that did not generate the signal traits needed for its eventual reconstruction. Relationships within the euteleost fish family Salmonidae have proven challenging to resolve in molecular phylogenetics studies in part due to ancestral autopolyploidy contributing to conflicting gene trees. We examine a sequence capture dataset from salmonids and use alternative strategies to accommodate the effects of gene tree conflict based on aspects of salmonid genome history and the multispecies coalescent. We investigate in detail three uncertain relationships: (1) subfamily branching, (2) monophyly of Coregonus and (3) placement of Parahucho. Coregoninae and Thymallinae are resolved as sister taxa, although conflicting topologies are found across analytical strategies. We find inconsistent and generally low support for the monophyly of Coregonus, including in results of analyses with the most extensive dataset and complex model. The most consistent placement of Parahucho is as sister lineage of Salmo.
Collapse
Affiliation(s)
- Matthew A. Campbell
- University of Alaska Museum, University of Alaska—Fairbanks, Fairbanks, AK, USA
| | - Thaddaeus J. Buser
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Michael E. Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - J. Andrés López
- University of Alaska Museum, University of Alaska—Fairbanks, Fairbanks, AK, USA
- College of Fisheries and Ocean Sciences, University of Alaska—Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
9
|
De-Kayne R, Zoller S, Feulner PGD. A de novo chromosome-level genome assembly of Coregonus sp. "Balchen": One representative of the Swiss Alpine whitefish radiation. Mol Ecol Resour 2020; 20:1093-1109. [PMID: 32395896 PMCID: PMC7497118 DOI: 10.1111/1755-0998.13187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022]
Abstract
Salmonids are of particular interest to evolutionary biologists due to their incredible diversity of life-history strategies and the speed at which many salmonid species have diversified. In Switzerland alone, over 30 species of Alpine whitefish from the subfamily Coregoninae have evolved since the last glacial maximum, with species exhibiting a diverse range of morphological and behavioural phenotypes. This, combined with the whole genome duplication which occurred in the ancestor of all salmonids, makes the Alpine whitefish radiation a particularly interesting system in which to study the genetic basis of adaptation and speciation and the impacts of ploidy changes and subsequent rediploidization on genome evolution. Although well-curated genome assemblies exist for many species within Salmonidae, genomic resources for the subfamily Coregoninae are lacking. To assemble a whitefish reference genome, we carried out PacBio sequencing from one wild-caught Coregonus sp. "Balchen" from Lake Thun to ~90× coverage. PacBio reads were assembled independently using three different assemblers, falcon, canu and wtdbg2 and subsequently scaffolded with additional Hi-C data. All three assemblies were highly contiguous, had strong synteny to a previously published Coregonus linkage map, and when mapping additional short-read data to each of the assemblies, coverage was fairly even across most chromosome-scale scaffolds. Here, we present the first de novo genome assembly for the Salmonid subfamily Coregoninae. The final 2.2-Gb wtdbg2 assembly included 40 scaffolds, an N50 of 51.9 Mb and was 93.3% complete for BUSCOs. The assembly consisted of ~52% transposable elements and contained 44,525 genes.
Collapse
Affiliation(s)
- Rishi De-Kayne
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Stefan Zoller
- Genetic Diversity Centre (GDC), ETH Zürich, Zürich, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|