1
|
Wang J, Yang M, Ali O, Dragland JS, Bjørås M, Farkas L. Predicting regulatory mutations and their target genes by new computational integrative analysis: A study of follicular lymphoma. Comput Biol Med 2024; 178:108787. [PMID: 38901187 DOI: 10.1016/j.compbiomed.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Mutations in DNA regulatory regions are increasingly being recognized as important drivers of cancer and other complex diseases. These mutations can regulate gene expression by affecting DNA-protein binding and epigenetic profiles, such as DNA methylation in genome regulatory elements. However, identifying mutation hotspots associated with expression regulation and disease progression in non-coding DNA remains a challenge. Unlike most existing approaches that assign a mutation score to individual single nucleotide polymorphisms (SNP), a mutation block (MB)-based approach was introduced in this study to assess the collective impact of a cluster of SNPs on transcription factor-DNA binding affinity, differential gene expression (DEG), and nearby DNA methylation. Moreover, the long-distance target genes of functional MBs were identified using a new permutation-based algorithm that assessed the significance of correlations between DNA methylation at regulatory regions and target gene expression. Two new Python packages were developed. The Differential Methylation Region (DMR-analysis) analysis tool was used to detect DMR and map them to regulatory elements. The second tool, an integrated DMR, DEG, and SNP analysis tool (DDS-analysis), was used to combine the omics data to identify functional MBs and long-distance target genes. Both tools were validated in follicular lymphoma (FL) cohorts, where not only known functional MBs and their target genes (BCL2 and BCL6) were recovered, but also novel genes were found, including CDCA4 and JAG2, which may be associated with FL development. These genes are linked to target gene expression and are significantly correlated with the methylation of nearby DNA sequences in FL. The proposed computational integrative analysis of multiomics data holds promise for identifying regulatory mutations in cancer and other complex diseases.
Collapse
Affiliation(s)
- Junbai Wang
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway.
| | - Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Centre for Embryology and Healthy Development (CRESCO), University of Oslo, Oslo, 0373, Norway
| | - Omer Ali
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway; Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Jenny Sofie Dragland
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Embryology and Healthy Development (CRESCO), University of Oslo, Oslo, 0373, Norway
| | - Lorant Farkas
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway; Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
2
|
Fawzy MM, Nazmy MH, El-Sheikh AAK, Fathy M. Evolutionary preservation of CpG dinucleotides in RAG1 may elucidate the relatively high rate of methylation-mediated mutagenesis of RAG1 transposase. Immunol Res 2024; 72:438-449. [PMID: 38240953 PMCID: PMC11217092 DOI: 10.1007/s12026-023-09451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 07/03/2024]
Abstract
Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no preference towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.
Collapse
Affiliation(s)
- Mariam M Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Maiiada H Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
3
|
Burda K, Konczal M. Validation of machine learning approach for direct mutation rate estimation. Mol Ecol Resour 2023; 23:1757-1771. [PMID: 37486035 DOI: 10.1111/1755-0998.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
Mutations are the primary source of all genetic variation. Knowledge about their rates is critical for any evolutionary genetic analyses, but for a long time, that knowledge has remained elusive and indirectly inferred. In recent years, parent-offspring comparisons have yielded the first direct mutation rate estimates. The analyses are, however, challenging due to high rate of false positives and no consensus regarding standardized filtering of candidate de novo mutations. Here, we validate the application of a machine learning approach for such a task and estimate the mutation rate for the guppy (Poecilia reticulata), a model species in eco-evolutionary studies. We sequenced 4 parents and 20 offspring, followed by screening their genomes for de novo mutations. The initial large number of candidate de novo mutations was hard-filtered to remove false-positive results. These results were compared with mutation rate estimated with a supervised machine learning approach. Both approaches were followed by molecular validation of all candidate de novo mutations and yielded similar results. The ML method uniquely identified three mutations, but overall required more hands-on curation and had higher rates of false positives and false negatives. Both methods concordantly showed no difference in mutation rates between families. Estimated here the guppy mutation rate is among the lowest directly estimated mutation rates in vertebrates; however, previous research has also found low estimated rates in other teleost fishes. We discuss potential explanations for such a pattern, as well as future utility and limitations of machine learning approaches.
Collapse
Affiliation(s)
- Katarzyna Burda
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Rooman M, Pucci F. Estimating the Vertical Ionization Potential of Single-Stranded DNA Molecules. J Chem Inf Model 2023; 63:1766-1775. [PMID: 36877828 DOI: 10.1021/acs.jcim.2c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The electronic properties of DNA molecules, defined by the sequence-dependent ionization potentials of nucleobases, enable long-range charge transport along the DNA stacks. This has been linked to a range of key physiological processes in the cells and to the triggering of nucleobase substitutions, some of which may cause diseases. To gain molecular-level understanding of the sequence dependence of these phenomena, we estimated the vertical ionization potential (vIP) of all possible nucleobase stacks in B-conformation, containing one to four Gua, Ade, Thy, Cyt, or methylated Cyt. To do this, we used quantum chemistry calculations and more precisely the second-order Møller-Plesset perturbation theory (MP2) and three double-hybrid density functional theory methods, combined with several basis sets for describing atomic orbitals. The calculated vIP of single nucleobases were compared to experimental data and those of nucleobase pairs, triplets, and quadruplets, to observed mutability frequencies in the human genome, reported to be correlated with vIP values. This comparison selected MP2 with the 6-31G* basis set as the best of the tested calculation levels. These results were exploited to set up a recursive model, called vIPer, which estimates the vIP of all possible single-stranded DNA sequences of any length based on the calculated vIPs of overlapping quadruplets. vIPer's vIP values correlate well with oxidation potentials measured by cyclic voltammetry and activities obtained through photoinduced DNA cleavage experiments, further validating our approach. vIPer is freely available on the github.com/3BioCompBio/vIPer repository.
Collapse
Affiliation(s)
- Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| |
Collapse
|
5
|
Greeson KW, Crow KMS, Edenfield RC, Easley CA. Inheritance of paternal lifestyles and exposures through sperm DNA methylation. Nat Rev Urol 2023:10.1038/s41585-022-00708-9. [PMID: 36653672 DOI: 10.1038/s41585-022-00708-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Many different lifestyle factors and chemicals present in the environment are a threat to the reproductive tracts of humans. The potential for parental preconception exposure to alter gametes and for these alterations to be passed on to offspring and negatively affect embryo growth and development is of concern. The connection between maternal exposures and offspring health is a frequent focus in epidemiological studies, but paternal preconception exposures are much less frequently considered and are also very important determinants of offspring health. Several environmental and lifestyle factors in men have been found to alter sperm epigenetics, which can regulate gene expression during early embryonic development. Epigenetic information is thought to be a mechanism that evolved for organisms to pass on information about their lived experiences to offspring. DNA methylation is a well-studied epigenetic regulator that is sensitive to environmental exposures in somatic cells and sperm. The continuous production of sperm from spermatogonial stem cells throughout a man's adult life and the presence of spermatogonial stem cells outside of the blood-testis barrier makes them susceptible to environmental insults. Furthermore, altered sperm DNA methylation patterns can be maintained throughout development and ultimately result in impairments, which could predispose offspring to disease. Innovations in human stem cell-based spermatogenic models can be used to elucidate the paternal origins of health and disease.
Collapse
Affiliation(s)
- Katherine W Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Krista M S Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Murray KO, Clanton TL, Horowitz M. Epigenetic responses to heat: From adaptation to maladaptation. Exp Physiol 2022; 107:1144-1158. [PMID: 35413138 PMCID: PMC9529784 DOI: 10.1113/ep090143] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review outlines the history of research on epigenetic adaptations to heat exposure. The perspective taken is that adaptations reflect properties of hormesis, whereby low, repeated doses of heat induce adaptation (acclimation/acclimatization); whereas brief, life-threatening exposures can induce maladaptive responses. What advances does it highlight? The epigenetic mechanisms underlying acclimation/acclimatization comprise specific molecular programmes on histones that regulate heat shock proteins transcriptionally and protect the organism from subsequent heat exposures, even after long delays. The epigenetic signalling underlying maladaptive responses might rely, in part, on extensive changes in DNA methylation that are sustained over time and might contribute to later health challenges. ABSTRACT Epigenetics plays a strong role in molecular adaptations to heat by producing a molecular memory of past environmental exposures. Moderate heat, over long periods of time, induces an 'adaptive' epigenetic memory, resulting in a condition of 'resilience' to future heat exposures or cross-tolerance to other forms of toxic stress. In contrast, intense, life-threatening heat exposures, such as severe heat stroke, can result in a 'maladaptive' epigenetic memory that can place an organism at risk of later health complications. These cellular memories are coded by post-translational modifications of histones on the nucleosomes and/or by changes in DNA methylation. They operate by inducing changes in the level of gene transcription and therefore phenotype. The adaptive response to heat acclimation functions, in part, by facilitating transcription of essential heat shock proteins and exhibits a biphasic short programme (maintaining DNA integrity, followed by a long-term consolidation). The latter accelerates acclimation responses after de-acclimation. Although less studied, the maladaptive responses to heat stroke appear to be coded in long-lasting changes in DNA methylation near the promoter region of genes involved with basic cell function. Whether these memories are also encoded in histone modifications is not yet known. There is considerable evidence that both adaptive and maladaptive epigenetic responses to heat can be inherited, although most evidence comes from lower organisms. Future challenges include understanding the signalling mechanisms responsible and discovering new ways to promote adaptive responses while suppressing maladaptive responses to heat, as all life forms adapt to life on a warming planet.
Collapse
Affiliation(s)
- Kevin O. Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Liang Y, He H, Wang W, Wang H, Mo S, Fu R, Liu X, Song Q, Xia Z, Wang L. Malignant clonal evolution drives multiple myeloma cellular ecological diversity and microenvironment reprogramming. Mol Cancer 2022; 21:182. [PMID: 36131282 PMCID: PMC9492468 DOI: 10.1186/s12943-022-01648-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/27/2022] [Indexed: 11/14/2022] Open
Abstract
Background Multiple myeloma (MM) is a heterogeneous disease with different patterns of clonal evolution and a complex tumor microenvironment, representing a challenge for clinicians and pathologists to understand and dissect the contribution and impact of polyclonality on tumor progression. Methods In this study, we established a global cell ecological landscape of the bone marrow (BM) from MM patients, combining single-cell RNA sequencing and single-molecule long-read genome sequencing data. Results The malignant mutation event was localized to the tumor cell clusters with shared mutation of ANK1 and IFITM2 in all malignant subpopulations of all MM patients. Therefore, these two variants occur in the early stage of malignant clonal origin to mediate the malignant transformation of proplasmacytes or plasmacytes to MM cells. Tumor cell stemness index score and pseudo-sequential clonal evolution analysis can be used to divide the evolution model of MM into two clonal origins: types I and IX. Notably, clonal evolution and the tumor microenvironment showed an interactive relationship, in which the evolution process is not only selected by but also reacts to the microenvironment; thus, vesicle secretion enriches immune cells with malignant-labeled mRNA for depletion. Interestingly, microenvironmental modification exhibited significant heterogeneity among patients. Conclusions This characterization of the malignant clonal evolution pattern of MM at the single-cell level provides a theoretical basis and scientific evidence for a personalized precision therapy strategy and further development of a potential new adjuvant strategy combining epigenetic agent and immune checkpoint blockade. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01648-z.
Collapse
Affiliation(s)
- Yuanzheng Liang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Haiyan He
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Weida Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Henan Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Shaowen Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.,Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.,Department of Basic Science, YuanDong International Academy of Life Sciences, Hong Kong, 999077, China.,Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, Hong Kong, 999077, China
| | - Ruiying Fu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xindi Liu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Qiong Song
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Zhongjun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
8
|
Cheng X, Blumenthal RM. Mediating and maintaining methylation while minimizing mutation: Recent advances on mammalian DNA methyltransferases. Curr Opin Struct Biol 2022; 75:102433. [PMID: 35914495 PMCID: PMC9620438 DOI: 10.1016/j.sbi.2022.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Mammalian genomes are methylated on carbon-5 of many cytosines, mostly in CpG dinucleotides. Methylation patterns are maintained during mitosis via DNMT1, and regulatory factors involved in processes that include histone modifications. Methylation in a sequence longer than CpG can influence the binding of sequence-specific transcription factors, thus affecting gene expression. 5-Methylcytosine deamination results in C-to-T transition. While some mutations are beneficial, most are not; so boosting C-to-T transitions can be dangerous. Given the role of DNMT3A in establishing de novo DNA methylation during development, it is this CpG methylation and deamination that provide the major mutagenic impetus in the DNMT3A gene itself, including the R882H dominant-negative substitution associated with two diseases: germline mutations in DNMT3A overgrowth syndrome, and somatic mutations in clonal hematopoiesis that can initiate acute myeloid leukemia. We discuss recent developments in therapeutics targeting DNMT1, the role of noncatalytic isoform DNMT3B3 in regulating de novo methylation by DNMT3A, and structural characterization of DNMT3A in various configurations.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
9
|
Yang J, Gupta E, Horton JR, Blumenthal RM, Zhang X, Cheng X. Differential ETS1 binding to T:G mismatches within a CpG dinucleotide contributes to C-to-T somatic mutation rate of the IDH2 hotspot at codon Arg140. DNA Repair (Amst) 2022; 113:103306. [PMID: 35255310 PMCID: PMC9411267 DOI: 10.1016/j.dnarep.2022.103306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022]
Abstract
Cytosine to thymine (C>T) somatic mutation is highly enriched in certain types of cancer, and most commonly occurs via deamination of a 5-methylcytosine (5mC) to thymine, in the context of a CpG dinucleotide. In theory, deamination should occur at equal rates to both 5mC nucleotides on opposite strands. In most cases, the resulting T:G or G:T mismatch can be repaired by thymine DNA glycosylase activities. However, while some hotspot-associated CpG mutations have approximately equal numbers of mutations that resulted either from C>T or G>A in a CpG dinucleotide, many showed strand bias, being skewed toward C>T of the first base pair or G>A of the second base pair. Using the IDH2 Arg140 codon as a case study, we show that the two possible T:G mismatches at the codon-specific CpG site have differing effects on transcription factor ETS1 binding affinity, differentially affecting access of a repair enzyme (MBD4) to the deamination-caused T:G mismatch. Our study thus provides a plausible mechanism for exclusion of repair enzymes by the differential binding of transcription factors affecting the rate at which the antecedent opposite-strand mutations occur.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Esha Gupta
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Abstract
Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
11
|
Parental folate deficiency induces birth defects in mice accompanied with increased de novo mutations. Cell Discov 2022; 8:18. [PMID: 35190523 PMCID: PMC8861018 DOI: 10.1038/s41421-021-00364-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/08/2021] [Indexed: 01/06/2023] Open
Abstract
Dietary folate deficiency (FD) is associated with the occurrence of birth defects. However, the mechanisms underlying this association remain elusive. In particular, how FD affects genome stability is unknown. To examine whether a folate-deficient diet can affect genome stability, C57BL/6 mice were maintained on a synthetic diet lacking of folic acid (FA) for two generations. F0 mice received the FD diet beginning at 3 weeks of age, and their offspring (F1) began the FD diet after weaning. Both male and female F1 mice fed the FD diet were intentionally crossed with F1 mice fed the normal diet to produce F2 mice. F2 embryos were dissected and collected at E14.5 and E18.5. The malformation ratio was significantly increased in F2 embryos fed the FD diet for two generations compared to those fed the normal diet. Whole-genome sequencing of multiple sibship with F1 males on the FD diet showed that the de novo mutation (DNM) rate in F2 embryos was three times of the reported spontaneous rate in mice. Furthermore, many DNMs observed in the F2 mice exhibited an allele ratio of 1:3 instead of 2:2, suggesting that these mutations are likely to accumulate in gamete cells as a form of mismatch in the DNA duplex. Our study indicated that FD for two generations significantly enhances DNM accumulation during meiosis, which might contribute to the increased negative birth outcomes among F2 mice. Not only maternal but also paternal FA supplementation is probably also necessary and beneficial to prevent birth defects.
Collapse
|
12
|
Yang J, Horton JR, Akdemir KC, Li J, Huang Y, Kumar J, Blumenthal RM, Zhang X, Cheng X. Preferential CEBP binding to T:G mismatches and increased C-to-T human somatic mutations. Nucleic Acids Res 2021; 49:5084-5094. [PMID: 33877329 PMCID: PMC8136768 DOI: 10.1093/nar/gkab276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
DNA cytosine methylation in mammals modulates gene expression and chromatin accessibility. It also impacts mutation rates, via spontaneous oxidative deamination of 5-methylcytosine (5mC) to thymine. In most cases the resulting T:G mismatches are repaired, following T excision by one of the thymine DNA glycosylases, TDG or MBD4. We found that C-to-T mutations are enriched in the binding sites of CCAAT/enhancer binding proteins (CEBP). Within a CEBP site, the presence of a T:G mismatch increased CEBPβ binding affinity by a factor of >60 relative to the normal C:G base pair. This enhanced binding to a mismatch inhibits its repair by both TDG and MBD4 in vitro. Furthermore, repair of the deamination product of unmethylated cytosine, which yields a U:G DNA mismatch that is normally repaired via uracil DNA glycosylase, is also inhibited by CEBPβ binding. Passage of a replication fork over either a T:G or U:G mismatch, before repair can occur, results in a C-to-T mutation in one of the daughter duplexes. Our study thus provides a plausible mechanism for accumulation of C-to-T human somatic mutations.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kadir C Akdemir
- Departments of Genomic Medicine and Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Janani Kumar
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
13
|
Shukla V, Høffding MK, Hoffmann ER. Genome diversity and instability in human germ cells and preimplantation embryos. Semin Cell Dev Biol 2021; 113:132-147. [PMID: 33500205 PMCID: PMC8097364 DOI: 10.1016/j.semcdb.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022]
Abstract
Genome diversity is essential for evolution and is of fundamental importance to human health. Generating genome diversity requires phases of DNA damage and repair that can cause genome instability. Humans have a high incidence of de novo congenital disorders compared to other organisms. Recent access to eggs, sperm and preimplantation embryos is revealing unprecedented rates of genome instability that may result in infertility and de novo mutations that cause genomic imbalance in at least 70% of conceptions. The error type and incidence of de novo mutations differ during developmental stages and are influenced by differences in male and female meiosis. In females, DNA repair is a critical factor that determines fertility and reproductive lifespan. In males, aberrant meiotic recombination causes infertility, embryonic failure and pregnancy loss. Evidence suggest germ cells are remarkably diverse in the type of genome instability that they display and the DNA damage responses they deploy. Additionally, the initial embryonic cell cycles are characterized by a high degree of genome instability that cause congenital disorders and may limit the use of CRISPR-Cas9 for heritable genome editing.
Collapse
Affiliation(s)
- Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Miya Kudo Høffding
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
14
|
Huang KM, Chain FJJ. Copy number variations and young duplicate genes have high methylation levels in sticklebacks. Evolution 2021; 75:706-718. [PMID: 33527399 DOI: 10.1111/evo.14184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Gene duplication is an important driver of genomic diversity that can promote adaptive evolution. However, like most mutations, a newly duplicated gene is often deleterious and removed from the genome by drift or natural selection. The early molecular changes that occur soon after duplication therefore may influence the long-term survival of gene duplicates, but relatively little empirical data exist on the events near the onset of duplication before mutations have time to accumulate. In this study, we contrast gene expression and DNA methylation levels of duplicate genes in the threespine stickleback, Gasterosteus aculeatus, including recently emerged duplications that segregate as copy number variations (CNVs). We find that younger duplicate genes have higher levels of promoter methylation than older genes, and that gene CNVs have higher promoter methylation than non-CNVs. These results suggest preferential duplication of highly methylated genes or rapid methylation changes soon after duplication. We also find a negative association between methylation and expression, providing a putative role for methylation in suppressing transcription that compensates for increases in gene copy numbers and promoting paralog retention. We propose that methylation contributes to the longevity of young duplicate genes, extending the window of opportunity for functional divergence via mutation.
Collapse
Affiliation(s)
- Katherine M Huang
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, 01854.,Comparative Media Studies/Writing, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, 01854
| |
Collapse
|