1
|
Saunders PA, Muyle A. Sex Chromosome Evolution: Hallmarks and Question Marks. Mol Biol Evol 2024; 41:msae218. [PMID: 39417444 PMCID: PMC11542634 DOI: 10.1093/molbev/msae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Sex chromosomes are widespread in species with separate sexes. They have evolved many times independently and display a truly remarkable diversity. New sequencing technologies and methodological developments have allowed the field of molecular evolution to explore this diversity in a large number of model and nonmodel organisms, broadening our vision on the mechanisms involved in their evolution. Diverse studies have allowed us to better capture the common evolutionary routes that shape sex chromosomes; however, we still mostly fail to explain why sex chromosomes are so diverse. We review over half a century of theoretical and empirical work on sex chromosome evolution and highlight pending questions on their origins, turnovers, rearrangements, degeneration, dosage compensation, gene content, and rates of evolution. We also report recent theoretical progress on our understanding of the ultimate reasons for sex chromosomes' existence.
Collapse
Affiliation(s)
- Paul A Saunders
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aline Muyle
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
2
|
Charlesworth D, Qiu S, Bergero R, Gardner J, Keegan K, Yong L, Hastings A, Konczal M. Has recombination changed during the recent evolution of the guppy Y chromosome? Genetics 2024; 226:iyad198. [PMID: 37956094 DOI: 10.1093/genetics/iyad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Genome sequencing and genetic mapping of molecular markers have demonstrated nearly complete Y-linkage across much of the guppy (Poecilia reticulata) XY chromosome pair. Predominant Y-linkage of factors controlling visible male-specific coloration traits also suggested that these polymorphisms are sexually antagonistic (SA). However, occasional exchanges with the X are detected, and recombination patterns also appear to differ between natural guppy populations, suggesting ongoing evolution of recombination suppression under selection created by partially sex-linked SA polymorphisms. We used molecular markers to directly estimate genetic maps in sires from 4 guppy populations. The maps are very similar, suggesting that their crossover patterns have not recently changed. Our maps are consistent with population genomic results showing that variants within the terminal 5 Mb of the 26.5 Mb sex chromosome, chromosome 12, are most clearly associated with the maleness factor, albeit incompletely. We also confirmed occasional crossovers proximal to the male-determining region, defining a second, rarely recombining, pseudo-autosomal region, PAR2. This fish species may therefore have no completely male-specific region (MSY) more extensive than the male-determining factor. The positions of the few crossover events suggest a location for the male-determining factor within a physically small repetitive region. A sex-reversed XX male had few crossovers in PAR2, suggesting that this region's low crossover rate depends on the phenotypic, not the genetic, sex. Thus, rare individuals whose phenotypic and genetic sexes differ, and/or occasional PAR2 crossovers in males can explain the failure to detect fully Y-linked variants.
Collapse
Affiliation(s)
- Deborah Charlesworth
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Suo Qiu
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Roberta Bergero
- Scottish Rural Agricultural College, Peter Wilson Building, King's Buildings, W Mains Rd, Edinburgh EH9 3JG, UK
| | - Jim Gardner
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Karen Keegan
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Lengxob Yong
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
- South Carolina Department of Natural Resources, Marine Resources Research Institute, P.O. Box 12559 Charleston, SC 29422-2559, USA
| | - Abigail Hastings
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3LF, UK
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, 60-614 Poznań, Poland
| |
Collapse
|
3
|
Charlesworth D, Hastings A, Graham C. Can a Y Chromosome Degenerate in an Evolutionary Instant? A Commentary on Fong et al. 2023. Genome Biol Evol 2023; 15:evad105. [PMID: 37290043 PMCID: PMC10480580 DOI: 10.1093/gbe/evad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
It is well known that the Y chromosomes of Drosophila and mammals and the W chromosomes of birds carry only small fractions of the genes carried by the homologous X or Z chromosomes, and this "genetic degeneration" is associated with loss of recombination between the sex chromosome pair. However, it is still not known how much evolutionary time is needed to reach such nearly complete degeneration. The XY pair of species in a group of closely related poecilid fish is homologous but has been found to have either nondegenerated or completely degenerated Y chromosomes. We evaluate evidence described in a recent paper and show that the available data cast doubt on the view that degeneration has been extraordinarily rapid in the latter (Micropoecilia species).
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abigail Hastings
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Chay Graham
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Darolti I, Fong LJM, Sandkam BA, Metzger DCH, Mank JE. Sex chromosome heteromorphism and the Fast-X effect in poeciliids. Mol Ecol 2023; 32:4599-4609. [PMID: 37309716 DOI: 10.1111/mec.17048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Fast-X evolution has been observed in a range of heteromorphic sex chromosomes. However, it remains unclear how early in the process of sex chromosome differentiation the Fast-X effect becomes detectible. Recently, we uncovered an extreme variation in sex chromosome heteromorphism across poeciliid fish species. The common guppy, Poecilia reticulata, Endler's guppy, P. wingei, swamp guppy, P. picta and para guppy, P. parae, appear to share the same XY system and exhibit a remarkable range of heteromorphism. Species outside this group lack this sex chromosome system. We combined analyses of sequence divergence and polymorphism data across poeciliids to investigate X chromosome evolution as a function of hemizygosity and reveal the causes for Fast-X effects. Consistent with the extent of Y degeneration in each species, we detect higher rates of divergence on the X relative to autosomes, a signal of Fast-X evolution, in P. picta and P. parae, species with high levels of X hemizygosity in males. In P. reticulata, which exhibits largely homomorphic sex chromosomes and little evidence of hemizygosity, we observe no change in the rate of evolution of X-linked relative to autosomal genes. In P. wingei, the species with intermediate sex chromosome differentiation, we see an increase in the rate of nonsynonymous substitutions on the older stratum of divergence only. We also use our comparative approach to test for the time of origin of the sex chromosomes in this clade. Taken together, our study reveals an important role of hemizygosity in Fast-X evolution.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lydia J M Fong
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin A Sandkam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - David C H Metzger
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Fong LJM, Darolti I, Metzger DCH, Morris J, Lin Y, Sandkam BA, Mank JE. Evolutionary History of the Poecilia picta Sex Chromosomes. Genome Biol Evol 2023; 15:evad030. [PMID: 36802329 PMCID: PMC10003743 DOI: 10.1093/gbe/evad030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
The degree of divergence between the sex chromosomes is not always proportional to their age. In poeciliids, four closely related species all exhibit a male heterogametic sex chromosome system on the same linkage group, yet show a remarkable diversity in X and Y divergence. In Poecilia reticulata and P. wingei, the sex chromosomes remain homomorphic, yet P. picta and P. parae have a highly degraded Y chromosome. To test alternative theories about the origin of their sex chromosomes, we used a combination of pedigrees and RNA-seq data from P. picta families in conjunction with DNA-seq data collected from P. reticulata, P. wingei, P. parae, and P. picta. Phylogenetic clustering analysis of X and Y orthologs, identified through segregation patterns, and their orthologous sequences in closely related species demonstrates a similar time of origin for both the P. picta and P. reticulata sex chromosomes. We next used k-mer analysis to identify shared ancestral Y sequence across all four species, suggesting a single origin to the sex chromosome system in this group. Together, our results provide key insights into the origin and evolution of the poeciliid Y chromosome and illustrate that the rate of sex chromosome divergence is often highly heterogenous, even over relatively short evolutionary time frames.
Collapse
Affiliation(s)
- Lydia J M Fong
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - David C H Metzger
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Jake Morris
- Department of Zoology, University of Cambridge, United Kingdom
| | - Yuying Lin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | | | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| |
Collapse
|
6
|
Darolti I, Almeida P, Wright AE, Mank JE. Comparison of methodological approaches to the study of young sex chromosomes: A case study in Poecilia. J Evol Biol 2022; 35:1646-1658. [PMID: 35506576 PMCID: PMC10084049 DOI: 10.1111/jeb.14013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022]
Abstract
Studies of sex chromosome systems at early stages of divergence are key to understanding the initial process and underlying causes of recombination suppression. However, identifying signatures of divergence in homomorphic sex chromosomes can be challenging due to high levels of sequence similarity between the X and the Y. Variations in methodological precision and underlying data can make all the difference between detecting subtle divergence patterns or missing them entirely. Recent efforts to test for X-Y sequence differentiation in the guppy have led to contradictory results. Here, we apply different analytical methodologies to the same data set to test for the accuracy of different approaches in identifying patterns of sex chromosome divergence in the guppy. Our comparative analysis reveals that the most substantial source of variation in the results of the different analyses lies in the reference genome used. Analyses using custom-made genome assemblies for the focal population or species successfully recover a signal of divergence across different methodological approaches. By contrast, using the distantly related Xiphophorus reference genome results in variable patterns, due to both sequence evolution and structural variations on the sex chromosomes between the guppy and Xiphophorus. Changes in mapping and filtering parameters can additionally introduce noise and obscure the signal. Our results illustrate how analytical differences can alter perceived results and we highlight best practices for the study of nascent sex chromosomes.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall, UK
| |
Collapse
|
7
|
Qiu S, Yong L, Wilson A, Croft DP, Graham C, Charlesworth D. Partial sex linkage and linkage disequilibrium on the guppy sex chromosome. Mol Ecol 2022; 31:5524-5537. [PMID: 36005298 PMCID: PMC9826361 DOI: 10.1111/mec.16674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
The guppy Y chromosome has been considered a model system for the evolution of suppressed recombination between sex chromosomes, and it has been proposed that complete sex-linkage has evolved across about 3 Mb surrounding this fish's sex-determining locus, followed by recombination suppression across a further 7 Mb of the 23 Mb XY pair, forming younger "evolutionary strata". Sequences of the guppy genome show that Y is very similar to the X chromosome. Knowing which parts of the Y are completely nonrecombining, and whether there is indeed a large completely nonrecombining region, are important for understanding its evolution. Here, we describe analyses of PoolSeq data in samples from within multiple natural populations from Trinidad, yielding new results that support previous evidence for occasional recombination between the guppy Y and X. We detected recent demographic changes, notably that downstream populations have higher synonymous site diversity than upstream ones and other expected signals of bottlenecks. We detected evidence of associations between sequence variants and the sex-determining locus, rather than divergence under a complete lack of recombination. Although recombination is infrequent, it is frequent enough that associations with SNPs can suggest the region in which the sex-determining locus must be located. Diversity is elevated across a physically large region of the sex chromosome, conforming to predictions for a genome region with infrequent recombination that carries one or more sexually antagonistic polymorphisms. However, no consistently male-specific variants were found, supporting the suggestion that any completely sex-linked region may be very small.
Collapse
Affiliation(s)
- Suo Qiu
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Lengxob Yong
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynUK,Marine Resources Research InstituteSouth Carolina Department of Natural ResourcesCharlestonSouth CarolinaUSA
| | - Alastair Wilson
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Darren P. Croft
- Centre for Research in Animal Behaviour, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Chay Graham
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
8
|
Charlesworth D. Some thoughts about the words we use for thinking about sex chromosome evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210314. [PMID: 35306893 PMCID: PMC8935297 DOI: 10.1098/rstb.2021.0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sex chromosomes are familiar to most biologists since they first learned about genetics. However, research over the past 100 years has revealed that different organisms have evolved sex-determining systems independently. The differences in the ages of systems, and in how they evolved, both affect whether sex chromosomes have evolved. However, the diversity means that the terminology used tends to emphasize either the similarities or the differences, sometimes causing misunderstandings. In this article, I discuss some concepts where special care is needed with terminology. The following four terms regularly create problems: ‘sex chromosome’, ‘master sex-determining gene’, ‘evolutionary strata’ and ‘genetic degeneration’. There is no generally correct or wrong use of these words, but efforts are necessary to make clear how they are to be understood in specific situations. I briefly outline some widely accepted ideas about sex chromosomes, and then discuss these ‘problem terms’, highlighting some examples where careful use of the words helps bring to light current uncertainties and interesting questions for future work. This article is part of the theme issue ‘Sex determination and sex chromosome evolution in land plants’.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3LF, UK
| |
Collapse
|
9
|
Evolution of the Degenerated Y-Chromosome of the Swamp Guppy, Micropoecilia picta. Cells 2022; 11:cells11071118. [PMID: 35406682 PMCID: PMC8997885 DOI: 10.3390/cells11071118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
The conspicuous colour sexual dimorphism of guppies has made them paradigmatic study objects for sex-linked traits and sex chromosome evolution. Both the X- and Y-chromosomes of the common guppy (Poecilia reticulata) are genetically active and homomorphic, with a large homologous part and a small sex specific region. This feature is considered to emulate the initial stage of sex chromosome evolution. A similar situation has been documented in the related Endler’s and Oropuche guppies (P. wingei, P. obscura) indicating a common origin of the Y in this group. A recent molecular study in the swamp guppy (Micropoecilia. picta) reported a low SNP density on the Y, indicating Y-chromosome deterioration. We performed a series of cytological studies on M. picta to show that the Y-chromosome is quite small compared to the X and has accumulated a high content of heterochromatin. Furthermore, the Y-chromosome stands out in displaying CpG clusters around the centromeric region. These cytological findings evidently illustrate that the Y-chromosome in M. picta is indeed highly degenerated. Immunostaining for SYCP3 and MLH1 in pachytene meiocytes revealed that a substantial part of the Y remains associated with the X. A specific MLH1 hotspot site was persistently marked at the distal end of the associated XY structure. These results unveil a landmark of a recombining pseudoautosomal region on the otherwise strongly degenerated Y chromosome of M. picta. Hormone treatments of females revealed that, unexpectedly, no sexually antagonistic color gene is Y-linked in M. picta. All these differences to the Poecilia group of guppies indicate that the trajectories associated with the evolution of sex chromosomes are not in parallel.
Collapse
|
10
|
Paris JR, Whiting JR, Daniel MJ, Ferrer Obiol J, Parsons PJ, van der Zee MJ, Wheat CW, Hughes KA, Fraser BA. A large and diverse autosomal haplotype is associated with sex-linked colour polymorphism in the guppy. Nat Commun 2022; 13:1233. [PMID: 35264556 PMCID: PMC8907176 DOI: 10.1038/s41467-022-28895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
Male colour patterns of the Trinidadian guppy (Poecilia reticulata) are typified by extreme variation governed by both natural and sexual selection. Since guppy colour patterns are often inherited faithfully from fathers to sons, it has been hypothesised that many of the colour trait genes must be physically linked to sex determining loci as a ‘supergene’ on the sex chromosome. Here, we phenotype and genotype four guppy ‘Iso-Y lines’, where colour was inherited along the patriline for 40 generations. Using an unbiased phenotyping method, we confirm the breeding design was successful in creating four distinct colour patterns. We find that genetic differentiation among the Iso-Y lines is repeatedly associated with a diverse haplotype on an autosome (LG1), not the sex chromosome (LG12). Moreover, the LG1 haplotype exhibits elevated linkage disequilibrium and evidence of sex-specific diversity in the natural source population. We hypothesise that colour pattern polymorphism is driven by Y-autosome epistasis. Extreme colour pattern variation in male Trinidadian guppies are influenced by natural selection and sexual selection. Here, the authors phenotype and genotype four guppy lineages finding that colour pattern is associated with a diverse haplotype on an autosome.
Collapse
Affiliation(s)
- Josephine R Paris
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - James R Whiting
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Mitchel J Daniel
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Joan Ferrer Obiol
- Departament de Microbiologia, Genètica i Estadística and Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Paul J Parsons
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.,NERC Environmental Omics Facility, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mijke J van der Zee
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | | | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Bonnie A Fraser
- Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
11
|
On the genetic architecture of rapidly adapting and convergent life history traits in guppies. Heredity (Edinb) 2022; 128:250-260. [PMID: 35256765 PMCID: PMC8986872 DOI: 10.1038/s41437-022-00512-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
The genetic basis of traits shapes and constrains how adaptation proceeds in nature; rapid adaptation can proceed using stores of polygenic standing genetic variation or hard selective sweeps, and increasing polygenicity fuels genetic redundancy, reducing gene re-use (genetic convergence). Guppy life history traits evolve rapidly and convergently among natural high- and low-predation environments in northern Trinidad. This system has been studied extensively at the phenotypic level, but little is known about the underlying genetic architecture. Here, we use four independent F2 QTL crosses to examine the genetic basis of seven (five female, two male) guppy life history phenotypes and discuss how these genetic architectures may facilitate or constrain rapid adaptation and convergence. We use RAD-sequencing data (16,539 SNPs) from 370 male and 267 female F2 individuals. We perform linkage mapping, estimates of genome-wide and per-chromosome heritability (multi-locus associations), and QTL mapping (single-locus associations). Our results are consistent with architectures of many loci of small-effect for male age and size at maturity and female interbrood period. Male trait associations are clustered on specific chromosomes, but female interbrood period exhibits a weak genome-wide signal suggesting a potentially highly polygenic component. Offspring weight and female size at maturity are also associated with a single significant QTL each. These results suggest rapid, repeatable phenotypic evolution of guppies may be facilitated by polygenic trait architectures, but subsequent genetic redundancy may limit gene re-use across populations, in agreement with an absence of strong signatures of genetic convergence from recent analyses of wild guppies.
Collapse
|
12
|
Kirkpatrick M, Sardell JM, Pinto BJ, Dixon G, Peichel CL, Schartl M. Evolution of the canonical sex chromosomes of the guppy and its relatives. G3 (BETHESDA, MD.) 2022; 12:jkab435. [PMID: 35100353 PMCID: PMC9335935 DOI: 10.1093/g3journal/jkab435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022]
Abstract
The sex chromosomes of the guppy, Poecilia reticulata, and its close relatives are of particular interest: they are much younger than the highly degenerate sex chromosomes of model systems such as humans and Drosophila melanogaster, and they carry many of the genes responsible for the males' dramatic coloration. Over the last decade, several studies have analyzed these sex chromosomes using a variety of approaches including sequencing genomes and transcriptomes, cytology, and linkage mapping. Conflicting conclusions have emerged, in particular concerning the history of the sex chromosomes and the evolution of suppressed recombination between the X and Y. Here, we address these controversies by reviewing the evidence and reanalyzing data. We find no evidence of a nonrecombining sex-determining region or evolutionary strata in P. reticulata. Furthermore, we find that the data most strongly support the hypothesis that the sex-determining regions of 2 close relatives of the guppy, Poecilia wingei and Micropoecilia picta, evolved independently after their lineages diverged. We identify possible causes of conflicting results in previous studies and suggest best practices going forward.
Collapse
Affiliation(s)
- Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Jason M Sardell
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Brendan J Pinto
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Catherine L Peichel
- Institute of Ecology and Evolution, University of Bern, Bern 3012, Switzerland
| | - Manfred Schartl
- Developmental Biochemistry, University of Würzburg, Würzburg97074, Germany
- Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
13
|
Lin Y, Darolti I, Furman BLS, Almeida P, Sandkam BA, Breden F, Wright AE, Mank JE. Gene duplication to the Y chromosome in Trinidadian Guppies. Mol Ecol 2022; 31:1853-1863. [PMID: 35060220 DOI: 10.1111/mec.16355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Abstract
Differences in allele frequencies at autosomal genes between males and females in a population can result from two scenarios. First, unresolved sexual conflict over survival can produce allelic differentiation between the sexes. However, given the substantial mortality costs required to produce allelic differences between males and females at each generation, it remains unclear how many loci within the genome experience significant sexual conflict over survival. Alternatively, recent studies have shown that similarity between autosomal and Y sequences can create perceived allelic differences between the sexes. However, Y duplications are most likely in species with large non-recombining regions, in part because they simply represent larger targets for duplications. We assessed the genomes of 120 wild-caught guppies, which experience extensive predation- and pathogen-induced mortality and have a relatively small ancestral Y chromosome. We identified seven autosomal genes that show allelic differences between male and female adults. Five of these genes show clear evidence of whole or partial gene duplication between the Y chromosome and the autosomes. The remaining two genes show evidence of partial homology to the Y. Overall, our findings suggest that the guppy genome experiences a very low level of unresolved sexual conflict over survival, and instead the Y chromosome, despite its small ancestral size and recent origin, may nonetheless accumulate genes with male-specific functions.
Collapse
Affiliation(s)
- Yuying Lin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Benjamin L S Furman
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Benjamin A Sandkam
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Canada
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Canada.,Biosciences, University of Exeter, Penryn Campus, United Kingdom
| |
Collapse
|
14
|
Charlesworth D, Bergero R, Graham C, Gardner J, Keegan K. How did the guppy Y chromosome evolve? PLoS Genet 2021; 17:e1009704. [PMID: 34370728 PMCID: PMC8376059 DOI: 10.1371/journal.pgen.1009704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/19/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
The sex chromosome pairs of many species do not undergo genetic recombination, unlike the autosomes. It has been proposed that the suppressed recombination results from natural selection favouring close linkage between sex-determining genes and mutations on this chromosome with advantages in one sex, but disadvantages in the other (these are called sexually antagonistic mutations). No example of such selection leading to suppressed recombination has been described, but populations of the guppy display sexually antagonistic mutations (affecting male coloration), and would be expected to evolve suppressed recombination. In extant close relatives of the guppy, the Y chromosomes have suppressed recombination, and have lost all the genes present on the X (this is called genetic degeneration). However, the guppy Y occasionally recombines with its X, despite carrying sexually antagonistic mutations. We describe evidence that a new Y evolved recently in the guppy, from an X chromosome like that in these relatives, replacing the old, degenerated Y, and explaining why the guppy pair still recombine. The male coloration factors probably arose after the new Y evolved, and have already evolved expression that is confined to males, a different way to avoid the conflict between the sexes. We report new findings concerning the long-studied the guppy XY pair, which has remained somewhat mystifying. We show that it can be understood as a case of a recent sex chromosome turnover event in which an older, highly degenerated Y chromosome was lost, and creation of a new sex chromosome from the ancestral X. This chromosome acquired a male-determining factor, possibly by a mutation in (or a duplication of) a previously X-linked gene, or (less likely) by movement of an ancestral Y-linked maleness factor onto the X. We relate the findings to theoretical models of such events, and argue that the proposed change was free from factors thought to impede such turnovers. The change resulted in the intriguing situation where the X chromosome is old and the Y is much younger, and we discuss some other species where a similar change seems likely to have occurred.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Chay Graham
- University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Court Road, Cambridge, United Kingdom
| | - Jim Gardner
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Keegan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Charlesworth D, Graham C, Trivedi U, Gardner J, Bergero R. PromethION sequencing and assembly of the genome of Micropoecilia picta, a fish with a highly Degenerated Y chromosome. Genome Biol Evol 2021; 13:6326803. [PMID: 34297069 PMCID: PMC8449826 DOI: 10.1093/gbe/evab171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
We here describe sequencing and assembly of both the autosomes and the sex chromosome in M. picta, the closest related species to the guppy, Poecilia reticulata. Poecilia ()Micropoecilia) picta is a close outgroup for studying the guppy, an important organism for studies in evolutionary ecology and in sex chromosome evolution. The guppy XY pair (LG12) has long been studied as a test case for the importance of sexually antagonistic variants in selection for suppressed recombination between Y and X chromosomes. The guppy Y chromosome is not degenerated, but appears to carry functional copies of all genes that are present on its X counterpart. The X chromosomes of M. picta (and its relative M. parae) are homologous to the guppy XY pair, but their Y chromosomes are highly degenerated, and no genes can be identified in the fully Y-linked region. A complete genome sequence of a M. picta male may therefore contribute to understanding how the guppy Y evolved. These fish species' genomes are estimated to be about 750 Mb, with high densities of repetitive sequences, suggesting that long-read sequencing is needed. We evaluated several assembly approaches, and used our results to investigate the extent of Y chromosome degeneration in this species.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| | - Chay Graham
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK.,University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Ct Rd, Cambridge, CB2 1GA, UK
| | - Urmi Trivedi
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| | - Jim Gardner
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3LF, UK
| |
Collapse
|
16
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Gene Variant of Barrier to Autointegration Factor 2 ( Banf2w) Is Concordant with Female Determination in Cichlids. Int J Mol Sci 2021; 22:7073. [PMID: 34209244 PMCID: PMC8268354 DOI: 10.3390/ijms22137073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/15/2022] Open
Abstract
Oreochromis fishes exhibit variability of sex-determination (SD) genes whose characterization contributes to understanding of the sex differentiation network, and to effective tilapia farming, which requires all-male culture. However, O. niloticus (On) amh is the only master-key regulator (MKR) of SD that has been mapped (XY/XX SD-system on LG23). In O. aureus (Oa), LG3 controls a WZ/ZZ SD-system that has recently been delimited to 9.2 Mbp, with an embedded interval rich with female-specific variation, harboring two paics genes and banf2. Developing genetic markers within this interval and using a hybrid Oa stock that demonstrates no recombination repression in LG3, we mapped the critical SD region to 235 Kbp on the orthologous On physical map (p < 1.5 × 10-26). DNA-seq assembly and peak-proportion analysis of variation based on Sanger chromatograms allowed the characterization of copy-number variation (CNV) of banf2. Oa males had three exons capable of encoding 90-amino-acid polypeptides, yet in Oa females, we found an extra copy with an 89-amino-acid polypeptide and three non-conservative amino acid substitutions, designated as banf2w. CNV analysis suggested the existence of two to five copies of banf2 in diploidic Cichlidae. Disrupting the Hardy-Weinberg equilibrium (p < 4.2 × 10-3), banf2w was concordant with female determination in Oa and in three cichlids with LG3 WZ/ZZ SD-systems (O. tanganicae, O. hornorum and Pelmatolapia mariae). Furthermore, exclusive RNA-seq expression in Oa females strengthened the candidacy of banf2w as the long-sought LG3 SD MKR. As banf genes mediate nuclear assembly, chromatin organization, gene expression and gonad development, banf2w may play a fundamental role inducing female nucleus formation that is essential for WZ/ZZ SD.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shai Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| |
Collapse
|