1
|
Liu Y, Xia X, Ren W, Hong X, Tang X, Pang H, Yang Y. Alternative splicing perspective to prey preference of environmentally friendly biological agent Cryptolaemus montrouzieri. BMC Genomics 2024; 25:967. [PMID: 39407100 PMCID: PMC11481726 DOI: 10.1186/s12864-024-10870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cryptolaemus montrouzieri (Coccinellidae) is widely utilized as biological control agents in modern agriculture. A comprehensive understanding of its food preference can help guide mass rearing and safety management during field application of pest control. Although some studies have paid attentions to the impacts of prey shift on C. montrouzieri, little is known regarding the role of post-transcriptional regulations in its acclimation to unnatural preys. RESULTS We performed a genome-wide investigation on alternative splicing dynamics in C. montrouzieri in response to the predation transition from natural prey to unnatural ones. When feeding on undesired diets, 402-764 genes were differentially alternative spliced in C. montrouzieri. It is noteworthy that the majority of these genes (> 87%) were not differentially expressed, and these differentially spliced genes regulated distinct biological processes from differentially expressed genes, such as organ development and morphogenesis, locomotory behavior, and homeostasis processes. These suggested the functionally nonredendant role of alternative splicing in modulating physiological and metabolic responses of C. montrouzieri to the shift to undesired preys. In addition, the individuals feeding on aphids were subject to a lower level of changes in splicing than other alternative diets, which might be because of the similar chemical and microbial compositions. Our study further suggested a putative coupling of alternative splicing and nonsense-mediated decay (AS-NMD), which may play an important role in fine-tuning the protein repertoire of C. montrouzieri, and promoting its acclimation to predation changes. CONCLUSION These findings highlight the key role of alternative splicing in modulating the acclimation of ladybirds to prey shift and provide new genetic clues for the future application of ladybirds in biocontrol.
Collapse
Affiliation(s)
- Yuqi Liu
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinhui Xia
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenxu Ren
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiyao Hong
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xuefei Tang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Pang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yuchen Yang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Polak M, Bose J, Benoit JB, Singh H. Heritability and preadult survivorship costs of ectoparasite resistance in the naturally occurring Drosophila-Gamasodes mite system. Evolution 2023; 77:2068-2080. [PMID: 37393947 DOI: 10.1093/evolut/qpad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Our understanding of the evolutionary significance of ectoparasites in natural communities is limited by a paucity of information concerning the mechanisms and heritability of resistance to this ubiquitous group of organisms. Here, we report the results of artificial selection for increasing ectoparasite resistance in replicate lines of Drosophila melanogaster derived from a field-fresh population. Resistance, as ability to avoid infestation by naturally co-occurring Gamasodes queenslandicus mites, increased significantly in response to selection and realized heritability (SE) was estimated to be 0.11 (0.0090). Deployment of energetically expensive bursts of flight from the substrate was a main mechanism of host resistance that responded to selection, aligning with previously documented metabolic costs of fly behavioral defenses. Host body size, which affects parasitism rate in some fly-mite systems, was not shifted by selection. In contrast, resistant lines expressed significant reductions in larva-to-adult survivorship with increasing toxic (ammonia) stress, identifying an environmentally modulated preadult cost of resistance. Flies selected for resistance to G. queenslandicus were also more resistant to a different mite, Macrocheles subbadius, suggesting that we documented genetic variation and a pleiotropic cost of broad-spectrum behavioral immunity against ectoparasites. The results demonstrate significant evolutionary potential of resistance to an ecologically important class of parasites.
Collapse
Affiliation(s)
- Michal Polak
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Joy Bose
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Harmanpreet Singh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
3
|
Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM. The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. G3 GENES|GENOMES|GENETICS 2022; 12:6583191. [PMID: 35536221 PMCID: PMC9339270 DOI: 10.1093/g3journal/jkac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
Abstract
As the fruit fly, Drosophila melanogaster, progresses from one life stage to the next, many of the enzymes that compose intermediary metabolism undergo substantial changes in both expression and activity. These predictable shifts in metabolic flux allow the fly meet stage-specific requirements for energy production and biosynthesis. In this regard, the enzyme glycerol-3-phosphate dehydrogenase 1 (GPDH1) has been the focus of biochemical genetics studies for several decades and, as a result, is one of the most well-characterized Drosophila enzymes. Among the findings of these earlier studies is that GPDH1 acts throughout the fly lifecycle to promote mitochondrial energy production and triglyceride accumulation while also serving a key role in maintaining redox balance. Here, we expand upon the known roles of GPDH1 during fly development by examining how depletion of both the maternal and zygotic pools of this enzyme influences development, metabolism, and viability. Our findings not only confirm previous observations that Gpdh1 mutants exhibit defects in larval development, lifespan, and fat storage but also reveal that GPDH1 serves essential roles in oogenesis and embryogenesis. Moreover, metabolomics analysis reveals that a Gpdh1 mutant stock maintained in a homozygous state exhibits larval metabolic defects that significantly differ from those observed in the F1 mutant generation. Overall, our findings highlight unappreciated roles for GPDH1 in early development and uncover previously undescribed metabolic adaptations that could allow flies to survive the loss of this key enzyme.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Sarah M Carter
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Shefali A Shefali
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | | | - Robert Pepin
- Department of Chemistry, Indiana University , Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Gáliková M, Klepsatel P. Endocrine control of glycogen and triacylglycerol breakdown in the fly model. Semin Cell Dev Biol 2022; 138:104-116. [PMID: 35393234 DOI: 10.1016/j.semcdb.2022.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, the combination of genetics, transcriptomic and proteomic approaches yielded substantial insights into the mechanisms behind the synthesis and breakdown of energy stores in the model organisms. The fruit fly Drosophila melanogaster has been particularly useful to unravel genetic regulations of energy metabolism. Despite the considerable evolutionary distance between humans and flies, the energy storage organs, main metabolic pathways, and even their genetic regulations remained relatively conserved. Glycogen and fat are universal energy reserves used in all animal phyla and several of their endocrine regulators, such as the insulin pathway, are highly evolutionarily conserved. Nevertheless, some of the factors inducing catabolism of energy stores have diverged significantly during evolution. Moreover, even within a single insect species, D. melanogaster, there are substantial developmental and context-dependent variances in the regulation of energy stores. These differences include, among others, the endocrine pathways that govern the catabolic events or the predominant fuel which is utilized for the given process. For example, many catabolic regulators that control energy reserves in adulthood seem to be largely dispensable for energy mobilization during development. In this review, we focus on a selection of the most important catabolic regulators from the group of peptide hormones (Adipokinetic hormone, Corazonin), catecholamines (octopamine), steroid hormones (20-hydroxyecdysone), and other factors (extracellular adenosine, regulators of lipase Brummer). We discuss their roles in the mobilization of energy reserves for processes such as development through non-feeding stages, flight or starvation survival. Finally, we conclude with future perspectives on the energy balance research in the fly model.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
5
|
Veiner M, Morimoto J, Leadbeater E, Manfredini F. Machine Learning models identify gene predictors of waggle dance behaviour in honeybees. Mol Ecol Resour 2022; 22:2248-2261. [PMID: 35334147 DOI: 10.1111/1755-0998.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
The molecular characterisation of complex behaviours is a challenging task as a range of different factors are often involved to produce the observed phenotype. An established approach is to look at the overall levels of expression of brain genes - or 'neurogenomics' - to select the best candidates that associate with patterns of interest. However, traditional neurogenomic analyses have some well-known limitations; above all, the usually limited number of biological replicates compared to the number of genes tested - known as "curse of dimensionality". In this study we implemented a Machine Learning (ML) approach that can be used as a complement to more established methods of transcriptomic analyses. We tested three supervised learning algorithms (Random Forests, Lasso and Elastic net Regularized Generalized Linear Model, and Support Vector Machine) for their performance in the characterization of transcriptomic patterns and identification of genes associated with honeybee waggle dance. We then intersected the results of these analyses with traditional outputs of differential gene expression analyses and identified two promising candidates for the neural regulation of the waggle dance: boss and hnRNP A1. Overall, our study demonstrates the application of Machine Learning to analyse transcriptomics data and identify candidate genes underlying social behaviour. This approach has great potential for application to a wide range of different scenarios in evolutionary ecology, when investigating the genomic basis for complex phenotypic traits and can present some clear advantages compared to the established tools of gene expression analysis, making it a valuable complement for future studies.
Collapse
Affiliation(s)
- Marcell Veiner
- The School of Natural and Computing Sciences, University of Aberdeen, Aberdeen Scotland, UK
| | - Juliano Morimoto
- The School of Biological Sciences, University of Aberdeen, Aberdeen Scotland, UK
| | - Ellouise Leadbeater
- School of Biological Sciences, Royal Holloway University of London, Egham Surrey, UK
| | - Fabio Manfredini
- The School of Biological Sciences, University of Aberdeen, Aberdeen Scotland, UK.,School of Biological Sciences, Royal Holloway University of London, Egham Surrey, UK
| |
Collapse
|
6
|
Activation of activator protein-1-fibroblast growth factor 21 signaling attenuates Cisplatin hepatotoxicity. Biochem Pharmacol 2021; 194:114823. [PMID: 34748822 DOI: 10.1016/j.bcp.2021.114823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
Fibroblast growth factor (Fgf/FGF) 21, which plays important roles in sugar, lipid and energy metabolism, has been accepted as a mito-stress marker gene. We recently reported that FGF21 expression can be up-regulated via activation of aryl hydrocarbon receptor (AhR) or glucocorticoid receptor (GR) and that FGF21 plays important cytoprotective roles. Cisplatin (cis-diamminedichloroplatinum, CDDP) is a widely used chemotherapeutic drug. Numerous adverse effects including hepatotoxicity have been noted during CDDP therapy. It is known that CDDP can induce mitochondrial dysfunction. The studies were designed to determine the regulation of Fgf/FGF21 expression by CDDP, and to characterize the underlying mechanisms of its regulation, as well as to determine the impact of gain or loss of Fgf/FGF21 function on the progression of CDDP hepatotoxicity. Our results showed that CDDP and phorbol ester induced mRNA and protein expression of Fgf/FGF21 and β-Klotho, two essential components of Fgf21 signaling, in mouse livers and cultured mouse/human hepatocytes. Luciferase reporter assays and ChIP-qPCR assays demonstrated that the cJun-AP-1 activation is responsible for CDDP- and phorbol ester-induced Fgf/FGF21 expression. Such induction is abolished after cotreated with AP-1 inhibitor SR11302. In addition, CDDP produces more severe liver injury in Fgf21-null than wild-type mice. Pre-treatment of GR activator dexamethasone or AhR activator β-Naphthoflavone, both of which can induce Fgf21 expression, attenuated CDDP-induced hepatotoxicity in vivo and in vitro. In conclusion, Fgf/FGF21-β-Klotho signaling can be activated via AP-1 activation. Gain of Fgf/FGF21 function attenuates the progression of CDDP hepatotoxicity, which may be considered clinically to improve CDDP therapy.
Collapse
|
7
|
Abstract
Hypoxia inhibits the tricarboxylic acid (TCA) cycle and leaves glycolysis as the primary metabolic pathway responsible for converting glucose into usable energy. However, the mechanisms that compensate for this loss in energy production due to TCA cycle inactivation remain poorly understood. Glycolysis enzymes are typically diffuse and soluble in the cytoplasm under normoxic conditions. In contrast, recent studies have revealed dynamic compartmentalization of glycolysis enzymes in response to hypoxic stress in yeast, C. elegans and mammalian cells. These messenger ribonucleoprotein (mRNP) structures, termed glycolytic (G) bodies in yeast, lack membrane enclosure and display properties of phase-separated biomolecular condensates. Disruption of condensate formation correlates with defects such as impaired synaptic function in C. elegans neurons and decreased glucose flux in yeast. Concentrating glycolysis enzymes into condensates may lead to their functioning as 'metabolons' that enhance rates of glucose utilization for increased energy production. Besides condensates, glycolysis enzymes functionally associate in other organisms and specific tissues through protein-protein interactions and membrane association. However, as discussed in this Review, the functional consequences of coalescing glycolytic machinery are only just beginning to be revealed. Through ongoing studies, we anticipate the physiological importance of metabolic regulation mediated by the compartmentalization of glycolysis enzymes will continue to emerge.
Collapse
Affiliation(s)
- Gregory G Fuller
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Cytochrome c Oxidase at Full Thrust: Regulation and Biological Consequences to Flying Insects. Cells 2021; 10:cells10020470. [PMID: 33671793 PMCID: PMC7931083 DOI: 10.3390/cells10020470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/24/2023] Open
Abstract
Flight dispersal represents a key aspect of the evolutionary and ecological success of insects, allowing escape from predators, mating, and colonization of new niches. The huge energy demand posed by flight activity is essentially met by oxidative phosphorylation (OXPHOS) in flight muscle mitochondria. In insects, mitochondrial ATP supply and oxidant production are regulated by several factors, including the energy demand exerted by changes in adenylate balance. Indeed, adenylate directly regulates OXPHOS by targeting both chemiosmotic ATP production and the activities of specific mitochondrial enzymes. In several organisms, cytochrome c oxidase (COX) is regulated at transcriptional, post-translational, and allosteric levels, impacting mitochondrial energy metabolism, and redox balance. This review will present the concepts on how COX function contributes to flying insect biology, focusing on the existing examples in the literature where its structure and activity are regulated not only by physiological and environmental factors but also how changes in its activity impacts insect biology. We also performed in silico sequence analyses and determined the structure models of three COX subunits (IV, VIa, and VIc) from different insect species to compare with mammalian orthologs. We observed that the sequences and structure models of COXIV, COXVIa, and COXVIc were quite similar to their mammalian counterparts. Remarkably, specific substitutions to phosphomimetic amino acids at critical phosphorylation sites emerge as hallmarks on insect COX sequences, suggesting a new regulatory mechanism of COX activity. Therefore, by providing a physiological and bioenergetic framework of COX regulation in such metabolically extreme models, we hope to expand the knowledge of this critical enzyme complex and the potential consequences for insect dispersal.
Collapse
|
9
|
Biological Effects of Single-Nucleotide Polymorphisms in the Drosophila melanogaster Malic Enzyme Locus. Biochem Genet 2019; 58:129-156. [PMID: 31302799 DOI: 10.1007/s10528-019-09932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
A pair of amino acid polymorphisms within the Drosophila melanogaster Malic enzyme (Men) locus presents an interesting case of genetic variation that appears to be under selection. The two alleles at each site are biochemically distinct, but their biological effects are unknown. One polymorphic site is near the active site and the other is buried within the protein. Strikingly, in twelve different populations, the first polymorphism is always found at approximately a 50:50 allelic frequency, whereas the second polymorphism is always found at approximately 90:10. The consistency of the frequencies between populations suggests that the polymorphisms are under selection and it is possible that balancing selection is at play. We used 16 lines of flies to create the nine genotypes needed to quantify both effects of the polymorphic sites and possible genetic background effects, which we found to be widespread. The alleles at each site differ, but in different biochemical characteristics. The first site significantly influences MEN Km and Vmax, whereas the second site affects the Km and the Vmax/Km ratio (relative activity). Interestingly, the rarest allele is the most biochemically distinct. We also assayed three more distal phenotypes, triglyceride concentration, carbohydrate concentration, and longevity. In all cases, the phenotypes of the heterozygous genotypes are intermediate between those of the respective homozygotes suggesting that if balancing selection is maintaining the observed allele frequencies it is not through non-linear combinations of the biochemical phenotypes.
Collapse
|
10
|
Atamna H, Tenore A, Lui F, Dhahbi JM. Organ reserve, excess metabolic capacity, and aging. Biogerontology 2018; 19:171-184. [PMID: 29335816 DOI: 10.1007/s10522-018-9746-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
"Organ reserve" refers to the ability of an organ to successfully return to its original physiological state following repeated episodes of stress. Clinical evidence shows that organ reserve correlates with the ability of older adults to cope with an added workload or stress, suggesting a role in the process of aging. Although organ reserve is well documented clinically, it is not clearly defined at the molecular level. Interestingly, several metabolic pathways exhibit excess metabolic capacities (e.g., bioenergetics pathway, antioxidants system, plasticity). These pathways comprise molecular components that have an excess of quantity and/or activity than that required for basic physiological demand in vivo (e.g., mitochondrial complex IV or glycolytic enzymes). We propose that the excess in mtDNA copy number and tandem DNA repeats of telomeres are additional examples of intrinsically embedded structural components that could comprise excess capacity. These excess capacities may grant intermediary metabolism the ability to instantly cope with, or manage, added workload or stress. Therefore, excess metabolic capacities could be viewed as an innate mechanism of adaptability that substantiates organ reserve and contributes to the cellular defense systems. If metabolic excess capacities or organ reserves are impaired or exhausted, the ability of the cell to cope with stress is reduced. Under these circumstances cell senescence, transformation, or death occurs. In this review, we discuss excess metabolic and structural capacities as integrated metabolic pathways in relation to organ reserve and cellular aging.
Collapse
Affiliation(s)
- Hani Atamna
- School of Medicine, California University of Science and Medicine (CUSM), 217 E Club Center Dr. Suite A, San Bernardino, CA, 92408, USA.
- California Northstate University, College of Medicine, Elk Grove, CA, USA.
| | - Alfred Tenore
- School of Medicine, California University of Science and Medicine (CUSM), 217 E Club Center Dr. Suite A, San Bernardino, CA, 92408, USA
- California Northstate University, College of Medicine, Elk Grove, CA, USA
| | - Forshing Lui
- School of Medicine, California University of Science and Medicine (CUSM), 217 E Club Center Dr. Suite A, San Bernardino, CA, 92408, USA
- California Northstate University, College of Medicine, Elk Grove, CA, USA
| | - Joseph M Dhahbi
- School of Medicine, California University of Science and Medicine (CUSM), 217 E Club Center Dr. Suite A, San Bernardino, CA, 92408, USA
- California Northstate University, College of Medicine, Elk Grove, CA, USA
| |
Collapse
|
11
|
Sex and Genetic Background Influence Superoxide Dismutase (cSOD)-Related Phenotypic Variation in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2017. [PMID: 28624774 PMCID: PMC5555470 DOI: 10.1534/g3.117.043836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mutations often have drastically different effects in different genetic backgrounds; understanding a gene’s biological function then requires an understanding of its interaction with genetic diversity. The antioxidant enzyme cytosolic copper/zinc superoxide dismutase (cSOD) catalyzes the dismutation of the superoxide radical, a molecule that can induce oxidative stress if its concentration exceeds cellular control. Accordingly, Drosophila melanogaster lacking functional cSOD exhibit a suite of phenotypes including decreased longevity, hypersensitivity to oxidative stress, impaired locomotion, and reduced NADP(H) enzyme activity in males. To date, cSOD-null phenotypes have primarily been characterized using males carrying one allele, cSodn108red, in a single genetic background. We used ANOVA, and the effect size partial eta squared, to partition the amount of variation attributable to cSOD activity, sex, and genetic background across a series of life history, locomotor, and biochemical phenotypes associated with the cSOD-null condition. Overall, the results demonstrate that the cSOD-null syndrome is largely consistent across sex and genetic background, but also significantly influenced by both. The sex-specific effects are particularly striking and our results support the idea that phenotypes cannot be considered to be fully defined if they are examined in limited genetic contexts.
Collapse
|
12
|
Kasumovic MM, Chen Z, Wilkins MR. Australian black field crickets show changes in neural gene expression associated with socially-induced morphological, life-history, and behavioral plasticity. BMC Genomics 2016; 17:827. [PMID: 27776492 PMCID: PMC5078956 DOI: 10.1186/s12864-016-3119-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ecological and evolutionary model organisms have provided extensive insight into the ecological triggers, adaptive benefits, and evolution of life-history driven developmental plasticity. Despite this, we still have a poor understanding of the underlying genetic changes that occur during shifts towards different developmental trajectories. The goal of this study is to determine whether we can identify underlying gene expression patterns that can describe the different life-history trajectories individuals follow in response to social cues of competition. To do this, we use the Australian black field cricket (Teleogryllus commodus), a species with sex-specific developmental trajectories moderated by the density and quality of calls heard during immaturity. In this study, we manipulated the social information males and females could hear by rearing individuals in either calling or silent treatments. We next used RNA-Seq to develop a reference transcriptome to study changes in brain gene expression at two points prior to sexual maturation. RESULTS We show accelerated development in both sexes when exposed to calling; changes were also seen in growth, lifespan, and reproductive effort. Functional relationships between genes and phenotypes were apparent from ontological enrichment analysis. We demonstrate that increased investment towards traits such as growth and reproductive effort were often associated with the expression of a greater number of genes with similar effect, thus providing a suite of candidate genes for future research in this and other invertebrate organisms. CONCLUSIONS Our results provide interesting insight into the genomic underpinnings of developmental plasticity and highlight the potential of a genomic exploration of other evolutionary theories such as condition dependence and sex-specific developmental strategies.
Collapse
Affiliation(s)
- Michael M Kasumovic
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, Australia.
| | - Zhiliang Chen
- Systems Biology Initiative, UNSW, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, UNSW, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, Australia
| |
Collapse
|
13
|
Talbert ME, Barnett B, Hoff R, Amella M, Kuczynski K, Lavington E, Koury S, Brud E, Eanes WF. Genetic perturbation of key central metabolic genes extends lifespan in Drosophila and affects response to dietary restriction. Proc Biol Sci 2016; 282:rspb.2015.1646. [PMID: 26378219 DOI: 10.1098/rspb.2015.1646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan.
Collapse
Affiliation(s)
- Matthew E Talbert
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brittany Barnett
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert Hoff
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Amella
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kate Kuczynski
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Erik Lavington
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Spencer Koury
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Evgeny Brud
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
14
|
Interactions of NADP-reducing enzymes across varying environmental conditions: a model of biological complexity. G3-GENES GENOMES GENETICS 2012; 2:1613-23. [PMID: 23275884 PMCID: PMC3516483 DOI: 10.1534/g3.112.003715] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/09/2012] [Indexed: 12/05/2022]
Abstract
Interactions across biological networks are often quantified under a single set of conditions; however, cellular behaviors are dynamic and interactions can be expected to change in response to molecular context and environment. To determine the consistency of network interactions, we examined the enzyme network responsible for the reduction of nicotinamide adenine dinucleotide phosphate (NADP) to NADPH across three different conditions: oxidative stress, starvation, and desiccation. Synthetic, activity-variant alleles were used in Drosophila melanogaster for glucose-6-phosphate dehydrogenase (G6pd), cytosolic isocitrate dehydrogenase (Idh), and cytosolic malic enzyme (Men) along with seven different genetic backgrounds to lend biological relevance to the data. The responses of the NADP-reducing enzymes and two downstream phenotypes (lipid and glycogen concentration) were compared between the control and stress conditions. In general, responses in NADP-reducing enzymes were greater under conditions of oxidative stress, likely due to an increased demand for NADPH. Interactions between the enzymes were altered by environmental stress in directions and magnitudes that are consistent with differential contributions of the different enzymes to the NADPH pool: the contributions of G6PD and IDH seem to be accentuated by oxidative stress, and MEN by starvation. Overall, we find that biological network interactions are strongly influenced by environmental conditions, underscoring the importance of examining networks as dynamic entities.
Collapse
|
15
|
Rzezniczak TZ, Lum TE, Harniman R, Merritt TJS. A combination of structural and cis-regulatory factors drives biochemical differences in Drosophila melanogaster malic enzyme. Biochem Genet 2012; 50:823-37. [PMID: 22733181 DOI: 10.1007/s10528-012-9523-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/28/2012] [Indexed: 11/26/2022]
Abstract
The evolutionary significance of molecular variation is still contentious, with much current interest focusing on the relative contribution of structural changes in proteins versus regulatory variation in gene expression. We present a population genetic and biochemical study of molecular variation at the malic enzyme locus (Men) in Drosophila melanogaster. Two amino acid polymorphisms appear to affect substrate-binding kinetics, while only one appears to affect thermal stability. Interestingly, we find that enzyme activity differences previously assigned to one of the polymorphisms may, instead, be a function of linked regulatory differences. These results suggest that both regulatory and structural changes contribute to differences in protein function. Our examination of the Men coding sequences reveals no evidence for selection acting on the polymorphisms, but earlier work on this enzyme indicates that the biochemical variation observed has physiological repercussions and therefore could potentially be under natural selection.
Collapse
Affiliation(s)
- Teresa Z Rzezniczak
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | | | | | | |
Collapse
|
16
|
Experimental approaches to evaluate the contributions of candidate protein-coding mutations to phenotypic evolution. Methods Mol Biol 2012; 772:377-96. [PMID: 22065450 DOI: 10.1007/978-1-61779-228-1_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Identifying mechanisms of molecular adaptation can provide important insights into the process of phenotypic evolution, but it can be exceedingly difficult to quantify the phenotypic effects of specific mutational changes. To verify the adaptive significance of genetically based changes in protein function, it is necessary to document functional differences between the products of derived and wild-type alleles and to demonstrate that such differences impinge on higher-level physiological processes (and ultimately, fitness). In the case of metabolic enzymes, this requires documenting in vivo differences in reaction rate that give rise to differences in flux through the pathway in which the enzymes function. These measured differences in pathway flux should then give rise to differences in cellular or systemic physiology that affect fitness-related variation in whole-organism performance. Efforts to establish these causal connections between genotype, phenotype, and fitness require experiments that carefully control for environmental variation and background genetic variation. Here, we discuss experimental approaches to evaluate the contributions of amino-acid mutations to adaptive phenotypic change. We discuss conceptual and methodological issues associated with in vitro and in vivo studies of protein function, and the evolutionary insights that can be gleaned from such studies. We also discuss the importance of isolating the effects of individual mutations to distinguish between positively selected substitutions that directly contribute to improvements in protein function versus positively selected, compensatory substitutions that mitigate negative pleiotropic effects of antecedent changes.
Collapse
|
17
|
Williams CM, Thomas RH, MacMillan HA, Marshall KE, Sinclair BJ. Triacylglyceride measurement in small quantities of homogenised insect tissue: comparisons and caveats. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1602-1613. [PMID: 21878339 DOI: 10.1016/j.jinsphys.2011.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 05/31/2023]
Abstract
Triacylglycerides (TAGs) are the most important stored energy reserve in eukaryotes and are regularly measured in insects. Quantitative analysis of TAGs is complicated by their diversity of structure, and there are concerns with the quantitative accuracy of commonly used analytical methods. We used thin layer chromatography coupled to a flame ionisation detector (TLC-FID), an accurate method that is not sensitive to saturation or chain length of fatty acids, to quantify TAG content in small amounts of insect tissue, and used it to validate three high-throughput lipid assays (gravimetric, vanillin, and enzymatic). The performance of gravimetric assays depended on the solvent used. Folch reagent (chloroform: methanol 2:1 v/v) was a good index of TAG content, but overestimated lipid content due to the extraction of structural lipid and non-lipid components. Diethyl ether produced reasonable quantitative measurements but lacked precision and could not produce a repeatable rank-order of samples. The vanillin assay was accurate both as a quantitative method and as an index, preferably with a standard of mixed fatty acid composition. The enzymatic assay did not accurately or precisely quantify TAGs under our assay conditions. We conclude that the vanillin assay is suitable as a high-throughput method for quantifying TAG providing fatty acid composition does not change among treatment groups. However, if samples contain significant quantities of di- or mono-acylglycerides, or the fatty acid composition differs across treatment groups, TLC-FID is recommended.
Collapse
Affiliation(s)
- Caroline M Williams
- Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
18
|
Bernard KE, Parkes TL, Merritt TJS. A model of oxidative stress management: moderation of carbohydrate metabolizing enzymes in SOD1-null Drosophila melanogaster. PLoS One 2011; 6:e24518. [PMID: 21909438 PMCID: PMC3164733 DOI: 10.1371/journal.pone.0024518] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/12/2011] [Indexed: 01/25/2023] Open
Abstract
The response to oxidative stress involves numerous genes and mutations in these genes often manifest in pleiotropic ways that presumably reflect perturbations in ROS-mediated physiology. The Drosophila melanogaster SOD1-null allele (cSODn108) is proposed to result in oxidative stress by preventing superoxide breakdown. In SOD1-null flies, oxidative stress management is thought to be reliant on the glutathione-dependent antioxidants that utilize NADPH to cycle between reduced and oxidized form. Previous studies suggest that SOD1-null Drosophila rely on lipid catabolism for energy rather than carbohydrate metabolism. We tested these connections by comparing the activity of carbohydrate metabolizing enzymes, lipid and triglyceride concentration, and steady state NADPH:NADP+ in SOD1-null and control transgenic rescue flies. We find a negative shift in the activity of carbohydrate metabolizing enzymes in SOD1-nulls and the NADP+-reducing enzymes were found to have significantly lower activity than the other enzymes assayed. Little evidence for the catabolism of lipids as preferential energy source was found, as the concentration of lipids and triglycerides were not significantly lower in SOD1-nulls compared with controls. Using a starvation assay to impact lipids and triglycerides, we found that lipids were indeed depleted in both genotypes when under starvation stress, suggesting that oxidative damage was not preventing the catabolism of lipids in SOD1-null flies. Remarkably, SOD1-nulls were also found to be relatively resistant to starvation. Age profiles of enzyme activity, triglyceride and lipid concentration indicates that the trends observed are consistent over the average lifespan of the SOD1-nulls. Based on our results, we propose a model of physiological response in which organisms under oxidative stress limit the production of ROS through the down-regulation of carbohydrate metabolism in order to moderate the products exiting the electron transport chain.
Collapse
|
19
|
Eanes WF. Molecular population genetics and selection in the glycolytic pathway. ACTA ACUST UNITED AC 2011; 214:165-71. [PMID: 21177937 DOI: 10.1242/jeb.046458] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this review, I discuss the evidence for differential natural selection acting across enzymes in the glycolytic pathway in Drosophila. Across the genome, genes evolve at very different rates and possess markedly varying levels of molecular polymorphism, codon bias and expression variation. Discovering the underlying causes of this variation has been a challenge in evolutionary biology. It has been proposed that both the intrinsic properties of enzymes and their pathway position have direct effects on their molecular evolution, and with the genomic era the study of adaptation has been taken to the level of pathways and networks of genes and their products. Of special interest have been the energy-producing pathways. Using both population genetic and experimental approaches, our laboratory has been engaged in a study of molecular variation across the glycolytic pathway in Drosophila melanogaster and its close relatives. We have observed a pervasive pattern in which genes at the top of the pathway, especially around the intersection at glucose 6-phosphate, show evidence for both contemporary selection, in the form of latitudinal allele clines, and inter-specific selection, in the form of elevated levels of amino acid substitutions between species. To further explore this question, future work will require corroboration in other species, expansion into tangential pathways, and experimental work to better characterize metabolic control through the pathway and to examine the pleiotropic effects of these genes on other traits and fitness components.
Collapse
Affiliation(s)
- Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11790, USA.
| |
Collapse
|
20
|
Fan Y, Wang X, Deng C, Huang Y, Wang L, Chen W, Liang C, Li X, Wu Z, Yu X. Molecular cloning, expression, and immunolocalization of the NAD(+)-dependent glycerol 3-phosphate dehydrogenase (GPD) from Clonorchis sinensis. Parasitol Res 2011; 109:621-6. [PMID: 21409441 DOI: 10.1007/s00436-011-2303-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 02/10/2011] [Indexed: 11/25/2022]
Abstract
Glycerol 3-phosphate dehydrogenase (GPD) plays an important role in the energy metabolism and nutrition metabolism. In order to know about the biological functions of GPD of Clonorchis sinensis (C. sinensis), we identified a complete gene coding GPD from C. sinensis metacercaria cDNA library. This novel cDNA sequence contains 1,056 bp with a putative open reading frame of 351 amino acids and shares 74% identity with GPD from Schistosoma mansoni. Recombinant CsGPD was expressed and purified from Escherichia coli BL21 (DE3). Western blot analysis displayed that recombinant CsGPD can be recognized by anti-CsGPD serum and C. sinensis-infected serum. RT-PCR and immunolocalization analysis confirmed that GPD expressed both at the stage of adult worm and metacercaria of C. sinensis and immunolocated at the tegument of adult worm, tegument and tegumentary cells of metacercaria. Our current study has paved the way for the further researches about the biological functions involved in the growth of C. sinensis.
Collapse
Affiliation(s)
- Yongxiu Fan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhao HW, Zhou D, Nizet V, Haddad GG. Experimental selection for Drosophila survival in extremely high O2 environments. PLoS One 2010; 5:e11701. [PMID: 20668515 PMCID: PMC2909141 DOI: 10.1371/journal.pone.0011701] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/29/2010] [Indexed: 11/30/2022] Open
Abstract
Although oxidative stress is deleterious to mammals, the mechanisms underlying oxidant susceptibility or tolerance remain to be elucidated. In this study, through a long-term laboratory selection over many generations, we generated a Drosophila melanogaster strain that can live and reproduce in very high O2 environments (90% O2), a lethal condition to naïve flies. We demonstrated that tolerance to hyperoxia was heritable in these flies and that these hyperoxia-selected flies exhibited phenotypic differences from naïve flies, such as a larger body size and increased weight by 20%. Gene expression profiling revealed that 227 genes were significantly altered in expression and two third of these genes were down-regulated. Using a mutant screen strategy, we studied the role of some altered genes (up- or down-regulated in the microarrays) by testing the survival of available corresponding P-element or UAS construct lines under hyperoxic conditions. We report that down-regulation of several candidate genes including Tropomyosin 1, Glycerol 3 phosphate dehydrogenase, CG33129, and UGP as well as up-regulation of Diptericin and Attacin conferred tolerance to severe hyperoxia. In conclusion, we identified several genes that were not only altered in hyperoxia-selected flies but we also prove that these play an important role in hyperoxia survival. Thus our study provides a molecular basis for understanding the mechanisms of hyperoxia tolerance.
Collapse
Affiliation(s)
- Huiwen W. Zhao
- Divisions of Respiratory Medicine, Infectious Disease and Pharmacology and Drug Discovery, Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Dan Zhou
- Divisions of Respiratory Medicine, Infectious Disease and Pharmacology and Drug Discovery, Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Victor Nizet
- Divisions of Respiratory Medicine, Infectious Disease and Pharmacology and Drug Discovery, Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Rady Children's Hospital, San Diego, California, United States of America
| | - Gabriel G. Haddad
- Divisions of Respiratory Medicine, Infectious Disease and Pharmacology and Drug Discovery, Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Rady Children's Hospital, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Carmon A, Chien J, Sullivan D, MacIntyre R. The alpha glycerophosphate cycle in Drosophila melanogaster V. molecular analysis of alpha glycerophosphate dehydrogenase and alpha glycerophosphate oxidase mutants. J Hered 2009; 101:218-24. [PMID: 19995806 DOI: 10.1093/jhered/esp110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two enzymes, alpha glycerophosphate dehydrogenase (GPDH-1) in the cytoplasm and alpha glycerophosphate oxidase (GPO-1) in the mitochondrion cooperate in Drosophila flight muscles to generate the ATP needed for muscle contraction. Null mutants for either enzyme cannot fly. Here, we characterize 15 ethyl methane sulfonate (EMS)-induced mutants in GPDH-1 at the molecular level and assess their effects on structural and evolutionarily conserved domains of this enzyme. In addition, we molecularly characterize 3 EMS-induced GPO-1 mutants and excisions of a P element insertion in the GPO-1 gene. The latter represent the best candidate for null or amorphic mutants in this gene.
Collapse
Affiliation(s)
- Amber Carmon
- Department of Molecular Biology and Genetics, 407 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
23
|
Matzkin LM, Mutsaka K, Johnson S, Markow TA. Metabolic pools differ among ecologically diverse Drosophila species. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1145-1150. [PMID: 19698720 DOI: 10.1016/j.jinsphys.2009.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 05/28/2023]
Abstract
Studies of the genetic mechanisms underlying metabolic storage have focused on a few model organisms. Although very fruitful, these studies have not allowed for the examination of mechanisms across a phylogenetic spectrum. The exploration of natural patterns of metabolic pool size variation across species will help us to better understand the genetics of metabolic adaptation. We examined the metabolic pools size (triglyceride, glycogen and protein) at two ages in 12 Drosophila species with distinctly different ecologies for which complete genome sequences (for 11 of the 12 species) are known. Overall, there were significant differences across species for all three pools, while age and sex appear to affect some metabolic pools more than others. After correcting for the phylogenetic relatedness of the species used, we observed no association between triglyceride and glycogen content. Although within species these two pools sometimes are correlated, at a larger phylogenetic scale control of triglyceride and glycogen contents may have been shaped independently by natural selection.
Collapse
Affiliation(s)
- Luciano M Matzkin
- University of Arizona, Department of Ecology and Evolutionary Biology, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
In this report, we use synthetic, activity-variant alleles in Drosophila melanogaster to quantify interactions across the enzyme network that reduces nicotinamide adenine dinucleotide phosphate (NADP) to NADPH. We examine the effects of large-scale variation in isocitrate dehydrogenase (IDH) or glucose-6-phosphate dehydrogenase (G6PD) activity in a single genetic background and of smaller-scale variation in IDH, G6PD, and malic enzyme across 10 different genetic backgrounds. We find significant interactions among all three enzymes in adults; changes in the activity of any one source of a reduced cofactor generally result in changes in the other two, although the magnitude and directionality of change differs depending on the gene and the genetic background. Observed interactions are presumably through cellular mechanisms that maintain a homeostatic balance of NADPH/NADP, and the magnitude of change in response to modification of one source of reduced cofactor likely reflects the relative contribution of that enzyme to the cofactor pool. Our results suggest that malic enzyme makes the largest single contribution to the NADPH pool, consistent with the results from earlier experiments in larval D. melanogaster using naturally occurring alleles. The interactions between all three enzymes indicate functional interdependence and underscore the importance of examining enzymes as components of a network.
Collapse
|
25
|
Eanes WF, Merritt TJS, Flowers JM, Kumagai S, Zhu CT. Direct evidence that genetic variation in glycerol-3-phosphate and malate dehydrogenase genes (Gpdh and Mdh1) affects adult ethanol tolerance in Drosophila melanogaster. Genetics 2009; 181:607-14. [PMID: 19033156 PMCID: PMC2644950 DOI: 10.1534/genetics.108.089383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 11/19/2008] [Indexed: 11/18/2022] Open
Abstract
Many studies of alcohol adaptation in Drosophila melanogaster have focused on the Adh polymorphism, yet the metabolic elimination of alcohol should involve many enzymes and pathways. Here we evaluate the effects of glycerol-3-phosphate dehydrogenase (Gpdh) and cytosolic malate dehydrogenase (Mdh1) genotype activity on adult tolerance to ethanol. We have created a set of P-element-excision-derived Gpdh, Mdh1, and Adh alleles that generate a range of activity phenotypes from full to zero activity. Comparisons of paired Gpdh genotypes possessing 10 and 60% normal activity and 66 and 100% normal activity show significant effects where higher activity increases tolerance. Mdh1 null allele homozygotes show reductions in tolerance. We use piggyBac FLP-FRT site-specific recombination to create deletions and duplications of Gpdh. Duplications show an increase of 50% in activity and an increase of adult tolerance to ethanol exposure. These studies show that the molecular polymorphism associated with GPDH activity could be maintained in natural populations by selection related to adaptation to alcohols. Finally, we examine the interactions between activity genotypes for Gpdh, Mdh1, and Adh. We find no significant interlocus interactions. Observations on Mdh1 in both Gpdh and Adh backgrounds demonstrate significant increases in ethanol tolerance with partial reductions (50%) in cytosolic MDH activity. This observation strongly suggests the operation of pyruvate-malate and, in particular, pyruvate-citrate cycling in adaptation to alcohol exposure. We propose that an understanding of the evolution of tolerance to alcohols will require a system-level approach, rather than a focus on single enzymes.
Collapse
Affiliation(s)
- Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA.
| | | | | | | | | |
Collapse
|
26
|
An amino acid polymorphism in the couch potato gene forms the basis for climatic adaptation in Drosophila melanogaster. Proc Natl Acad Sci U S A 2008; 105:16207-11. [PMID: 18852464 DOI: 10.1073/pnas.0805485105] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diapause is the classic adaptation to seasonality in arthropods, and its expression can result in extreme lifespan extension as well as enhanced resistance to environmental challenges. Little is known about the underlying evolutionary genetic architecture of diapause in any organism. Drosophila melanogaster exhibits a reproductive diapause that is variable within and among populations; the incidence of diapause increases with more temperate climates and has significant pleiotropic effects on a number of life history traits. Using quantitative trait mapping, we identified the RNA-binding protein encoding gene couch potato (cpo) as a major genetic locus determining diapause phenotype in D. melanogaster and independently confirmed this ability to impact diapause expression through genetic complementation mapping. By sequencing this gene in samples from natural populations we demonstrated through linkage association that variation for the diapause phenotype is caused by a single Lys/Ile substitution in one of the six cpo transcripts. Complementation analyses confirmed that the identified amino acid variants are functionally distinct with respect to diapause expression, and the polymorphism also shows geographic variation that closely mirrors the known latitudinal cline in diapause incidence. Our results suggest that a naturally occurring amino acid polymorphism results in the variable expression of a diapause syndrome that is associated with the seasonal persistence of this model organism in temperate habitats.
Collapse
|
27
|
Xun Z, Kaufman TC, Clemmer DE. Proteome response to the panneural expression of human wild-type alpha-synuclein: a Drosophila model of Parkinson's disease. J Proteome Res 2008; 7:3911-21. [PMID: 18683964 DOI: 10.1021/pr800207h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The alpha-synuclein protein is associated with several neurodegenarative diseases, including Parkinson's disease (PD). In humans, only mutated forms of alpha-synuclein are linked to PD; however, panneural expression of human wild-type (WT) alpha-synuclein induces Parkinson's like-symptoms in Drosophila. Here, we report a quantitative proteomic analysis of WT alpha-synuclein transgenic flies with age-matched controls at the presymptomatic stage utilizing a global isotopic labeling strategy combined with multidimensional liquid chromatographies and tandem mass spectrometry. The analysis includes two biological replicates, in which samples are isotopically labeled in forward and reverse directions. In total, 229 proteins were quantified from assignments of at least two peptide sequences. Of these, 188 (82%) proteins were detected in both forward and reverse labeling measurements. Twelve proteins were found to be differentially expressed in response to the expression of human WT alpha-synuclein; down-regulations of larval serum protein 2 and fat body protein 1 levels were confirmed by Western blot analysis. Gene Ontology analysis indicates that the dysregulated proteins are primarily associated with cellular metabolism and signaling, suggesting potential contributions of perturbed metabolic and signaling pathways to PD. An increased level of the iron (III)-binding protein, ferritin, typically found in the brains of PD patients, is also observed in presymptomatic WT alpha-synuclein expressing animals. The observed alterations in both pathology-associated and novel proteins may shed light on the pathological roles of alpha-synuclein that may lead to the development of diagnostic strategies at the presymptomatic stage.
Collapse
Affiliation(s)
- Zhiyin Xun
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
28
|
Ruden DM, Rasouli P, Lu X. Potential long-term consequences of fad diets on health, cancer, and longevity: lessons learned from model organism studies. Technol Cancer Res Treat 2007; 6:247-54. [PMID: 17535033 DOI: 10.1177/153303460700600312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
While much of the third world starves, many in the first world are undergoing an obesity epidemic, and the related epidemics of type II diabetes, heart disease, and other diseases associated with obesity. The amount of economic wealth being directly related to a decline in health by obesity is ironic because rich countries contribute billions of dollars to improve the health of their citizens. Nevertheless, nutritional experiments in model organisms such as yeast, C. elegans, Drosophila, and mice confirm that "caloric restriction" (CR), which is defined generally as a 30-40% decrease in caloric intake, a famine-like condition for humans seen only in the poorest of countries, promotes good health and increases longevity in model organisms. Because caloric restriction, and dieting in general, requires a great deal of will power to deal with the feelings of deprivation, many fad diets, such as the Atkins, South Beach, and Protein Power, have been developed which allow people to lose weight purportedly without the severe feelings of deprivation. However, the long-term effects of such fad diets are not known and few experiments have been performed in the laboratory to investigate possible side affects and adverse consequences. In this paper, we review studies with fad-like dietary conditions in humans and model organisms, and we propose a "Dietary Ames Test" to rapidly screen fad diets, dietary supplements, and drugs for potential long-term health consequences in model organisms.
Collapse
Affiliation(s)
- Douglas M Ruden
- Institute for Environmental, Health Sciences, 2727 2nd Avenue, Room 4000, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
29
|
Eanes WF, Merritt TJS, Flowers JM, Kumagai S, Sezgin E, Zhu CT. Flux control and excess capacity in the enzymes of glycolysis and their relationship to flight metabolism in Drosophila melanogaster. Proc Natl Acad Sci U S A 2006; 103:19413-8. [PMID: 17159148 PMCID: PMC1748240 DOI: 10.1073/pnas.0607095104] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An important question in evolutionary and physiological genetics is how the control of flux-base phenotypes is distributed across the enzymes in a pathway. This control is often related to enzyme-specific levels of activity that are reported to be in excess of that required for demand. In glycolysis, metabolic control is frequently considered vested in classical regulatory enzymes, each strongly displaced from equilibrium. Yet the contribution of individual steps to control is unclear. To assess enzyme-specific control in the glycolytic pathway, we used P-element excision-derived mutagenesis in Drosophila melanogaster to generate full and partial knockouts of seven metabolic genes and to measure tethered flight performance. For most enzymes, we find that reduction to half of the normal activity has no measurable impact on wing beat frequency. The enzymes catalyzing near-equilibrium reactions, phosphoglucose isomerase, phosphoglucomutase, and triosephosphate isomerase fail to show any decline in flight performance even when activity levels are reduced to 17% or less. At reduced activities, the classic regulatory enzymes, hexokinase and glycogen phosphorylase, show significant drops in flight performance and are nearer to saturation. Our results show that flight performance is canalized or robust to the activity variation found in natural populations. Furthermore, enzymes catalyzing near-equilibrium reactions show strong genetic dominance down to low levels of activity. This implies considerable excess enzyme capacity for these enzymes.
Collapse
Affiliation(s)
- Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | | | |
Collapse
|