1
|
Seetharaman A, Galagali H, Linarte E, Liu MHX, Cohen JD, Chetal K, Sadreyev R, Tate AJ, Montgomery TA, Ruvkun G. Caenorhabditis elegans SynMuv B gene activity is down-regulated during a viral infection to enhance RNA interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603258. [PMID: 39071373 PMCID: PMC11275910 DOI: 10.1101/2024.07.12.603258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Small RNA pathways regulate eukaryotic antiviral defense. Many of the Caenorhabditis elegans mutations that were identified based on their enhanced RNAi, the synMuv B genes, also emerged from unrelated genetic screens for increased growth factor signaling. The dozen synMuv B genes encode homologues of the mammalian dREAM complex found in nearly all animals and plants, which includes the lin-35 /retinoblastoma oncogene. We show that a set of highly induced mRNAs in synMuv B mutants is congruent with mRNAs induced by Orsay RNA virus infection of C. elegans . In wild type animals, a combination of a synMuv A mutation and a synMuv B mutation are required for the Muv phenotype of increased growth factor signaling. But we show that Orsay virus infection of a single synMuv A mutant can induce a Muv phenotype, unlike the uninfected single synMuv A mutant. This suggests that decreased synMuv B activity, which activates the antiviral RNAi pathway, is a defense response to viral infection. Small RNA deep sequencing analysis of various dREAM complex mutants uncovers distinct siRNA profiles indicative of such an siRNA response. We conclude that the synMuv B mutants maintain an antiviral readiness state even in the absence of actual infection. The enhanced RNAi and conservation of the dREAM complex mutants suggests new therapeutic avenues to boost antiviral defenses.
Collapse
|
2
|
Cerón J. Caenorhabditis elegans for research on cancer hallmarks. Dis Model Mech 2023; 16:dmm050079. [PMID: 37278614 PMCID: PMC10259857 DOI: 10.1242/dmm.050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
After decades of research, our knowledge of the complexity of cancer mechanisms, elegantly summarized as 'hallmarks of cancer', is expanding, as are the therapeutic opportunities that this knowledge brings. However, cancer still needs intense research to diminish its tremendous impact. In this context, the use of simple model organisms such as Caenorhabditis elegans, in which the genetics of the apoptotic pathway was discovered, can facilitate the investigation of several cancer hallmarks. Amenable for genetic and drug screens, convenient for fast and efficient genome editing, and aligned with the 3Rs ('Replacement, Reduction and Refinement') principles for ethical animal research, C. elegans plays a significant role in unravelling the intricate network of cancer mechanisms and presents a promising option in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Julián Cerón
- Modeling Human Diseases in C. elegans Group – Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute – IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
3
|
Bujarrabal-Dueso A, Sendtner G, Meyer DH, Chatzinikolaou G, Stratigi K, Garinis GA, Schumacher B. The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities. Nat Struct Mol Biol 2023; 30:475-488. [PMID: 36959262 PMCID: PMC10113156 DOI: 10.1038/s41594-023-00942-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/25/2023]
Abstract
The DNA-repair capacity in somatic cells is limited compared with that in germ cells. It has remained unknown whether not only lesion-type-specific, but overall repair capacities could be improved. Here we show that the DREAM repressor complex curbs the DNA-repair capacities in somatic tissues of Caenorhabditis elegans. Mutations in the DREAM complex induce germline-like expression patterns of multiple mechanisms of DNA repair in the soma. Consequently, DREAM mutants confer resistance to a wide range of DNA-damage types during development and aging. Similarly, inhibition of the DREAM complex in human cells boosts DNA-repair gene expression and resistance to distinct DNA-damage types. DREAM inhibition leads to decreased DNA damage and prevents photoreceptor loss in progeroid Ercc1-/- mice. We show that the DREAM complex transcriptionally represses essentially all DNA-repair systems and thus operates as a highly conserved master regulator of the somatic limitation of DNA-repair capacities.
Collapse
Affiliation(s)
- Arturo Bujarrabal-Dueso
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Georg Sendtner
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - David H Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Goetsch PD, Strome S. DREAM interrupted: severing LIN-35-MuvB association in Caenorhabditis elegans impairs DREAM function but not its chromatin localization. Genetics 2022; 221:iyac073. [PMID: 35554539 PMCID: PMC9252284 DOI: 10.1093/genetics/iyac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
The mammalian pocket protein family, which includes the Retinoblastoma protein (pRb) and Rb-like pocket proteins p107 and p130, regulates entry into and exit from the cell cycle by repressing cell cycle gene expression. Although pRb plays a dominant role in mammalian systems, p107 and p130 are the ancestral pocket proteins. The Rb-like pocket proteins interact with the highly conserved 5-subunit MuvB complex and an E2F-DP transcription factor heterodimer, forming the DREAM (for Dp, Rb-like, E2F, and MuvB) complex. DREAM complex assembly on chromatin culminates in repression of target genes mediated by the MuvB subcomplex. Here, we examined how the Rb-like pocket protein contributes to DREAM formation and function by disrupting the interaction between the sole Caenorhabditis elegans pocket protein LIN-35 and the MuvB subunit LIN-52 using CRISPR/Cas9 targeted mutagenesis. A triple alanine substitution of LIN-52's LxCxE motif severed LIN-35-MuvB association and caused classical DREAM mutant phenotypes, including synthetic multiple vulvae, high-temperature arrest, and ectopic expression of germline genes in the soma. However, RNA-sequencing revealed limited upregulation of DREAM target genes when LIN-35-MuvB association was severed, as compared with gene upregulation following LIN-35 loss. Based on chromatin immunoprecipitation, disrupting LIN-35-MuvB association did not affect the chromatin localization of E2F-DP, LIN-35, or MuvB components. In a previous study, we showed that in worms lacking LIN-35, E2F-DP, and MuvB chromatin occupancy was reduced genome-wide. With LIN-35 present but unable to associate with MuvB, our study suggests that the E2F-DP-LIN-35 interaction promotes E2F-DP's chromatin localization, which we hypothesize supports MuvB chromatin occupancy indirectly through DNA. Altogether, this study highlights how the pocket protein's association with MuvB supports DREAM function but is not required for DREAM's chromatin occupancy.
Collapse
Affiliation(s)
- Paul D Goetsch
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
5
|
Kubota Y, Ohnishi Y, Hamasaki T, Yasui G, Ota N, Kitagawa H, Esaki A, Fahmi M, Ito M. Overlapping and non-overlapping roles of the class-I histone deacetylase-1 corepressors LET-418, SIN-3, and SPR-1 in Caenorhabditis elegans embryonic development. Genes Genomics 2021; 43:553-565. [PMID: 33740234 PMCID: PMC8110489 DOI: 10.1007/s13258-021-01076-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Histone deacetylase (HDAC)-1, a Class-I HDAC family member, forms three types of complexes, the nucleosome remodeling deacetylase, Sin3, and CoREST complexes with the specific corepressor components chromodomain-helicase-DNA-binding protein 3 (Mi2/CHD-3), Sin3, and REST corepressor 1 (RCOR1), respectively, in humans. OBJECTIVE To elucidate the functional relationships among the three transcriptional corepressors during embryogenesis. METHODS The activities of HDA-1, LET-418, SIN-3, and SPR-1, the homologs of HDAC-1, Mi2, Sin3, and RCOR1 in Caenorhabditis elegans during embryogenesis were investigated through measurement of relative mRNA expression levels and embryonic lethality given either gene knockdown or deletion. Additionally, the terminal phenotypes of each knockdown and mutant embryo were observed using a differential-interference contrast microscope. Finally, the functional relationships among the three corepressors were examined through genetic interactions and transcriptome analyses. RESULTS Here, we report that each of the corepressors LET-418, SIN-3, and SPR-1 are expressed and have essential roles in C. elegans embryonic development. Our terminal phenotype observations of single mutants further implied that LET-418, SIN-3, and SPR-1 play similar roles in promoting advancement to the middle and late embryonic stages. Combined analysis of genetic interactions and gene ontology of these corepressors indicate a prominent overlapping role among SIN-3, SPR-1, and LET-418 and between SIN-3 and SPR-1. CONCLUSION Our findings suggest that the class-I HDAC-1 corepressors LET-418, SIN-3, and SPR-1 may cooperatively regulate the expression levels of some genes during C. elegans embryogenesis or may have some similar roles but functioning independently within a specific cell.
Collapse
Affiliation(s)
- Yukihiro Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuto Ohnishi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tasuku Hamasaki
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Gen Yasui
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Natsumi Ota
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hiromu Kitagawa
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Arashi Esaki
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Muhamad Fahmi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masahiro Ito
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
6
|
Wang P, van der Hoeven D, Ye N, Chen H, Liu Z, Ma X, Montufar-Solis D, Rehl KM, Cho KJ, Thapa S, Chen W, van der Hoeven R, Frost JA, Hancock JF, Zhou J. Scaffold repurposing of fendiline: Identification of potent KRAS plasma membrane localization inhibitors. Eur J Med Chem 2021; 217:113381. [PMID: 33756124 DOI: 10.1016/j.ejmech.2021.113381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
KRAS plays an essential role in regulating cell proliferation, differentiation, migration and survival. Mutated KRAS is a major driver of malignant transformation in multiple human cancers. We showed previously that fendiline (6) is an effective inhibitor of KRAS plasma membrane (PM) localization and function. In this study, we designed, synthesized and evaluated a series of new fendiline analogs to optimize its drug properties. Systemic structure-activity relationship studies by scaffold repurposing led to the discovery of several more active KRAS PM localization inhibitors such as compounds 12f (NY0244), 12h (NY0331) and 22 (NY0335) which exhibit nanomolar potencies. These compounds inhibited oncogenic KRAS-driven cancer cell proliferation at single-digit micromolar concentrations in vitro. In vivo studies in a xenograft model of pancreatic cancer revealed that 12h and 22 suppressed oncogenic KRAS-expressing MiaPaCa-2 tumor growth at a low dose range of 1-5 mg/kg with no vasodilatory effects, indicating their potential as chemical probes and anticancer therapeutics.
Collapse
Affiliation(s)
- Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Xiaoping Ma
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Dina Montufar-Solis
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kristen M Rehl
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Sabita Thapa
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Wei Chen
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ransome van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
7
|
Robert VJ, Knutson AK, Rechtsteiner A, Garvis S, Yvert G, Strome S, Palladino F. Caenorhabditis elegans SET1/COMPASS Maintains Germline Identity by Preventing Transcriptional Deregulation Across Generations. Front Cell Dev Biol 2020; 8:561791. [PMID: 33072747 PMCID: PMC7536326 DOI: 10.3389/fcell.2020.561791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromatin regulators contribute to the maintenance of the germline transcriptional program. In the absence of SET-2, the Caenorhabditis elegans homolog of the SET1/COMPASS H3 Lys4 (H3K4) methyltransferase, animals show transgenerational loss of germline identity, leading to sterility. To identify transcriptional signatures associated with progressive loss of fertility, we performed expression profiling of set-2 mutant germlines across generations. We identify a subset of genes whose misexpression is first observed in early generations, a step we refer to as priming; their misexpression then further progresses in late generations, as animals reach sterility. Analysis of misregulated genes shows that down-regulation of germline genes, expression of somatic transcriptional programs, and desilencing of the X-chromosome are concurrent events leading to loss of germline identity in both early and late generations. Upregulation of transcription factor LIN-15B, the C/EBP homolog CEBP-1, and TGF-β pathway components strongly contribute to loss of fertility, and RNAi inactivation of cebp-1 and TGF-β/Smad signaling delays the onset of sterility, showing they individually contribute to maintenance of germ cell identity. Our approach therefore identifies genes and pathways whose misexpression actively contributes to the loss of germ cell fate. More generally, our data shows how loss of a chromatin regulator in one generation leads to transcriptional changes that are amplified over subsequent generations, ultimately leading to loss of appropriate cell fate.
Collapse
Affiliation(s)
- Valérie J Robert
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Andrew K Knutson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andreas Rechtsteiner
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Steven Garvis
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Gaël Yvert
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
8
|
Delaney CE, Methot SP, Guidi M, Katic I, Gasser SM, Padeken J. Heterochromatic foci and transcriptional repression by an unstructured MET-2/SETDB1 co-factor LIN-65. J Cell Biol 2019; 218:820-838. [PMID: 30737265 PMCID: PMC6400574 DOI: 10.1083/jcb.201811038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
The segregation of the genome into accessible euchromatin and histone H3K9-methylated heterochromatin helps silence repetitive elements and tissue-specific genes. In Caenorhabditis elegans, MET-2, the homologue of mammalian SETDB1, catalyzes H3K9me1 and me2, yet like SETDB1, its regulation is enigmatic. Contrary to the cytosolic enrichment of overexpressed MET-2, we show that endogenous MET-2 is nuclear throughout development, forming perinuclear foci in a cell cycle-dependent manner. Mass spectrometry identified two cofactors that bind MET-2: LIN-65, a highly unstructured protein, and ARLE-14, a conserved GTPase effector. All three factors colocalize in heterochromatic foci. Ablation of lin-65, but not arle-14, mislocalizes and destabilizes MET-2, resulting in decreased H3K9 dimethylation, dispersion of heterochromatic foci, and derepression of MET-2 targets. Mutation of met-2 or lin-65 also disrupts the perinuclear anchoring of genomic heterochromatin. Loss of LIN-65, like that of MET-2, compromises temperature stress resistance and germline integrity, which are both linked to promiscuous repeat transcription and gene expression.
Collapse
Affiliation(s)
- Colin E Delaney
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephen P Methot
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Micol Guidi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Iskra Katic
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Faculty of Natural Sciences, Basel, Switzerland
| | - Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
9
|
Shin H, Reiner DJ. The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. J Dev Biol 2018; 6:E30. [PMID: 30544993 PMCID: PMC6316802 DOI: 10.3390/jdb6040030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
EGF, emitted by the Anchor Cell, patterns six equipotent C. elegans vulval precursor cells to assume a precise array of three cell fates with high fidelity. A group of core and modulatory signaling cascades forms a signaling network that demonstrates plasticity during the transition from naïve to terminally differentiated cells. In this review, we summarize the history of classical developmental manipulations and molecular genetics experiments that led to our understanding of the signals governing this process, and discuss principles of signal transduction and developmental biology that have emerged from these studies.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- College of Medicine, Texas A & M University, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Mutlu B, Chen HM, Moresco JJ, Orelo BD, Yang B, Gaspar JM, Keppler-Ross S, Yates JR, Hall DH, Maine EM, Mango SE. Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in C. elegans embryos. SCIENCE ADVANCES 2018; 4:eaat6224. [PMID: 30140741 PMCID: PMC6105299 DOI: 10.1126/sciadv.aat6224] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/18/2018] [Indexed: 05/19/2023]
Abstract
Heterochromatin formation during early embryogenesis is timed precisely, but how this process is regulated remains elusive. We report the discovery of a histone methyltransferase complex whose nuclear accumulation and activation establish the onset of heterochromatin formation in Caenorhabditis elegans embryos. We find that the inception of heterochromatin generation coincides with the accumulation of the histone H3 lysine 9 (H3K9) methyltransferase MET-2 (SETDB) into nuclear hubs. The absence of MET-2 results in delayed and disturbed heterochromatin formation, whereas accelerated nuclear localization of the methyltransferase leads to precocious H3K9 methylation. We identify two factors that bind to and function with MET-2: LIN-65, which resembles activating transcription factor 7-interacting protein (ATF7IP) and localizes MET-2 into nuclear hubs, and ARLE-14, which is orthologous to adenosine 5'-diphosphate-ribosylation factor-like 14 effector protein (ARL14EP) and promotes stable association of MET-2 with chromatin. These data reveal that nuclear accumulation of MET-2 in conjunction with LIN-65 and ARLE-14 regulates timing of heterochromatin domains during embryogenesis.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Huei-Mei Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - James J. Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Barbara D. Orelo
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Bing Yang
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - John M. Gaspar
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Sabine Keppler-Ross
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eleanor M. Maine
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Susan E. Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author.
| |
Collapse
|
11
|
Sphingomyelin Metabolism Is a Regulator of K-Ras Function. Mol Cell Biol 2018; 38:MCB.00373-17. [PMID: 29158292 DOI: 10.1128/mcb.00373-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
K-Ras must localize to the plasma membrane (PM) for biological activity. We show here that multiple acid sphingomyelinase (ASM) inhibitors, including tricyclic antidepressants, mislocalized phosphatidylserine (PtdSer) and K-RasG12V from the PM, resulting in abrogation of K-RasG12V signaling and potent, selective growth inhibition of mutant K-Ras-transformed cancer cells. Concordantly, in nude mice, the ASM inhibitor fendiline decreased the rate of growth of oncogenic K-Ras-expressing MiaPaCa-2 tumors but had no effect on the growth of the wild-type K-Ras-expressing BxPC-3 tumors. ASM inhibitors also inhibited activated LET-60 (a K-Ras ortholog) signaling in Caenorhabditis elegans, as evidenced by suppression of the induced multivulva phenotype. Using RNA interference against C. elegans genes encoding other enzymes in the sphingomyelin (SM) biosynthetic pathway, we identified 14 enzymes whose knockdown strongly or moderately suppressed the LET-60 multivulva phenotype. In mammalian cells, pharmacological agents that target these enzymes all depleted PtdSer from the PM and caused K-RasG12V mislocalization. These effects correlated with changes in SM levels or subcellular distribution. Selected compounds, including sphingosine kinase inhibitors, potently inhibited the proliferation of oncogenic K-Ras-expressing pancreatic cancer cells. In conclusion, these results show that normal SM metabolism is critical for K-Ras function, which may present therapeutic options for the treatment of K-Ras-driven cancers.
Collapse
|
12
|
Cheng MH, Andrejka L, Vorster PJ, Hinman A, Lipsick JS. The Drosophila LIN54 homolog Mip120 controls two aspects of oogenesis. Biol Open 2017; 6:967-978. [PMID: 28522430 PMCID: PMC5550918 DOI: 10.1242/bio.025825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The conserved multi-protein MuvB core associates with the Myb oncoproteins and with the RB-E2F-DP tumor suppressor proteins in complexes that regulate cell proliferation, differentiation, and apoptosis. Drosophila Mip120, a homolog of LIN54, is a sequence-specific DNA-binding protein within the MuvB core. A mutant of Drosophilamip120 was previously shown to cause female and male sterility. We now show that Mip120 regulates two different aspects of oogenesis. First, in the absence of the Mip120 protein, egg chambers arrest during the transition from stage 7 to 8 with a failure of the normal program of chromosomal dynamics in the ovarian nurse cells. Specifically, the decondensation, disassembly and dispersion of the endoreplicated polytene chromosomes fail to occur without Mip120. The conserved carboxy-terminal DNA-binding and protein-protein interaction domains of Mip120 are necessary but not sufficient for this process. Second, we show that a lack of Mip120 causes a dramatic increase in the expression of benign gonial cell neoplasm (bgcn), a gene that is normally expressed in only a small number of cells within the ovary including the germline stem cells. Summary:Drosophila Mip120/LIN54, regulates ovarian nurse cell chromosome disassembly and germline-specific gene expression. These functions of Mip120 require its less conserved N-terminus in addition to its CXC DNA-binding and HCH protein-interaction domains.
Collapse
Affiliation(s)
- Mei-Hsin Cheng
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Laura Andrejka
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Paul J Vorster
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Albert Hinman
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Joseph S Lipsick
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
13
|
McMurchy AN, Stempor P, Gaarenstroom T, Wysolmerski B, Dong Y, Aussianikava D, Appert A, Huang N, Kolasinska-Zwierz P, Sapetschnig A, Miska EA, Ahringer J. A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress. eLife 2017; 6:e21666. [PMID: 28294943 PMCID: PMC5395297 DOI: 10.7554/elife.21666] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/10/2017] [Indexed: 12/26/2022] Open
Abstract
Repetitive sequences derived from transposons make up a large fraction of eukaryotic genomes and must be silenced to protect genome integrity. Repetitive elements are often found in heterochromatin; however, the roles and interactions of heterochromatin proteins in repeat regulation are poorly understood. Here we show that a diverse set of C. elegans heterochromatin proteins act together with the piRNA and nuclear RNAi pathways to silence repetitive elements and prevent genotoxic stress in the germ line. Mutants in genes encoding HPL-2/HP1, LIN-13, LIN-61, LET-418/Mi-2, and H3K9me2 histone methyltransferase MET-2/SETDB1 also show functionally redundant sterility, increased germline apoptosis, DNA repair defects, and interactions with small RNA pathways. Remarkably, fertility of heterochromatin mutants could be partially restored by inhibiting cep-1/p53, endogenous meiotic double strand breaks, or the expression of MIRAGE1 DNA transposons. Functional redundancy among factors and pathways underlies the importance of safeguarding the genome through multiple means.
Collapse
Affiliation(s)
- Alicia N McMurchy
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Przemyslaw Stempor
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Tessa Gaarenstroom
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Brian Wysolmerski
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Darya Aussianikava
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Alex Appert
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ni Huang
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Alexandra Sapetschnig
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Eric A Miska
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
|
15
|
Tian Y, Garcia G, Bian Q, Steffen KK, Joe L, Wolff S, Meyer BJ, Dillin A. Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and UPR(mt). Cell 2016; 165:1197-1208. [PMID: 27133166 DOI: 10.1016/j.cell.2016.04.011] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/23/2015] [Accepted: 04/01/2016] [Indexed: 01/01/2023]
Abstract
Organisms respond to mitochondrial stress through the upregulation of an array of protective genes, often perpetuating an early response to metabolic dysfunction across a lifetime. We find that mitochondrial stress causes widespread changes in chromatin structure through histone H3K9 di-methylation marks traditionally associated with gene silencing. Mitochondrial stress response activation requires the di-methylation of histone H3K9 through the activity of the histone methyltransferase met-2 and the nuclear co-factor lin-65. While globally the chromatin becomes silenced by these marks, remaining portions of the chromatin open up, at which point the binding of canonical stress responsive factors such as DVE-1 occurs. Thus, a metabolic stress response is established and propagated into adulthood of animals through specific epigenetic modifications that allow for selective gene expression and lifespan extension.
Collapse
Affiliation(s)
- Ye Tian
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gilberto Garcia
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qian Bian
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kristan K Steffen
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry Joe
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Suzanne Wolff
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
16
|
Ertl I, Porta-de-la-Riva M, Gómez-Orte E, Rubio-Peña K, Aristizábal-Corrales D, Cornes E, Fontrodona L, Osteikoetxea X, Ayuso C, Askjaer P, Cabello J, Cerón J. Functional Interplay of Two Paralogs Encoding SWI/SNF Chromatin-Remodeling Accessory Subunits During Caenorhabditis elegans Development. Genetics 2016; 202:961-75. [PMID: 26739451 PMCID: PMC4788132 DOI: 10.1534/genetics.115.183533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022] Open
Abstract
SWI/SNF ATP-dependent chromatin-remodeling complexes have been related to several cellular processes such as transcription, regulation of chromosomal stability, and DNA repair. The Caenorhabditis elegans gene ham-3 (also known as swsn-2.1) and its paralog swsn-2.2 encode accessory subunits of SWI/SNF complexes. Using RNA interference (RNAi) assays and diverse alleles we investigated whether ham-3 and swsn-2.2 have different functions during C. elegans development since they encode proteins that are probably mutually exclusive in a given SWI/SNF complex. We found that ham-3 and swsn-2.2 display similar functions in vulva specification, germline development, and intestinal cell proliferation, but have distinct roles in embryonic development. Accordingly, we detected functional redundancy in some developmental processes and demonstrated by RNA sequencing of RNAi-treated L4 animals that ham-3 and swsn-2.2 regulate the expression of a common subset of genes but also have specific targets. Cell lineage analyses in the embryo revealed hyper-proliferation of intestinal cells in ham-3 null mutants whereas swsn-2.2 is required for proper cell divisions. Using a proteomic approach, we identified SWSN-2.2-interacting proteins needed for early cell divisions, such as SAO-1 and ATX-2, and also nuclear envelope proteins such as MEL-28. swsn-2.2 mutants phenocopy mel-28 loss-of-function, and we observed that SWSN-2.2 and MEL-28 colocalize in mitotic and meiotic chromosomes. Moreover, we demonstrated that SWSN-2.2 is required for correct chromosome segregation and nuclear reassembly after mitosis including recruitment of MEL-28 to the nuclear periphery.
Collapse
Affiliation(s)
- Iris Ertl
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Porta-de-la-Riva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain C. elegans Core Facility, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Gómez-Orte
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Karinna Rubio-Peña
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Aristizábal-Corrales
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eric Cornes
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Fontrodona
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xabier Osteikoetxea
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Julián Cerón
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
17
|
Nishibuchi G, Shibata Y, Hayakawa T, Hayakawa N, Ohtani Y, Sinmyozu K, Tagami H, Nakayama JI. Physical and functional interactions between the histone H3K4 demethylase KDM5A and the nucleosome remodeling and deacetylase (NuRD) complex. J Biol Chem 2014; 289:28956-70. [PMID: 25190814 DOI: 10.1074/jbc.m114.573725] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Histone H3K4 methylation has been linked to transcriptional activation. KDM5A (also known as RBP2 or JARID1A), a member of the KDM5 protein family, is an H3K4 demethylase, previously implicated in the regulation of transcription and differentiation. Here, we show that KDM5A is physically and functionally associated with two histone deacetylase complexes. Immunoaffinity purification of KDM5A confirmed a previously described association with the SIN3B-containing histone deacetylase complex and revealed an association with the nucleosome remodeling and deacetylase (NuRD) complex. Sucrose density gradient and sequential immunoprecipitation analyses further confirmed the stable association of KDM5A with these two histone deacetylase complexes. KDM5A depletion led to changes in the expression of hundreds of genes, two-thirds of which were also controlled by CHD4, the NuRD catalytic subunit. Gene ontology analysis confirmed that the genes commonly regulated by both KDM5A and CHD4 were categorized as developmentally regulated genes. ChIP analyses suggested that CHD4 modulates H3K4 methylation levels at the promoter and coding regions of target genes. We further demonstrated that the Caenorhabditis elegans homologues of KDM5 and CHD4 function in the same pathway during vulva development. These results suggest that KDM5A and the NuRD complex cooperatively function to control developmentally regulated genes.
Collapse
Affiliation(s)
- Gohei Nishibuchi
- From the Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501
| | - Yukimasa Shibata
- the Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo 669-1337, and
| | | | | | | | - Kaori Sinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Hideaki Tagami
- From the Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501
| | - Jun-ichi Nakayama
- From the Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, the Laboratory for Chromatin Dynamics and
| |
Collapse
|
18
|
Zheng C, Karimzadegan S, Chiang V, Chalfie M. Histone methylation restrains the expression of subtype-specific genes during terminal neuronal differentiation in Caenorhabditis elegans. PLoS Genet 2013; 9:e1004017. [PMID: 24348272 PMCID: PMC3861114 DOI: 10.1371/journal.pgen.1004017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/25/2013] [Indexed: 01/16/2023] Open
Abstract
Although epigenetic control of stem cell fate choice is well established, little is known about epigenetic regulation of terminal neuronal differentiation. We found that some differences among the subtypes of Caenorhabditis elegans VC neurons, particularly the expression of the transcription factor gene unc-4, require histone modification, most likely H3K9 methylation. An EGF signal from the vulva alleviated the epigenetic repression of unc-4 in vulval VC neurons but not the more distant nonvulval VC cells, which kept unc-4 silenced. Loss of the H3K9 methyltransferase MET-2 or H3K9me2/3 binding proteins HPL-2 and LIN-61 or a novel chromodomain protein CEC-3 caused ectopic unc-4 expression in all VC neurons. Downstream of the EGF signaling in vulval VC neurons, the transcription factor LIN-11 and histone demethylases removed the suppressive histone marks and derepressed unc-4. Behaviorally, expression of UNC-4 in all the VC neurons caused an imbalance in the egg-laying circuit. Thus, epigenetic mechanisms help establish subtype-specific gene expression, which are needed for optimal activity of a neural circuit.
Collapse
Affiliation(s)
- Chaogu Zheng
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Siavash Karimzadegan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Victor Chiang
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
19
|
SLI-1 Cbl inhibits the engulfment of apoptotic cells in C. elegans through a ligase-independent function. PLoS Genet 2012; 8:e1003115. [PMID: 23271977 PMCID: PMC3521709 DOI: 10.1371/journal.pgen.1003115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/11/2012] [Indexed: 11/19/2022] Open
Abstract
The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway, which includes the small GTPase CED-10 Rac and the cytoskeletal regulator ABI-1, acts to rearrange the cytoskeleton of the engulfing cell. The CED-10 Rac pathway is also required for proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. The second pathway includes the receptor tyrosine kinase CED-1 and might recruit membranes to extend the surface of the engulfing cell. Cbl, the mammalian homolog of the C. elegans E3 ubiquitin ligase and adaptor protein SLI-1, interacts with Rac and Abi2 and modulates the actin cytoskeleton, suggesting it might act in engulfment. Our genetic studies indicate that SLI-1 inhibits apoptotic cell engulfment and DTC migration independently of the CED-10 Rac and CED-1 pathways. We found that the RING finger domain of SLI-1 is not essential to rescue the effects of SLI-1 deletion on cell migration, suggesting that its role in this process is ubiquitin ligase-independent. We propose that SLI-1 opposes the engulfment of apoptotic cells via a previously unidentified pathway.
Collapse
|
20
|
Drosophila lin-52 acts in opposition to repressive components of the Myb-MuvB/dREAM complex. Mol Cell Biol 2012; 32:3218-27. [PMID: 22688510 DOI: 10.1128/mcb.00432-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila melanogaster Myb-MuvB/dREAM complex (MMB/dREAM) participates in both the activation and repression of developmentally regulated genes and origins of DNA replication. Mutants in MMB subunits exhibit diverse phenotypes, including lethality, eye defects, reduced fecundity, and sterility. Here, we used P-element excision to generate mutations in lin-52, which encodes the smallest subunit of the MMB/dREAM complex. lin-52 is required for viability, as null mutants die prior to pupariation. The generation of somatic and germ line mutant clones indicates that lin-52 is required for adult eye development and for early embryogenesis via maternal effects. Interestingly, the maternal-effect embryonic lethality, larval lethality, and adult eye defects could be suppressed by mutations in other subunits of the MMB/dREAM complex. These results suggest that a partial MMB/dREAM complex is responsible for the lethality and eye defects of lin-52 mutants. Furthermore, these findings support a model in which the Lin-52 and Myb proteins counteract the repressive activities of the other members of the MMB/dREAM complex at specific genomic loci in a developmentally controlled manner.
Collapse
|
21
|
Wu X, Shi Z, Cui M, Han M, Ruvkun G. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes. PLoS Genet 2012; 8:e1002542. [PMID: 22412383 PMCID: PMC3297578 DOI: 10.1371/journal.pgen.1002542] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 12/30/2011] [Indexed: 11/22/2022] Open
Abstract
The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene. In metazoans, soma and germline have specialized functions that require differential tissue-specific gene expression. In C. elegans, explicit chromatin marks deposited by the MES-4 histone methyltransferase and the MRG-1 chromodomain protein allow germline expression of particular suites of target genes. Conversely, the expression of germline-specific genes is repressed in somatic cells by other chromatin regulatory factors, including the retinoblastoma pathway genes. We characterized the distinct profiles of somatic misexpression of normally germline-specific genes in these mutants and mapped out three chromatin complexes that prevent misexpression. We demonstrate that one of the complexes closely counteracts the activity of MES-4 and MRG-1, whereas another complex interacts with additional regulators that are yet to be identified. We show that these intersecting chromatin complexes prevent the upregulation of a suite of germline-specific as well as ubiquitous small RNA pathway genes, which contributes to the enhanced RNAi response in retinoblastoma pathway mutant worms. We suggest that this function of the retinoblastoma pathway chromatin factors to prevent germline-associated gene expression programs in the soma and the upregulation of small RNA pathways may also underlie their role as tumor suppressors.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhen Shi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mingxue Cui
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Min Han
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Fisher K, Southall SM, Wilson JR, Poulin GB. Methylation and demethylation activities of a C. elegans MLL-like complex attenuate RAS signalling. Dev Biol 2010; 341:142-53. [PMID: 20188723 DOI: 10.1016/j.ydbio.2010.02.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/12/2010] [Indexed: 12/16/2022]
Abstract
The conserved Mixed Lineage Leukaemia (MLL) complex deposits activating methyl marks on histone tails through a methyltransferase (MT) activity. Here we provide in vivo evidence that in addition to methylation, the C. elegans MLL-like complex can remove specific methyl marks linked to repression of transcription. This supports the proposed model in which the MLL complex orchestrates both the deposition and the removal of methyl marks to activate transcription. We have uncovered the MLL-like complex in a large-scale RNAi screen designed to identify attenuators of RAS signalling during vulval development. We have also found that the histone acetyltransferase complex, NuA4/TIP60, cooperates with the C. elegans MLL-like complex in the attenuation of RAS signalling. Critically, we show that both complexes regulate a common novel target and attenuator of RAS signalling, AJM-1 (Apical Junction Molecule-1). Therefore, the C. elegans MLL-like complex cooperates with the NuA4/TIP60 complex to regulate the expression of a novel effector, AJM-1.
Collapse
Affiliation(s)
- Kate Fisher
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
23
|
Schouest KR, Kurasawa Y, Furuta T, Hisamoto N, Matsumoto K, Schumacher JM. The germinal center kinase GCK-1 is a negative regulator of MAP kinase activation and apoptosis in the C. elegans germline. PLoS One 2009; 4:e7450. [PMID: 19826475 PMCID: PMC2757678 DOI: 10.1371/journal.pone.0007450] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/22/2009] [Indexed: 11/25/2022] Open
Abstract
The germinal center kinases (GCK) constitute a large, highly conserved family of proteins that has been implicated in a wide variety of cellular processes including cell growth and proliferation, polarity, migration, and stress responses. Although diverse, these functions have been attributed to an evolutionarily conserved role for GCKs in the activation of ERK, JNK, and p38 MAP kinase pathways. In addition, multiple GCKs from different species promote apoptotic cell death. In contrast to these paradigms, we found that a C. elegans GCK, GCK-1, functions to inhibit MAP kinase activation and apoptosis in the C. elegans germline. In the absence of GCK-1, a specific MAP kinase isoform is ectopically activated and oocytes undergo abnormal development. Moreover, GCK-1- deficient animals display a significant increase in germ cell death. Our results suggest that individual germinal center kinases act in mechanistically distinct ways and that these functions are likely to depend on organ- and developmental-specific contexts.
Collapse
Affiliation(s)
- Katherine R. Schouest
- Department of Genetics, The University of M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Genes and Development Program, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Yasuhiro Kurasawa
- Department of Genetics, The University of M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Tokiko Furuta
- Department of Genetics, The University of M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Naoki Hisamoto
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya, Japan
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya, Japan
| | - Jill M. Schumacher
- Department of Genetics, The University of M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Genes and Development Program, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
- * E-mail: .
| |
Collapse
|
24
|
Multiple levels of redundant processes inhibit Caenorhabditis elegans vulval cell fates. Genetics 2008; 179:2001-12. [PMID: 18689876 DOI: 10.1534/genetics.108.092197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many mutations cause obvious abnormalities only when combined with other mutations. Such synthetic interactions can be the result of redundant gene functions. In Caenorhabditis elegans, the synthetic multivulva (synMuv) genes have been grouped into multiple classes that redundantly inhibit vulval cell fates. Animals with one or more mutations of the same class undergo wild-type vulval development, whereas animals with mutations of any two classes have a multivulva phenotype. By varying temperature and genetic background, we determined that mutations in most synMuv genes within a single synMuv class enhance each other. However, in a few cases no enhancement was observed. For example, mutations that affect an Mi2 homolog and a histone methyltransferase are of the same class and do not show enhancement. We suggest that such sets of genes function together in vivo and in at least some cases encode proteins that interact physically. The approach of genetic enhancement can be applied more broadly to identify potential protein complexes as well as redundant processes or pathways. Many synMuv genes are evolutionarily conserved, and the genetic relationships we have identified might define the functions not only of synMuv genes in C. elegans but also of their homologs in other organisms.
Collapse
|
25
|
Sacher R, Stergiou L, Pelkmans L. Lessons from genetics: interpreting complex phenotypes in RNAi screens. Curr Opin Cell Biol 2008; 20:483-9. [PMID: 18602470 DOI: 10.1016/j.ceb.2008.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 11/16/2022]
Abstract
Mammalian cell biology is witnessing a new era in which cellular processes are explained through dynamic networks of interacting cellular components. In this fast-pacing field, where image-based RNAi screening is taking a central role, there is a strong need to improve ways to capture such interactions in space and time. Cell biologists traditionally depict these events by confining themselves to the level of a single cell, or to many population-averaged cells. Similarly, classical geneticists observe and interpret phenotypes in a single organism to delineate signaling processes, but have also described genetic phenomena in populations of organisms. The analogy in the two approaches inspired us to draw parallels with, and take lessons from concepts in classical genetics.
Collapse
Affiliation(s)
- Raphael Sacher
- Institute of Molecular Systems Biology, ETH Zürich, Wolfgang-Pauli Street 16, 8093 Zürich, Switzerland.
| | | | | |
Collapse
|
26
|
A B-Myb complex containing clathrin and filamin is required for mitotic spindle function. EMBO J 2008; 27:1852-62. [PMID: 18548008 DOI: 10.1038/emboj.2008.118] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 05/27/2008] [Indexed: 12/18/2022] Open
Abstract
B-Myb is one member of the vertebrate Myb family of transcription factors and is ubiquitously expressed. B-Myb activates transcription of a group of genes required for the G2/M cell cycle transition by forming the dREAM/Myb-MuvB-like complex, which was originally identified in Drosophila. Mutants of zebrafish B-myb and Drosophila myb exhibit defects in cell cycle progression and genome instability. Although the genome instability caused by a loss of B-Myb has been speculated to be due to abnormal cell cycle progression, the precise mechanism remains unknown. Here, we have purified a B-Myb complex containing clathrin and filamin (Myb-Clafi complex). This complex is required for normal localization of clathrin at the mitotic spindle, which was previously reported to stabilize kinetochore fibres. The Myb-Clafi complex is not tightly associated with the mitotic spindles, suggesting that this complex ferries clathrin to the mitotic spindles. Thus, identification of the Myb-Clafi complex reveals a previously unrecognized function of B-Myb that may contribute to its role in chromosome stability, possibly, tumour suppression.
Collapse
|
27
|
Wen H, Andrejka L, Ashton J, Karess R, Lipsick JS. Epigenetic regulation of gene expression by Drosophila Myb and E2F2-RBF via the Myb-MuvB/dREAM complex. Genes Dev 2008; 22:601-14. [PMID: 18316477 DOI: 10.1101/gad.1626308] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Drosophila Myb oncoprotein, the E2F2 transcriptional repressor, and the RBF and Mip130/LIN-9 tumor suppressor proteins reside in a conserved Myb-MuvB (MMB)/dREAM complex. We now show that Myb is required in vivo for the expression of Polo kinase and components of the spindle assembly checkpoint (SAC). Surprisingly, the highly conserved DNA-binding domain was not essential for assembly of Myb into MMB/dREAM, for transcriptional regulation in vivo, or for rescue of Myb-null mutants to adult viability. E2F2, RBF, and Mip130/LIN-9 acted in opposition to Myb by repressing the expression of Polo and SAC genes in vivo. Remarkably, the absence of both Myb and Mip130, or of both Myb and E2F2, caused variegated expression in which high or low levels of Polo were stably inherited through successive cell divisions in imaginal wing discs. Restoration of Myb resulted in a uniformly high level of Polo expression similar to that seen in wild-type tissue, whereas restoration of Mip130 or E2F2 extinguished Polo expression. Our results demonstrate epigenetic regulation of gene expression by Myb, Mip130/LIN-9, and E2F2-RBF in vivo, and also provide an explanation for the ability of Mip130-null mutants to rescue the lethality of Myb-null mutants in vivo.
Collapse
Affiliation(s)
- Hong Wen
- Department of Pathology and Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
28
|
Conboy CM, Spyrou C, Thorne NP, Wade EJ, Barbosa-Morais NL, Wilson MD, Bhattacharjee A, Young RA, Tavaré S, Lees JA, Odom DT. Cell cycle genes are the evolutionarily conserved targets of the E2F4 transcription factor. PLoS One 2007; 2:e1061. [PMID: 17957245 PMCID: PMC2020443 DOI: 10.1371/journal.pone.0001061] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 09/27/2007] [Indexed: 12/21/2022] Open
Abstract
Maintaining quiescent cells in G0 phase is achieved in part through the multiprotein subunit complex known as DREAM, and in human cell lines the transcription factor E2F4 directs this complex to its cell cycle targets. We found that E2F4 binds a highly overlapping set of human genes among three diverse primary tissues and an asynchronous cell line, which suggests that tissue-specific binding partners and chromatin structure have minimal influence on E2F4 targeting. To investigate the conservation of these transcription factor binding events, we identified the mouse genes bound by E2f4 in seven primary mouse tissues and a cell line. E2f4 bound a set of mouse genes that was common among mouse tissues, but largely distinct from the genes bound in human. The evolutionarily conserved set of E2F4 bound genes is highly enriched for functionally relevant regulatory interactions important for maintaining cellular quiescence. In contrast, we found minimal mRNA expression perturbations in this core set of E2f4 bound genes in the liver, kidney, and testes of E2f4 null mice. Thus, the regulatory mechanisms maintaining quiescence are robust even to complete loss of conserved transcription factor binding events.
Collapse
Affiliation(s)
- Caitlin M. Conboy
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Christiana Spyrou
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, United Kingdom
| | - Natalie P. Thorne
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth J. Wade
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Nuno L. Barbosa-Morais
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Michael D. Wilson
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | | | - Richard A. Young
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Simon Tavaré
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Jacqueline A. Lees
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Duncan T. Odom
- Cancer Research UK-Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| |
Collapse
|
29
|
Litovchick L, Sadasivam S, Florens L, Zhu X, Swanson SK, Velmurugan S, Chen R, Washburn MP, Liu XS, DeCaprio JA. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell 2007; 26:539-51. [PMID: 17531812 DOI: 10.1016/j.molcel.2007.04.015] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 03/12/2007] [Accepted: 04/20/2007] [Indexed: 02/02/2023]
Abstract
The mammalian Retinoblastoma (RB) family including pRB, p107, and p130 represses E2F target genes through mechanisms that are not fully understood. In D. melanogaster, RB-dependent repression is mediated in part by the multisubunit protein complex Drosophila RBF, E2F, and Myb (dREAM) that contains homologs of the C. elegans synthetic multivulva class B (synMuvB) gene products. Using an integrated approach combining proteomics, genomics, and bioinformatic analyses, we identified a p130 complex termed DP, RB-like, E2F, and MuvB (DREAM) that contains mammalian homologs of synMuvB proteins LIN-9, LIN-37, LIN-52, LIN-54, and LIN-53/RBBP4. DREAM bound to more than 800 human promoters in G0 and was required for repression of E2F target genes. In S phase, MuvB proteins dissociated from p130 and formed a distinct submodule that bound MYB. This work reveals an evolutionarily conserved multisubunit protein complex that contains p130 and E2F4, but not pRB, and mediates the repression of cell cycle-dependent genes in quiescence.
Collapse
Affiliation(s)
- Larisa Litovchick
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Andersen EC, Horvitz HR. Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development 2007; 134:2991-9. [PMID: 17634190 DOI: 10.1242/dev.009373] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies of Schizosaccharomyces pombe and mammalian cells identified a series of histone modifications that result in transcriptional repression. Lysine 9 of histone H3 (H3K9) is deacetylated by the NuRD complex, methylated by a histone methyltransferase (HMT) and then bound by a chromodomain-containing protein, such as heterochromatin protein 1 (HP1), leading to transcriptional repression. A Caenorhabditis elegans NuRD-like complex and HP1 homologs regulate vulval development, but no HMT is known to act in this process. We surveyed all 38 putative HMT genes in C. elegans and identified met-1 and met-2 as negative regulators of vulval cell-fate specification. met-1 is homologous to Saccharomyces cerevisiae Set2, an H3K36 HMT that prevents the ectopic initiation of transcription. met-2 is homologous to human SETDB1, an H3K9 HMT that represses transcription. met-1 and met-2 (1) are each required for the normal trimethylation of both H3K9 and H3K36; (2) act redundantly with each other as well as with the C. elegans HP1 homologs; and (3) repress transcription of the EGF gene lin-3, which encodes the signal that induces vulval development. We propose that as is the case for Set2 in yeast, MET-1 prevents the reinitiation of transcription. Our results suggest that in the inhibition of vulval development, homologs of SETDB1, HP1 and the NuRD complex act with this H3K36 HMT to prevent ectopic transcriptional initiation.
Collapse
Affiliation(s)
- Erik C Andersen
- Howard Hughes Medical Institute, Department of Biology, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
31
|
Harrison MM, Lu X, Horvitz HR. LIN-61, one of two Caenorhabditis elegans malignant-brain-tumor-repeat-containing proteins, acts with the DRM and NuRD-like protein complexes in vulval development but not in certain other biological processes. Genetics 2007; 176:255-71. [PMID: 17409073 PMCID: PMC1893064 DOI: 10.1534/genetics.106.069633] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vulval development in Caenorhabiditis elegans is inhibited by the redundant functions of the synthetic multivulva (synMuv) genes. At least 26 synMuv genes have been identified, many of which appear to act via transcriptional repression. Here we report the molecular identification of the class B synMuv gene lin-61, which encodes a protein composed of four malignant brain tumor (MBT) repeats. MBT repeats, domains of approximately 100 amino acids, have been found in multiple copies in a number of transcriptional repressors, including Polycomb-group proteins. MBT repeats are important for the transcriptional repression mediated by these proteins and in some cases have been shown to bind modified histones. C. elegans contains one other MBT-repeat-containing protein, MBTR-1. We demonstrate that a deletion allele of mbtr-1 does not cause a synMuv phenotype nor does mbtr-1 appear to act redundantly with or in opposition to lin-61. We further show that lin-61 is phenotypically and biochemically distinct from other class B synMuv genes. Our data indicate that while the class B synMuv genes act together to regulate vulval development, lin-61 functions separately from some class B synMuv proteins in other biological processes.
Collapse
Affiliation(s)
- Melissa M Harrison
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
32
|
Beall EL, Lewis PW, Bell M, Rocha M, Jones DL, Botchan MR. Discovery of tMAC: a Drosophila testis-specific meiotic arrest complex paralogous to Myb-Muv B. Genes Dev 2007; 21:904-19. [PMID: 17403774 PMCID: PMC1847709 DOI: 10.1101/gad.1516607] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Drosophila Myb-Muv B (MMB)/dREAM complex regulates gene expression and DNA replication site-specifically, but its activities in vivo have not been thoroughly explored. In ovarian amplification-stage follicle cell nuclei, the largest subunit, Mip130, is a negative regulator of replication, whereas another subunit, Myb, is a positive regulator. Here, we identified a mutation in mip40 and generated a mutation in mip120, two additional MMB subunits. Both mutants were viable, but mip120 mutants had many complex phenotypes including shortened longevity and severe eye defects. mip40 mutant females had severely reduced fertility, whereas mip120 mutant females were sterile, substantiating ovarian regulatory role(s) for MMB. Myb accumulation and binding to polytene chromosomes was dependent on the core factors of the MMB complex. In contrast to the documented mip130 mutant phenotypes, both mip40 and mip120 mutant males were sterile. We purified Mip40-containing complexes from testis nuclear extracts and identified tMAC, a new testis-specific meiotic arrest complex that contained Mip40, Caf1/p55, the Mip130 family member, Always early (Aly), and a Mip120 family member, Tombola (Tomb). Together, these data demonstrate that MMB serves diverse roles in different developmental pathways, and members of MMB can be found in alternative, noninteracting complexes in different cell types.
Collapse
Affiliation(s)
- Eileen L. Beall
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Peter W. Lewis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Maren Bell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Michael Rocha
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - D. Leanne Jones
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Michael R. Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- Corresponding author.E-MAIL ; FAX (510) 643-1729
| |
Collapse
|
33
|
Jiang J, Benson E, Bausek N, Doggett K, White-Cooper H. Tombola, a tesmin/TSO1-family protein, regulates transcriptional activation in the Drosophila male germline and physically interacts with always early. Development 2007; 134:1549-59. [PMID: 17360778 PMCID: PMC2229809 DOI: 10.1242/dev.000521] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During male gametogenesis, a developmentally regulated and cell type-specific transcriptional programme is activated in primary spermatocytes to prepare for differentiation of sperm. The Drosophila aly-class meiotic-arrest loci (aly, comr, achi/vis and topi) are essential for activation of transcription of many differentiation-specific genes, and several genes important for meiotic cell cycle progression, thus linking meiotic divisions to cellular differentiation during spermatogenesis. Protein interaction studies suggest that the aly-class gene products form a chromatin-associated complex in primary spermatocytes. We identify, clone and characterise a new aly-class meiotic-arrest gene, tombola (tomb), which encodes a testis-specific CXC-domain protein that interacts with Aly. The tomb mutant phenotype is more like that of aly and comr mutants than that of achi/vis or topi mutants in terms of target gene profile and chromosome morphology. tomb encodes a chromatin-associated protein required for localisation of Aly and Comr, but not Topi, to chromatin Reciprocally, aly and comr, but not topi or achi/vis, are required to maintain the normal localisation of Tomb. tomb and aly might be components of a complex paralogous to the Drosophila dREAM/Myb-MuvB and C. elegans DRM transcriptional regulatory complexes.
Collapse
Affiliation(s)
- Jianqiao Jiang
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | |
Collapse
|
34
|
The SynMuv genes of Caenorhabditis elegans in vulval development and beyond. Dev Biol 2007; 306:1-9. [PMID: 17434473 DOI: 10.1016/j.ydbio.2007.03.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/26/2007] [Accepted: 03/05/2007] [Indexed: 01/12/2023]
Abstract
For a nonessential diminutive organ comprised of only 22 nuclei, the Caenorhabditis elegans vulva has done very well for itself. The status of the vulva as an overachiever is in part due to its inherent structural simplicity as well as to the intricate regulation of its induction and development. Studies over the past twenty years have shown the vulva to be a microcosm for organogenesis and a model for the integration of complex signaling pathways. Furthermore, many of these signaling molecules are themselves associated with cancer in mammals. This review focuses on what is perhaps the most intriguing and complex story to emerge from these studies thus far, the role of the Synthetic Multivulval (SynMuv) genes in controlling vulval cell-fate adoption. Recent advances have led to a greater mechanistic understanding of how these genes function during vulval development and have also identified roles for these genes in diverse developmental processes.
Collapse
|
35
|
Harrison MM, Ceol CJ, Lu X, Horvitz HR. Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex. Proc Natl Acad Sci U S A 2006; 103:16782-7. [PMID: 17075059 PMCID: PMC1636532 DOI: 10.1073/pnas.0608461103] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Caenorhabditis elegans synthetic multivulva (synMuv) genes act redundantly to antagonize the specification of vulval cell fates, which are promoted by an RTK/Ras pathway. At least 26 synMuv genes have been genetically identified, several of which encode proteins with homologs that act in chromatin remodeling or transcriptional repression. Here we report the molecular characterization of two synMuv genes, lin-37 and lin-54. We show that lin-37 and lin-54 encode proteins in a complex with at least seven synMuv proteins, including LIN-35, the only C. elegans homolog of the mammalian tumor suppressor Rb. Biochemical analyses of mutants suggest that LIN-9, LIN-53, and LIN-54 are required for the stable formation of this complex. This complex is distinct from a second complex of synMuv proteins with a composition similar to that of the mammalian Nucleosome Remodeling and Deacetylase complex. The class B synMuv complex we identified is evolutionarily conserved and likely functions in transcriptional repression and developmental regulation.
Collapse
Affiliation(s)
- Melissa M. Harrison
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Craig J. Ceol
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xiaowei Lu
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|