1
|
Halli K, König S, Giambra IJ. Association study between SNP markers located in meat quality candidate genes with intramuscular fat content in an endangered dual-purpose cattle population. Transl Anim Sci 2024; 8:txae066. [PMID: 38737521 PMCID: PMC11088282 DOI: 10.1093/tas/txae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
The aim of this study was to associate single nucleotide polymorphisms (SNP) of the bovine calcium-activated neutral protease µ-calpain, calpastatin, diacylglycerol-O-acyltransferase, adipose fatty acid binding protein, retinoic acid receptor-related orphan receptor C (RORC), and thyroglobulin (TG) gene with intramuscular fat content (IMF). Therefore, 542 animals of the cattle breed "Rotes Höhenvieh" (RHV) were phenotyped for IMF. Genotyping of the animals was performed using polymerase chain reaction-restriction fragment length polymorphism tests for six SNP from candidate genes for meat quality traits. In addition, we calculated allele substitution and dominance effects on IMF. A subgroup of animals (n = 44, reduced dataset) with extraordinary high IMF was analyzed separately. The mean IMF content was 2.5% (SD: 2.8) but ranged from 0.02% to 23.9%, underlining the breeds' potential for quality meat production. Allele and genotype frequencies for all SNP were similar in the complete and reduced dataset. Association analyses in the complete dataset revealed the strongest effects of RORC on IMF (P = 0.075). The log-transformed least-squares mean for IMF of genotype g.3290GG was 0.45 ± 0.16, 0.26 ± 0.14 for genotype g.3290GT, and 0.32 ± 0.14 for genotype g.3290TT. In the reduced dataset, we found a significant effect (P < 0.05) of the g.422C>T-SNP of TG on IMF, with highest IMF for genotype CT (0.91 ± 0.17), lowest IMF for genotype TT (0.37 ± 0.25), and medium IMF for genotype CC (0.59 ± 0.16; log-transformed values). Compared to the complete dataset, allele substitution effects increased in the reduced dataset for most of the SNP, possibly due to the selective genotyping strategy, with focus on animals with highest IMF implying strong phenotypic IMF contrast. Dominance effects were small in both datasets, related to the high heritability of IMF. Results indicated RHV breed particularities regarding the effects of meat quality genes on IMF. An explanation might be the breeding history of RHV with focus on adaptation and resilience in harsh outdoor systems. Consequently, it is imperative to develop breed-specific selection strategies. Allele substitution and dominance effects were in a similar direction in both datasets, suggesting the same breeding approaches for different RHV strains in different regions. Nevertheless, a selective genotyping approach (reduced dataset), contributed to more pronounced genotype effect differences on IMF and dominance values.
Collapse
Affiliation(s)
- Kathrin Halli
- Institute of Animal Breeding and Genetics, Justus-Liebig-University, 35390 Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University, 35390 Giessen, Germany
| | - Isabella J Giambra
- Institute of Animal Breeding and Genetics, Justus-Liebig-University, 35390 Giessen, Germany
| |
Collapse
|
2
|
Stolpovsky YA, Kuznetsov SB, Solodneva EV, Shumov ID. New Cattle Genotyping System Based on DNA Microarray Technology. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422080099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Identification of Genomic Regions for Carcass Quality Traits within the American Simmental Association Carcass Merit Program. Animals (Basel) 2021; 11:ani11020471. [PMID: 33579007 PMCID: PMC7916785 DOI: 10.3390/ani11020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
USDA quality and yield grade are primary driving forces for carcass value in the United States. Carcass improvements can be achieved by making selection decisions based on the results of genetic evaluations in the form of expected progeny differences (EPD), real-time ultrasound imaging, and physical evaluation of candidate breeding animals. In an effort to advance their ability to accurately predict the breeding value of potential sires for carcass traits, the American Simmental Association launched the Carcass Merit Program as a means to collect progeny sire group carcass information. All records were extracted from the American Simmental Association database. Progeny data were organized by sire family and progeny performance phenotypes were constructed. Sire genotypes were filtered, and a multi-locus mixed linear model was used to perform an association analysis on the genotype data, while correcting for cryptic relatedness and pedigree structure. Three chromosomes were found to have genome-wide significance and this conservative approach identified putative QTL in those regions. Three hundred ninety-three novel regions were identified across all traits, as well as 290 novel positional candidate genes. Correlations between carcass characteristics and maternal traits were less unfavorable than those previously reported.
Collapse
|
4
|
Stolpovsky YA, Piskunov AK, Svishcheva GR. Genomic Selection. I: Latest Trends and Possible Ways of Development. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Martin LJ, Meng Q, Blencowe M, Lagarrigue S, Xiao S, Pan C, Wier J, Temple WC, Devaskar SU, Lusis AJ, Yang X. Maternal High-Protein and Low-Protein Diets Perturb Hypothalamus and Liver Transcriptome and Metabolic Homeostasis in Adult Mouse Offspring. Front Genet 2018; 9:642. [PMID: 30619467 PMCID: PMC6297185 DOI: 10.3389/fgene.2018.00642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 01/21/2023] Open
Abstract
Early life nutritional imbalances are risk factors for metabolic dysfunctions in adulthood, but the long term effects of perinatal exposure to high versus low protein diets are not completely understood. We exposed C57BL/6J offspring to a high protein/low carbohydrate (HP/LC) or low protein/high carbohydrate (LP/HC) diet during gestation and lactation, and measured metabolic phenotypes between birth and 10 months of age in male offspring. Perinatal HP/LC and LP/HC exposures resulted in a decreased ability to clear glucose in the offspring, with reduced baseline insulin and glucose concentrations in the LP/HC group and a reduced insulin response post-glucose challenge in the HP/LC group. The LP/HC diet group also showed reduced birth and weanling weights, whereas the HP/LC offspring displayed increased weanling weight with increased adiposity beyond 5 months of age. Gene expression profiling of hypothalamus and liver revealed alterations in diverse molecular pathways by both diets. Specifically, hypothalamic transcriptome and pathway analyses demonstrated perturbations of MAPK and hedgehog signaling, processes associated with neural restructuring and transmission, and phosphate metabolism by perinatal protein imbalances. Liver transcriptomics revealed changes in purine and phosphate metabolism, hedgehog signaling, and circadian rhythm pathways. Our results indicate maternal protein imbalances perturbing molecular pathways in central and peripheral metabolic tissues, thereby predisposing the male offspring to metabolic dysfunctions.
Collapse
Affiliation(s)
- Lisa J Martin
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Qingying Meng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Sheila Xiao
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julian Wier
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - William C Temple
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sherin U Devaskar
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Ghosh M, Sharma N, Singh AK, Gera M, Pulicherla KK, Jeong DK. Transformation of animal genomics by next-generation sequencing technologies: a decade of challenges and their impact on genetic architecture. Crit Rev Biotechnol 2018; 38:1157-1175. [PMID: 29631431 DOI: 10.1080/07388551.2018.1451819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For more than a quarter of a century, sequencing technologies from Sanger's method to next-generation high-throughput techniques have provided fascinating opportunities in the life sciences. The continuing upward trajectory of sequencing technologies will improve livestock research and expedite the development of various new genomic and technological studies with farm animals. The use of high-throughput technologies in livestock research has increased interest in metagenomics, epigenetics, genome-wide association studies, and identification of single nucleotide polymorphisms and copy number variations. Such studies are beginning to provide revolutionary insights into biological and evolutionary processes. Farm animals, such as cattle, swine, and horses, have played a dual role as economically and agriculturally important animals as well as biomedical research models. The first part of this study explores the current state of sequencing methods, many of which are already used in animal genomic studies, and the second part summarizes the state of cattle, swine, horse, and chicken genome sequencing and illustrates its achievements during the last few years. Finally, we describe several high-throughput sequencing approaches for the improved detection of known, unknown, and emerging infectious agents, leading to better diagnosis of infectious diseases. The insights from viral metagenomics and the advancement of next-generation sequencing will strongly support specific and efficient vaccine development and provide strategies for controlling infectious disease transmission among animal populations and/or between animals and humans. However, prospective sequencing technologies will require further research and in-field testing before reaching the marketplace.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Neelesh Sharma
- b Department of Veterinary Science and Animal Husbandry , Sher-e-Kashmir University of Agricultural Sciences and Technology , R.S. Pura , India
| | - Amit Kumar Singh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Meeta Gera
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | | | - Dong Kee Jeong
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| |
Collapse
|
7
|
Wilson LE, Harlid S, Xu Z, Sandler DP, Taylor JA. An epigenome-wide study of body mass index and DNA methylation in blood using participants from the Sister Study cohort. Int J Obes (Lond) 2017; 41:194-199. [PMID: 27773939 PMCID: PMC5209267 DOI: 10.1038/ijo.2016.184] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES The relationship between obesity and chronic disease risk is well-established; the underlying biological mechanisms driving this risk increase may include obesity-related epigenetic modifications. To explore this hypothesis, we conducted a genome-wide analysis of DNA methylation and body mass index (BMI) using data from a subset of women in the Sister Study. SUBJECTS/METHODS The Sister Study is a cohort of 50 884 US women who had a sister with breast cancer but were free of breast cancer themselves at enrollment. Study participants completed examinations which included measurements of height and weight, and provided blood samples. Blood DNA methylation data generated with the Illumina Infinium HumanMethylation27 BeadChip array covering 27,589 CpG sites was available for 871 women from a prior study of breast cancer and DNA methylation. To identify differentially methylated CpG sites associated with BMI, we analyzed this methylation data using robust linear regression with adjustment for age and case status. For those CpGs passing the false discovery rate significance level, we examined the association in a replication set comprised of a non-overlapping group of 187 women from the Sister Study who had DNA methylation data generated using the Infinium HumanMethylation450 BeadChip array. Analysis of this expanded 450 K array identified additional BMI-associated sites which were investigated with targeted pyrosequencing. RESULTS Four CpG sites reached genome-wide significance (false discovery rate (FDR) q<0.05) in the discovery set and associations for all four were significant at strict Bonferroni correction in the replication set. An additional 23 sites passed FDR in the replication set and five were replicated by pyrosequencing in the discovery set. Several of the genes identified including ANGPT4, RORC, SOCS3, FSD2, XYLT1, ABCG1, STK39, ASB2 and CRHR2 have been linked to obesity and obesity-related chronic diseases. CONCLUSIONS Our findings support the hypothesis that obesity-related epigenetic differences are detectable in blood and may be related to risk of chronic disease.
Collapse
Affiliation(s)
- Lauren E. Wilson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Sophia Harlid
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
8
|
Avilés C, Peña F, Polvillo O, Barahona M, Campo M, Sañudo C, Juárez M, Horcada A, Alcalde M, Molina A. Association between functional candidate genes and organoleptic meat traits in intensively-fed beef. Meat Sci 2015; 107:33-8. [DOI: 10.1016/j.meatsci.2015.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
|
9
|
Gorlov IF, Fedunin AA, Randelin DA, Sulimova GE. Polymorphisms of bGH, RORC, and DGAT1 genes in Russian beef cattle breeds. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414120035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Allais S, Levéziel H, Hocquette JF, Rousset S, Denoyelle C, Journaux L, Renand G. Fine mapping of quantitative trait loci underlying sensory meat quality traits in three French beef cattle breeds. J Anim Sci 2014; 92:4329-41. [PMID: 25149327 DOI: 10.2527/jas.2014-7868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Improving the traits that underlie meat quality is a major challenge in the beef industry. The objective of this paper was to detect QTL linked to sensory meat quality traits in 3 French beef cattle breeds. We genotyped 1,059, 1,219, and 947 young bulls and their sires belonging to the Charolais, Limousin, and Blonde d'Aquitaine breeds, respectively, using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). After estimating relevant genetic parameters using VCE software, we performed a linkage disequilibrium and linkage analysis on 4 meat traits: intramuscular fat content, muscle lightness, shear force, and tenderness score. Heritability coefficients largely ranged between 0.10 and 0.24; however, they reached a maximum of 0.44 and 0.50 for intramuscular fat content and tenderness score, respectively, in the Charolais breed. The 2 meat texture traits, shear force and tenderness score, were strongly genetically correlated (-0.91 in the Charolais and Limousin breed and -0.86 in the Blonde d'Aquitaine breed), indicating that they are 2 different measures of approximately the same trait. The genetic correlation between tenderness and intramuscular fat content differed across breeds. Using a significance threshold of 5 × 10(-4) for QTL detection, we found more than 200 significant positions across the 29 autosomal chromosomes for the 4 traits in the Charolais and Blonde d'Aquitaine breeds; in contrast, there were only 78 significant positions in the Limousin breed. Few QTL were common across breeds. We detected QTL for intramuscular fat content located near the myostatin gene in the Charolais and Blonde d'Aquitaine breeds. No mutation in this gene has been reported for the Blonde d'Aquitaine breed; therefore, it suggests that an unknown mutation could be segregating in this breed. We confirmed that, in certain breeds, markers in the calpastatin and calpain 1 gene regions affect tenderness. We also found new QTL as several QTL on chromosome 3 that are significantly associated with meat tenderness in the Blonde d'Aquitaine breed. Overall, these results greatly contribute to the goal of building a panel of markers that can be used to select animals of high meat quality.
Collapse
Affiliation(s)
- S Allais
- INRA, AgroParisTech, UMR1313 Unité de Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France Union Nationale des Coopératives agricoles d'Elevage et d'Insémination Animale, F-75595 Paris Cedex 12, France
| | - H Levéziel
- INRA, Université de Limoges, UMR1061 Unité de Génétique Moléculaire Animale, F-87060 Limoges, France
| | - J F Hocquette
- INRA, VetAgro Sup, UMR1213, Recherches sur les Herbivores, F-63122 Saint Genès Champanelle, France
| | - S Rousset
- INRA, Clermont Université, UMR1019 Unité de Nutrition Humaine, Centre de Recherches en Nutrition Humaine d'Auvergne, F-63001 Clermont-Ferrand, France
| | - C Denoyelle
- Institut de l'Elevage, F-75595 Paris Cedex 12, France
| | - L Journaux
- Institut de l'Elevage, F-75595 Paris Cedex 12, France
| | - G Renand
- INRA, Clermont Université, UMR1019 Unité de Nutrition Humaine, Centre de Recherches en Nutrition Humaine d'Auvergne, F-63001 Clermont-Ferrand, France
| |
Collapse
|
11
|
Polymorphisms in twelve candidate genes are associated with growth, muscle lipid profile and meat quality traits in eleven European cattle breeds. Mol Biol Rep 2014; 41:4721-31. [DOI: 10.1007/s11033-014-3343-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
|
12
|
Yamada T. Genetic dissection of marbling trait through integration of mapping and expression profiling. Anim Sci J 2014; 85:349-55. [DOI: 10.1111/asj.12179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/19/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Takahisa Yamada
- Department of Agrobiology, Faculty of Agriculture; Niigata University; Niigata Japan
| |
Collapse
|
13
|
Characterization of genes for beef marbling based on applying gene coexpression network. Int J Genomics 2014; 2014:708562. [PMID: 24624372 PMCID: PMC3929194 DOI: 10.1155/2014/708562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/19/2013] [Accepted: 12/07/2013] [Indexed: 12/29/2022] Open
Abstract
Marbling is an important trait in characterization beef quality and a major factor for determining the price of beef in the Korean beef market. In particular, marbling is a complex trait and needs a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with marbling, we used a weighted gene coexpression network analysis from the expression value of bovine genes. Hub genes were identified; they were topologically centered with large degree and BC values in the global network. We performed gene expression analysis to detect candidate genes in M. longissimus with divergent marbling phenotype (marbling scores 2 to 7) using qRT-PCR. The results demonstrate that transmembrane protein 60 (TMEM60) and dihydropyrimidine dehydrogenase (DPYD) are associated with increasing marbling fat. We suggest that the network-based approach in livestock may be an important method for analyzing the complex effects of candidate genes associated with complex traits like marbling or tenderness.
Collapse
|
14
|
Avilés C, Polvillo O, Peña F, Juárez M, Martínez AL, Molina A. Associations between DGAT1, FABP4, LEP, RORC, and SCD1 gene polymorphisms and fat deposition in Spanish commercial beef1. J Anim Sci 2013; 91:4571-7. [DOI: 10.2527/jas.2013-6402] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- C. Avilés
- MERAGEM Research Group, University of Cordoba, Campus de Rabanales, E-14071 Cordoba, Spain
- Department of Animal Production, University of Cordoba, Campus de Rabanales, E-14071 Cordoba, Spain
| | - O. Polvillo
- CITIUS, Avda. Reina Mercedes, 4-B, E-41012 Sevilla, Spain
| | - F. Peña
- MERAGEM Research Group, University of Cordoba, Campus de Rabanales, E-14071 Cordoba, Spain
- Department of Animal Production, University of Cordoba, Campus de Rabanales, E-14071 Cordoba, Spain
| | - M. Juárez
- Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB T4L 1W1, Canada
| | - A. L. Martínez
- Department of Animal Production, University of Cordoba, Campus de Rabanales, E-14071 Cordoba, Spain
| | - A. Molina
- MERAGEM Research Group, University of Cordoba, Campus de Rabanales, E-14071 Cordoba, Spain
| |
Collapse
|
15
|
Jetten AM, Kang HS, Takeda Y. Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity. Front Endocrinol (Lausanne) 2013; 4:1. [PMID: 23355833 PMCID: PMC3555121 DOI: 10.3389/fendo.2013.00001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/05/2013] [Indexed: 01/07/2023] Open
Abstract
Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to hepatosteatosis in RORα-deficient mice is related to the reduced expression of several genes regulating lipid synthesis, transport, and storage. Adipose tissue-associated inflammation, which plays a critical role in the development of insulin resistance, is considerably diminished in RORα-deficient mice as indicated by the reduced infiltration of M1 macrophages and decreased expression of many proinflammatory genes. Deficiency in RORγ also protects against diet-induced insulin resistance by a mechanism that appears different from that in RORα deficiency. Recent studies indicated that RORs provide an important link between the circadian clock machinery and its regulation of metabolic genes and metabolic syndrome. As ligand-dependent transcription factors, RORs may provide novel therapeutic targets in the management of obesity and associated metabolic diseases, including hepatosteatosis, adipose tissue-associated inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Anton M. Jetten
- *Correspondence: Anton M. Jetten, Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA. e-mail:
| | | | | |
Collapse
|
16
|
Fitzsimmons RL, Lau P, Muscat GEO. Retinoid-related orphan receptor alpha and the regulation of lipid homeostasis. J Steroid Biochem Mol Biol 2012; 130:159-68. [PMID: 21723946 DOI: 10.1016/j.jsbmb.2011.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
Many nuclear hormone receptors (NRs) control lipid, glucose and energy homeostasis in an organ specific manner. Concordantly, dysfunctional NR signalling results in metabolic disease. The Retinoic acid receptor-related orphan receptor alpha (RORα), a member of the NR1F subgroup, is expressed in metabolic tissues. Previous studies identified the role of this NR in dyslipidemia, apo-lipoprotein metabolism and atherosclerosis. Recent data is underscoring the significant role of this orphan NR in the regulation of phase I/II metabolism (bile acids, xenobiotics, steroids etc.), adiposity, insulin signalling, and glucose tolerance. Moreover, oxygenated sterols, have been demonstrated to function as native ligands and inverse agonists. This review focuses on the rapidly emerging and evolving role of RORα in the control of lipid and glucose homeostasis in major mass metabolic tissues. Article from the special issue orphan receptors.
Collapse
Affiliation(s)
- Rebecca L Fitzsimmons
- Obesity Research Centre, Institute for Molecular Bioscience, University of Queensland, Services Rd St. Lucia, Queensland, 4072 Australia
| | | | | |
Collapse
|
17
|
Tinahones FJ, Moreno-Santos I, Vendrell J, Chacon MR, Garrido-Sanchez L, García-Fuentes E, Macias-González M. The retinoic acid receptor-related orphan nuclear receptor γ1 (RORγ1): a novel player determinant of insulin sensitivity in morbid obesity. Obesity (Silver Spring) 2012; 20:488-97. [PMID: 21904299 DOI: 10.1038/oby.2011.267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The orphan nuclear receptors (ONRs), retinoic acid receptor-related orphan receptor γ-1 (RORγ1) and peroxisome proliferator-activated receptor γ-2 (PPARγ2), are central mediators controlling adipocyte (AD) differentiation. Through their distinct tissue distribution and specific target gene activation, ONRs control diverse aspects of fatty acid metabolism and insulin sensitivity. Adding further complexity, obesity begets resistance to insulin signals and can ultimately result in diabetes. In this study, we investigate whether there are differences in the RORγ1 and PPARγ2 expression in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from morbid obesity (MO) individuals either insulin resistant (high-IR MO) or insulin sensitivity (low-IR MO). Our results indicate for the first time in human the RORγ1 mRNA and protein expression levels and activation with coactivator, such as peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) were higher in the VAT from high-IR MO. In contrast, PPARγ2 expression and activation were higher in the VAT from low-IR MO. In this way, we have also found a positive association between RORγ1 mRNA and protein expression with many components of metabolic syndrome, with a strong dependence of insulin and HOMA(IR) index in VAT, but not in SAT. Our data suggest that RORγ1 may be added to the growing list of nuclear receptors in adipose tissue use to modulate the insulin resistance associated to the obesity. Measurement of RORγ1 and PPARγ2 in adipose tissue might be useful for evaluating the outcomes of various clinical interventions for obesity-related diabetes type II.
Collapse
Affiliation(s)
- Francisco J Tinahones
- Laboratorio de Investigación Biomédica, Servicio de Endocrinologia Nutricion, Hospital Virgen de la Victoria (Fundacion IMABIS), Malaga, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Barendse W. Haplotype analysis improved evidence for candidate genes for intramuscular fat percentage from a genome wide association study of cattle. PLoS One 2011; 6:e29601. [PMID: 22216329 PMCID: PMC3247274 DOI: 10.1371/journal.pone.0029601] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 12/01/2011] [Indexed: 11/23/2022] Open
Abstract
In genome wide association studies (GWAS), haplotype analyses of SNP data are neglected in favour of single point analysis of associations. In a recent GWAS, we found that none of the known candidate genes for intramuscular fat (IMF) had been identified. In this study, data from the GWAS for these candidate genes were re-analysed as haplotypes. First, we confirmed that the methodology would find evidence for association between haplotypes in candidate genes of the calpain-calpastatin complex and musculus longissimus lumborum peak force (LLPF), because these genes had been confirmed through single point analysis in the GWAS. Then, for intramuscular fat percent (IMF), we found significant partial haplotype substitution effects for the genes ADIPOQ and CXCR4, as well as suggestive associations to the genes CEBPA, FASN, and CAPN1. Haplotypes for these genes explained 80% more of the phenotypic variance compared to the best single SNP. For some genes the analyses suggested that there was more than one causative mutation in some genes, or confirmed that some causative mutations are limited to particular subgroups of a species. Fitting the SNPs and their interactions simultaneously explained a similar amount of the phenotypic variance compared to haplotype analyses. Haplotype analysis is a neglected part of the suite of tools used to analyse GWAS data, would be a useful method to extract more information from these data sets, and may contribute to reducing the missing heritability problem.
Collapse
Affiliation(s)
- William Barendse
- Cooperative Research Centre for Beef Genetic Technologies, Commonwealth Scientific and Industrial Research Organization, St. Lucia, Queensland, Australia.
| |
Collapse
|
19
|
Collis E, Fortes MRS, Zhang Y, Tier B, Schutt K, Barendse W, Hawken R. Genetic variants affecting meat and milk production traits appear to have effects on reproduction traits in cattle. Anim Genet 2011; 43:442-6. [DOI: 10.1111/j.1365-2052.2011.02272.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Meissburger B, Ukropec J, Roeder E, Beaton N, Geiger M, Teupser D, Civan B, Langhans W, Nawroth PP, Gasperikova D, Rudofsky G, Wolfrum C. Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma. EMBO Mol Med 2011; 3:637-51. [PMID: 21853531 PMCID: PMC3377107 DOI: 10.1002/emmm.201100172] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 07/07/2011] [Accepted: 07/21/2011] [Indexed: 01/23/2023] Open
Abstract
Obesity is a well-known risk factor for the development of secondary complications such as type 2 diabetes. However, only a part of the obese population develops secondary metabolic disorders. Here, we identify the transcription factor retinoid-related orphan receptor gamma (RORγ) as a negative regulator of adipocyte differentiation through expression of its newly identified target gene matrix metalloproteinase 3. In vivo differentiation of adipocyte progenitor cells from Rorγ-deficient mice is enhanced and obese Rorγ−/− mice show decreased adipocyte sizes. These small adipocytes are highly insulin sensitive, leading to an improved control of circulating free fatty acids. Ultimately, Rorγ−/− mice are protected from hyperglycemia and insulin resistance in the state of obesity. In adipose stromal-vascular fraction from obese human subjects, Rorγ expression is correlated with adipocyte size and negatively correlated with adipogenesis and insulin sensitivity. Taken together, our findings identify RORγ as a factor, which controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. RORγ might therefore serve as a novel pharmaceutical target to treat obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Bettina Meissburger
- ETH Zürich, Institute of Food Nutrition and Health, Schwerzenbach, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lim D, Kim NK, Park HS, Lee SH, Cho YM, Oh SJ, Kim TH, Kim H. Identification of candidate genes related to bovine marbling using protein-protein interaction networks. Int J Biol Sci 2011; 7:992-1002. [PMID: 21912507 PMCID: PMC3164149 DOI: 10.7150/ijbs.7.992] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/08/2011] [Indexed: 11/05/2022] Open
Abstract
Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The present study systemically analyzed genes associated with bovine marbling score and identified their relationships. The candidate nodes were obtained using MedScan text-mining tools and linked by protein-protein interaction (PPI) from the Human Protein Reference Database (HPRD). To determine key node of marbling, the degree and betweenness centrality (BC) were used. The hub nodes and biological pathways of our network are consistent with the previous reports about marbling traits, and also suggest unknown candidate genes associated with intramuscular fat. Five nodes were identified as hub genes, which was consistent with the network analysis using quantitative reverse-transcription PCR (qRT-PCR). Key nodes of the PPI network have positive roles (PPARγ, C/EBPα, and RUNX1T1) and negative roles (RXRA, CAMK2A) in the development of intramuscular fat by several adipogenesis-related pathways. This study provides genetic information for identifying candidate genes for the marbling trait in bovine.
Collapse
Affiliation(s)
- Dajeong Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
KANEDA M, LIN BZ, SASAZAKI S, OYAMA K, MANNEN H. Allele frequencies of gene polymorphisms related to economic traits in Bos taurus and Bos indicus cattle breeds. Anim Sci J 2011; 82:717-21. [DOI: 10.1111/j.1740-0929.2011.00910.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Sevane N, Crespo I, Cañón J, Dunner S. A Primer-Extension Assay for simultaneous use in cattle Genotype Assisted Selection, parentage and traceability analysis. Livest Sci 2011. [DOI: 10.1016/j.livsci.2010.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Yamada T, Sasaki S, Sukegawa S, Miyake T, Fujita T, Kose H, Morita M, Takahagi Y, Murakami H, Morimatsu F, Sasaki Y. Association of a single nucleotide polymorphism in ribosomal protein L27a gene with marbling in Japanese Black beef cattle. Anim Sci J 2010; 80:631-5. [PMID: 20163651 DOI: 10.1111/j.1740-0929.2009.00688.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Marbling, defined by the amount and distribution of intramuscular fat, is an economically important trait of beef cattle in Japan. The c2-11#2 expressed sequence tag (EST) has been previously shown to possess expression difference in musculus longissimus muscle between low-marbled and high-marbled steer groups, and to be located within genomic region of a quantitative trait locus for marbling. Thus, the ribosomal protein L27a (RPL27A) gene containing the c2-11#2 EST sequence was considered as a positional candidate for the gene responsible for marbling. In the present study, a single nucleotide polymorphism (SNP) in the promoter region of the RPL27A, referred to as g.3109537C>T, was detected between the 2 steer groups. The SNP was associated with the predicted breeding value for beef marbling standard number by the analyses using Japanese Black beef cattle population. The effect of genotypes of the SNP on the predicted breeding value for subcutaneous fat thickness was not statistically significant. These findings suggest that the RPL27A SNP may be useful for effective marker-assisted selection to increase the levels of marbling in Japanese Black beef cattle.
Collapse
Affiliation(s)
- Takahisa Yamada
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyoku, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Annotation of novel transcripts putatively relevant for bovine fat metabolism. Mol Biol Rep 2010; 38:2975-86. [PMID: 20127178 DOI: 10.1007/s11033-010-9962-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/15/2010] [Indexed: 11/26/2022]
Abstract
Two bovine transcripts encoded by the interleukin-1 receptor-associated kinase 1 (IRAK1) gene and the locus LOC618944 predicted as similar to human chromosome 6 open reading frame 52 (C6orf52) gene had indicated divergent expression in bovine skeletal muscle containing different amount of intramuscular fat in a pilot screening experiment. However, for both loci any role in the regulation of energy or fat metabolism is not yet described. In this study, we validated and refined gene structure, screened for mRNA splice variants and analyzed the tissue-specific gene expression patterns of both loci as a prerequisite to elucidate their potential physiological function. Based on comparative sequence analysis, a new full-length gene model for the bovine IRAK1 gene was developed and confirmed experimentally. Expression of IRAK1 mRNA was found in a variety of tissues, and a splice variant was identified in skeletal muscle caused by an in-frame deleted segment of 210 bp affecting regions of intrinsic disorder in the respective protein. For the locus LOC618944, our data contributed to a revised gene model and its assignment to BTA23 (bovine chromosome 23) on the current bovine genome assembly supported by comparative similarity analysis between the bovine and human genomes and experimental data. Furthermore, we identified several splice variants in mammary gland, fat and skeletal muscle tissue and detected a highly similar processed pseudogene on BTA26. All transcript variants of LOC618944 detected in the analyzed tissues represent noncoding RNAs. For both loci, our results suggest yet undetected physiological functions in tissues relevant for fat or energy metabolism in cattle.
Collapse
|
26
|
Hirwa CD, Wallace P, Shen X, Nie Q, Yang G, Zhang X. Genes Related to Economically Important Traits in Beef Cattle. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ajas.2011.34.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Barendse W, Bunch RJ, Harrison BE. The effect of variation at the retinoic acid receptor-related orphan receptor C gene on intramuscular fat percent and marbling score in Australian cattle1,2. J Anim Sci 2010; 88:47-51. [DOI: 10.2527/jas.2009-2178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Barendse W, Bunch RJ, Thomas MB, Harrison BE. A splice site single nucleotide polymorphism of the fatty acid binding protein 4 gene appears to be associated with intramuscular fat deposition in longissimus muscle in Australian cattle. Anim Genet 2009; 40:770-3. [PMID: 19466936 DOI: 10.1111/j.1365-2052.2009.01913.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fatty acid binding protein 4 (FABP4) is a candidate gene affecting fatness traits of mammals. However, its association with fatness traits in cattle and other livestock species is not consistent from one study to another. Here, we sequenced the coding sequence of FABP4 looking for non-synonymous variants. We identified a splice site mutation between the third exon and the third intron of bovine FABP4. We genotyped this SNP, FABP4:g.2502C>G, in 1409 cattle with intramuscular fat measurements from seven breeds. The average allele frequency of the C allele was 0.66 with a range of 0.45 to 0.85. A regression on the number of G alleles shows a statistically significant effect of alpha = 0.11, P = 0.044. This appears to confirm an association between IMF and variation at FABP4, with an effect of 0.3% of the variation in our sample when using this SNP.
Collapse
Affiliation(s)
- W Barendse
- Cooperative Research Centre for Beef Genetic Technologies, CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia 4067, Australia.
| | | | | | | |
Collapse
|
29
|
Yamada T, Sasaki S, Sukegawa S, Yoshioka S, Takahagi Y, Morita M, Murakami H, Morimatsu F, Fujita T, Miyake T, Sasaki Y. Association of a single nucleotide polymorphism in titin gene with marbling in Japanese Black beef cattle. BMC Res Notes 2009; 2:78. [PMID: 19419586 PMCID: PMC2683863 DOI: 10.1186/1756-0500-2-78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marbling defined by the amount and distribution of intramuscular fat is an economically important trait of beef cattle in Japan. We have recently reported that single nucleotide polymorphisms (SNPs) in the endothelial differentiation, sphingolipid G-protein-coupled receptor, 1 (EDG1) gene were associated with marbling in Japanese Black beef cattle. As well as EDG1, the titin (TTN) gene, involved in myofibrillogenesis, has been previously shown to possess expression difference in musculus longissimus muscle between low-marbled and high-marbled steer groups, and to be located within genomic region of a quantitative trait locus for marbling. Thus TTN was considered as a positional functional candidate for the gene responsible for marbling. In this study, we explored SNP in TTN and analyzed association of the SNP with marbling. FINDINGS A SNP in the promoter region of TTN, referred to as g.231054C>T, was the only difference detected between high- and low-marbled steer groups. The SNP was associated with marbling in 3 experiments using 101 sires (P = 0.004), 848 paternal half-sib progeny steers from 5 sires heterozygous for the g.231054C>T (P = 0.046), and 820 paternal half-sib progeny steers from 3 sires homozygous for C allele at the g.231054C>T (P = 0.051), in Japanese Black beef cattle. The effect of genotypes of the SNP on subcutaneous fat thickness was not statistically significant (P > 0.05). CONCLUSION These findings suggest that in addition to the EDG1 SNPs, the TTN SNP polymorphism is associated with marbling and may be useful for effective marker-assisted selection to increase the levels of marbling in Japanese Black beef cattle. Further replicate studies will be needed to confirm the allelic association observed here, and to expand the results to evaluate all possible genotypic combinations of alleles.
Collapse
Affiliation(s)
- Takahisa Yamada
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barendse W, Bunch RJ, Harrison BE. Variation at CPE but not CEBPA appears to be associated with intramuscular fat deposition in the longissimus muscle of cattle. ANIMAL PRODUCTION SCIENCE 2009. [DOI: 10.1071/ea08307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An important step in the localisation of quantitative trait loci is the confirmation of trait-marker associations in independent studies. In this report, we test three single nucleotide polymorphisms (SNP) of two genes for associations to intramuscular fat (IMF) measurements in cattle. We genotyped SNP of carboxypeptidase E (CPE) and ccaat/enhancer binding protein, α (CEBPA) in a sample of a total of 813 cattle of taurine, composite and indicine breeds. All three polymorphisms showed significant differences between breeds, with the widest range found in CEBPA:g.271A > C where the A allele frequency ranged from P = 0.07 in Brahman to 0.88 in Shorthorn. The taurine breeds showed high linkage disequilibrium between the pair of CPE SNP, with all four breeds showing r2 = 1.0. The Brahman and Santa Gertrudis showed r2 ≤ 0.17. Both CPE:g.445C > T and CPE:g.601C > T SNP showed significant allele substitution effects to IMF in animals of taurine ancestry, with an allele substitution effect of α = 0.22, P = 0.020 for CPE:g.445C > T, explaining 0.4% of the phenotypic variance.
Collapse
|
31
|
Yamada T, Itoh M, Nishimura S, Taniguchi Y, Miyake T, Sasaki S, Yoshioka S, Fujita T, Shiga K, Morita M, Sasaki Y. Association of single nucleotide polymorphisms in the endothelial differentiation sphingolipid G-protein-coupled receptor 1 gene with marbling in Japanese Black beef cattle. Anim Genet 2008; 40:209-16. [PMID: 19133939 DOI: 10.1111/j.1365-2052.2008.01822.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Marbling defined by the amount and distribution of intramuscular fat, so-called Shimofuri, is an economically important trait of beef cattle in Japan. The endothelial differentiation sphingolipid G-protein-coupled receptor 1 (EDG1) gene, involved in blood vessel formation, has been previously shown to be expressed at different levels in musculus longissimus muscle between low-marbled and high-marbled steer groups. It is located within the genomic region of a quantitative trait locus for marbling, and thus was considered as a positionally functional candidate for the gene responsible for marbling. In this study, two single nucleotide polymorphisms (SNPs) in the 5' untranslated region (UTR) and the 3' UTR of EDG1, referred to as c.-312A>G and c.*446G>A, respectively, were detected between the two steer groups. The two SNPs were associated with the predicted breeding value for beef marbling standard number by analyses using a population of Japanese Black beef cattle. The effect of genotypes at each of the SNPs on the predicted breeding value for subcutaneous fat thickness was not statistically significant (P > 0.05). Reporter gene assays revealed no significant differences in gene expression between alleles at each of the SNPs. These findings suggest that EDG1 SNPs, although they may not be regarded as a causal mutation, may be useful for effective marker-assisted selection to increase the levels of marbling in Japanese Black beef cattle.
Collapse
Affiliation(s)
- T Yamada
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Barendse W, Harrison BE, Bunch RJ, Thomas MB. Variation at the Calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle. BMC Genet 2008; 9:41. [PMID: 18590576 PMCID: PMC2474649 DOI: 10.1186/1471-2156-9-41] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/01/2008] [Indexed: 11/15/2022] Open
Abstract
Background Quantitative Trait Loci (QTL) affecting meat tenderness have been reported on Bovine chromosome 10. Here we examine variation at the Calpain 3 (CAPN3) gene in cattle, a gene located within the confidence interval of the QTL, and which is a positional candidate gene based on the biochemical activity of the protein. Results We identified single nucleotide polymorphisms (SNP) in the genomic sequence of the CAPN3 gene and tested three of these in a sample of 2189 cattle. Of the three SNP genotyped, the CAPN3:c.1538+225G>T had the largest significant additive effect, with an allele substitution effect in the Brahman of α = -0.144 kg, SE = 0.060, P = 0.016, and the polymorphism explained 1.7% of the residual phenotypic variance in that sample of the breed. Significant haplotype substitution effects were found for all three breeds, the Brahman, the Belmont Red, and the Santa Gertrudis. For the common haplotype, the haplotype substitution effect in the Brahman was α = 0.169 kg, SE = 0.056, P = 0.003. The effect of this gene was compared to Calpastatin in the same sample. The SNP show negligible frequencies in taurine breeds and low to moderate minor allele frequencies in zebu or composite animals. Conclusion These associations confirm the location of a QTL for meat tenderness in this region of bovine chromosome 10. SNP in or near this gene may be responsible for part of the overall difference between taurine and zebu breeds in meat tenderness, and the greater variability in meat tenderness found in zebu and composite breeds. The evidence provided so far suggests that none of these tested SNP are causative mutations.
Collapse
Affiliation(s)
- William Barendse
- CSIRO Livestock Industries and CRC for Cattle and Beef Quality, Queensland Bioscience Precinct, 306 Carmody Road, St, Lucia 4067, Australia.
| | | | | | | |
Collapse
|
33
|
Meissburger B, Wolfrum C. The role of retinoids and their receptors in metabolic disorders. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200700291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Barendse W, Harrison BE, Hawken RJ, Ferguson DM, Thompson JM, Thomas MB, Bunch RJ. Epistasis between calpain 1 and its inhibitor calpastatin within breeds of cattle. Genetics 2007; 176:2601-10. [PMID: 17603104 PMCID: PMC1950658 DOI: 10.1534/genetics.107.074328] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The calpain gene family and its inhibitors have diverse effects, many related to protein turnover, which appear to affect a range of phenotypes such as diabetes, exercise-induced muscle injury, and pathological events associated with degenerative neural diseases in humans, fertility, longevity, and postmortem effects on meat tenderness in livestock species. The calpains are inhibited by calpastatin, which binds directly to calpain. Here we report the direct measurement of epistatic interactions of causative mutations for quantitative trait loci (QTL) at calpain 1 (CAPN1), located on chromosome 29, with causative mutations for QTL variation at calpastatin (CAST), located on chromosome 7, in cattle. First we identified potential causative mutations at CAST and then genotyped these along with putative causative mutations at CAPN1 in >1500 cattle of seven breeds. The maximum allele substitution effect on the phenotype of the CAPN1:c.947G>C single nucleotide polymorphism (SNP) was 0.14 sigma(p) (P = 0.0003) and of the CAST:c.155C>T SNP was also 0.14 sigma(p) (P = 0.0011) when measured across breeds. We found significant epistasis between SNPs at CAPN1 and CAST in both taurine and zebu derived breeds. There were more additive x dominance components of epistasis than additive x additive and dominance x dominance components combined. A minority of breed comparisons did not show epistasis, suggesting that genetic variation at other genes may influence the degree of epistasis found in this system.
Collapse
Affiliation(s)
- W Barendse
- Commonwealth Scientific and Industrial Research Organization Livestock Industries, Queensland Bioscience Project, 306 Carmody Road, St. Lucia 4067, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
35
|
Barendse W, Reverter A, Bunch RJ, Harrison BE, Barris W, Thomas MB. A validated whole-genome association study of efficient food conversion in cattle. Genetics 2007; 176:1893-905. [PMID: 17507676 PMCID: PMC1931545 DOI: 10.1534/genetics.107.072637] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The genetic factors that contribute to efficient food conversion are largely unknown. Several physiological systems are likely to be important, including basal metabolic rate, the generation of ATP, the regulation of growth and development, and the homeostatic control of body mass. Using whole-genome association, we found that DNA variants in or near proteins contributing to the background use of energy of the cell were 10 times as common as those affecting appetite and body-mass homeostasis. In addition, there was a genic contribution from the extracellular matrix and tissue structure, suggesting a trade-off between efficiency and tissue construction. Nevertheless, the largest group consisted of those involved in gene regulation or control of the phenotype. We found that the distribution of micro-RNA motifs was significantly different for the genetic variants associated with residual feed intake than for the genetic variants in total, although the distribution of promoter sequence motifs was not different. This suggests that certain subsets of micro-RNA are more important for the regulation of this trait. Successful validation depended on the sign of the allelic association in different populations rather than on the strength of the initial association or its size of effect.
Collapse
Affiliation(s)
- W Barendse
- CSIRO Livestock Industries, Queensland Bioscience Precinct, St. Lucia 4067, Australia
| | | | | | | | | | | |
Collapse
|