1
|
Yamada T, Maeda M, Nagai H, Salamin K, Chang YT, Guenova E, Feuermann M, Monod M. Two different types of tandem sequences mediate the overexpression of TinCYP51B in azole-resistant Trichophyton indotineae. Antimicrob Agents Chemother 2023; 67:e0093323. [PMID: 37823662 PMCID: PMC10648874 DOI: 10.1128/aac.00933-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/03/2023] [Indexed: 10/13/2023] Open
Abstract
Trichophyton indotineae is an emerging dermatophyte that causes severe tinea corporis and tinea cruris. Numerous cases of terbinafine- and azole-recalcitrant T. indotineae-related dermatophytosis have been observed in India over the past decade, and cases are now being recorded worldwide. Whole genome sequencing of three azole-resistant strains revealed a variable number of repeats of a 2,404 base pair (bp) sequence encoding TinCYP51B in tandem specifically at the CYP51B locus position. However, many other resistant strains (itraconazole MIC ≥0.25 µg/mL; voriconazole MIC ≥0.25 µg/mL) did not contain such duplications. Whole-genome sequencing of three of these strains revealed a variable number of 7,374 bp tandem repeat blocks harboring TinCYP51B. Consequently, two types of T. indotineae azole-resistant strains were found to host TinCYP51B in tandem sequences (type I with 2,404 bp TinCYP51B blocks and type II with 7,374 bp TinCYP51B blocks). Using the CRISPR/Cas9 genome-editing tool, the copy number of TinCYP51B within the genome of types I and II strains was brought back to a single copy. The azole susceptibility of these modified strains was similar to that of strains without TinCYP51B duplication, showing that azole resistance in T. indotineae strains is mediated by one of two types of TinCYP51B amplification. Type II strains were prevalent among 32 resistant strains analyzed using a rapid and reliable PCR test.
Collapse
Affiliation(s)
- Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Tokyo, Japan
| | - Mari Maeda
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | | | - Karine Salamin
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Yun-Tsan Chang
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marc Feuermann
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Michel Monod
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Kurt-Kızıldoğan A, Otur Ç, Yıldırım K, Kavas M, Abanoz-Seçgin B. In-depth comparative transcriptome analysis of Purpureocillium sp. CB1 under cadmium stress. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12655-5. [PMID: 37436480 DOI: 10.1007/s00253-023-12655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
Fungal bioremediation is a very attractive tool to cope with environmental pollution. We aimed to decipher the cadmium (Cd) response of Purpureocillium sp. CB1, isolated from polluted soil, at transcriptome level by RNA-sequencing (RNA-seq). We used 500 and 2500 mg/L of Cd2+ concentrations at two time points (t6;36). RNA-seq determined 620 genes that were co-expressed in all samples. The highest number of differentially expressed genes (DEGs) was obtained within the first six h of exposure to 2500 mg/L of Cd2+. Several genes encoding transcriptional regulators, transporters, heat shock proteins, and oxidative stress-related genes were differentially expressed under Cd2+ stress. Remarkably, the genes that encode salicylate hydroxylase, which is involved in naphthalene biodegradation pathway, were significantly overexpressed. Utilization of diesel as the sole carbon source by CB1 even in the presence of Cd2+ supported concomitant upregulation of hydrocarbon degradation pathway genes. Furthermore, leucinostatin-related gene expression levels increased under Cd2+ stress. In addition, leucinostatin extracts from Cd2+-treated CB1 cultures showed higher antifungal activity than the control. Notably, Cd2+ in CB1 was mainly found as bound to the cell wall, thus confirming its adsorption potential. Cd2+ stress slightly reduced growth and led to mycelial malformation due to Cd2+ adsorption, especially at a concentration of 2500 mg/L at t36. A strong correlation was recorded between RNA-seq and reverse-transcriptase-quantitative polymerase chain reaction (RT-qPCR) data. In conclusion, the study represents the first transcriptome analysis of Purpureocillium sp. under Cd2+ stress, providing insights into the primary targets for rational engineering to construct strains with remarkable bioremediation potency. KEY POINTS: • Upregulation of genes encoding salicylate hydroxylases under Cd2+ stress • Maximum Cd2+ adsorption at 500 mg/L at t36 as tightly bound to the cell wall • Concordant bioremediation potential of CB1 on Cd2+ and diesel.
Collapse
Affiliation(s)
- Aslıhan Kurt-Kızıldoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139, Samsun, Turkey.
| | - Çiğdem Otur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Büşra Abanoz-Seçgin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139, Samsun, Turkey
| |
Collapse
|
3
|
The Influence of Genetic Stability on Aspergillus fumigatus Virulence and Azole Resistance. G3-GENES GENOMES GENETICS 2018; 8:265-278. [PMID: 29150592 PMCID: PMC5765354 DOI: 10.1534/g3.117.300265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Genetic stability is extremely important for the survival of every living organism, and a very complex set of genes has evolved to cope with DNA repair upon DNA damage. Here, we investigated the Aspergillus fumigatus AtmA (Ataxia-telangiectasia mutated, ATM) and AtrA kinases, and how they impact virulence and the evolution of azole resistance. We demonstrated that A. fumigatus atmA and atrA null mutants are haploid and have a discrete chromosomal polymorphism. The ΔatmA and ΔatrA strains are sensitive to several DNA-damaging agents, but surprisingly both strains were more resistant than the wild-type strain to paraquat, menadione, and hydrogen peroxide. The atmA and atrA genes showed synthetic lethality emphasizing the cooperation between both enzymes and their consequent redundancy. The lack of atmA and atrA does not cause any significant virulence reduction in A. fumigatus in a neutropenic murine model of invasive pulmonary aspergillosis and in the invertebrate alternative model Galleria mellonela. Wild-type, ΔatmA, and ΔatrA populations that were previously transferred 10 times in minimal medium (MM) in the absence of voriconazole have not shown any significant changes in drug resistance acquisition. In contrast, ΔatmA and ΔatrA populations that similarly evolved in the presence of a subinhibitory concentration of voriconazole showed an ∼5–10-fold increase when compared to the original minimal inhibitory concentration (MIC) values. There are discrete alterations in the voriconazole target Cyp51A/Erg11A or cyp51/erg11 and/or Cdr1B efflux transporter overexpression that do not seem to be the main mechanisms to explain voriconazole resistance in these evolved populations. Taken together, these results suggest that genetic instability caused by ΔatmA and ΔatrA mutations can confer an adaptive advantage, mainly in the intensity of voriconazole resistance acquisition.
Collapse
|
4
|
Li D, Tang Y, Lin J, Cai W. Methods for genetic transformation of filamentous fungi. Microb Cell Fact 2017; 16:168. [PMID: 28974205 PMCID: PMC5627406 DOI: 10.1186/s12934-017-0785-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022] Open
Abstract
Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.
Collapse
Affiliation(s)
- Dandan Li
- Institute of Apply Genomics, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
| | - Yu Tang
- Triplex International Biosciences (China) Co. LTD, Xiamen, 361100 China
| | - Jun Lin
- Institute of Apply Genomics, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
- School of Basic Medical Sciences, Fujian Medical University, No.1 Xuefubei Road, Fuzhou, 350122 China
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
| | - Weiwen Cai
- Institute of Apply Genomics, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, Fuzhou, 350108 China
| |
Collapse
|
5
|
Abstract
All cells must accurately replicate DNA and partition it to daughter cells. The basic cell cycle machinery is highly conserved among eukaryotes. Most of the mechanisms that control the cell cycle were worked out in fungal cells, taking advantage of their powerful genetics and rapid duplication times. Here we describe the cell cycles of the unicellular budding yeast Saccharomyces cerevisiae and the multicellular filamentous fungus Aspergillus nidulans. We compare and contrast morphological landmarks of G1, S, G2, and M phases, molecular mechanisms that drive cell cycle progression, and checkpoints in these model unicellular and multicellular fungal systems.
Collapse
|
6
|
The Aspergillus nidulans ATM kinase regulates mitochondrial function, glucose uptake and the carbon starvation response. G3-GENES GENOMES GENETICS 2014; 4:49-62. [PMID: 24192833 PMCID: PMC3887539 DOI: 10.1534/g3.113.008607] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic stress, AtmA appears to perform a role in the regulation of TOR signaling, involving the retrograde and SnfA pathways. Thus, AtmA may represent a link between mitochondrial function and cell cycle or growth, possibly through the influence of the TOR and XprG function.
Collapse
|
7
|
Abstract
The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. To illustrate the utility of these constructs, and advance the understanding of fungal kinases, we have systematically generated deletion strains for 128 A. nidulans kinases including expanded groups of 15 histidine kinases, 7 SRPK (serine-arginine protein kinases) kinases and an interesting group of 11 filamentous fungal specific kinases. We defined the terminal phenotype of 23 of the 25 essential kinases by heterokaryon rescue and identified phenotypes for 43 of the 103 non-essential kinases. Uncovered phenotypes ranged from almost no growth for a small number of essential kinases implicated in processes such as ribosomal biosynthesis, to conditional defects in response to cellular stresses. The data provide experimental evidence that previously uncharacterized kinases function in the septation initiation network, the cell wall integrity and the morphogenesis Orb6 kinase signaling pathways, as well as in pathways regulating vesicular trafficking, sexual development and secondary metabolism. Finally, we identify ChkC as a third effector kinase functioning in the cellular response to genotoxic stress. The identification of many previously unknown functions for kinases through the functional analysis of the A. nidulans kinome illustrates the utility of the A. nidulans gene deletion constructs.
Collapse
|
8
|
Wang C, Zhang S, Hou R, Zhao Z, Zheng Q, Xu Q, Zheng D, Wang G, Liu H, Gao X, Ma JW, Kistler HC, Kang Z, Xu JR. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog 2011; 7:e1002460. [PMID: 22216007 PMCID: PMC3245316 DOI: 10.1371/journal.ppat.1002460] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023] Open
Abstract
As in other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of many plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 protein kinases (PK) genes. Although twenty of them appeared to be essential, we generated deletion mutants for the other 96 PK genes, including 12 orthologs of essential genes in yeast. All of the PK mutants were assayed for changes in 17 phenotypes, including growth, conidiation, pathogenesis, stress responses, and sexual reproduction. Overall, deletion of 64 PK genes resulted in at least one of the phenotypes examined, including three mutants blocked in conidiation and five mutants with increased tolerance to hyperosmotic stress. In total, 42 PK mutants were significantly reduced in virulence or non-pathogenic, including mutants deleted of key components of the cAMP signaling and three MAPK pathways. A number of these PK genes, including Fg03146 and Fg04770 that are unique to filamentous fungi, are dispensable for hyphal growth and likely encode novel fungal virulence factors. Ascospores play a critical role in the initiation of wheat scab. Twenty-six PK mutants were blocked in perithecia formation or aborted in ascosporogenesis. Additional 19 mutants were defective in ascospore release or morphology. Interestingly, F. graminearum contains two aurora kinase genes with distinct functions, which has not been reported in fungi. In addition, we used the interlog approach to predict the PK-PK and PK-protein interaction networks of F. graminearum. Several predicted interactions were verified with yeast two-hybrid or co-immunoprecipitation assays. To our knowledge, this is the first functional characterization of the kinome in plant pathogenic fungi. Protein kinase genes important for various aspects of growth, developmental, and infection processes in F. graminearum were identified in this study. Fusarium head blight caused by Fusarium graminearum is one of the most important diseases on wheat and barley. Although protein kinases are known to play major regulatory roles in fungi, systematic characterization of fungal kinomes has not been reported in plant pathogens. In this study we generated deletion mutants for 96 protein kinase genes. All of the resulting knockout mutants were assayed for changes in 17 phenotypes, including growth, reproduction, stress responses, and plant infection. Overall, deletion of 64 kinase genes resulted in at least one of the phenotypes examined. In total, 42 kinase mutants were significantly reduced in virulence or non-pathogenic. A number of these protein kinase genes, including two that are unique to filamentous fungi, are dispensable for hyphal growth and likely encode novel fungal virulence factors. Ascospores are the primary inoculum for wheat scab. We identified 26 mutants blocked in ascospore. We also used the in silico approach to predict the kinase-kinase interactions and verified some of them by yeast two-hybrid or co-IP assays. Overall, in this study we functionally characterize the kinome of F. graminearum. Protein kinase genes that are important for various aspects of growth, developmental, and plant infection processes were identified.
Collapse
Affiliation(s)
- Chenfang Wang
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Shijie Zhang
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Rui Hou
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Zhongtao Zhao
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Qian Zheng
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Qijun Xu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Dawei Zheng
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Guanghui Wang
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Huiquan Liu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Xuli Gao
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Ji-Wen Ma
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - H. Corby Kistler
- USDA ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Zhensheng Kang
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
- * E-mail: (JRX); (ZK)
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (JRX); (ZK)
| |
Collapse
|
9
|
Wakabayashi M, Ishii C, Hatakeyama S, Inoue H, Tanaka S. ATM and ATR homologes of Neurospora crassa are essential for normal cell growth and maintenance of chromosome integrity. Fungal Genet Biol 2010; 47:809-17. [PMID: 20553930 DOI: 10.1016/j.fgb.2010.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/07/2010] [Accepted: 05/22/2010] [Indexed: 12/23/2022]
Abstract
Genome integrity is maintained by many cellular mechanisms in eukaryotes. One such mechanism functions during the cell cycle and is known as the DNA damage checkpoint. In the filamentous fungus Neurospora crassa, mus-9 and mus-21 are homologes of two key factors of the mammalian DNA damage checkpoint, ATR and ATM, respectively. We previously showed that mus-9 and mus-21 mutants are sensitive to DNA damage and that each mutant shows a characteristic growth defect: conidia from the mus-9 mutant have reduced viability and the mus-21 mutant exhibits slow hyphal growth. However, the relationship between these two genes has not been determined because strains carrying both mus-9 and mus-21 mutations could not be obtained. To facilitate analysis of a strain deficient in both mus-9 and mus-21, we introduced a specific mutation to the kinase domain of MUS-9 to generate a temperature-sensitive mus-9 allele (mus-9(ts)) which shows increased mutagen sensitivity at 37 degrees C. Then we crossed this strain with a mus-21 mutant to obtain a mus-9(ts) mus-21 double mutant. Growth of the mus-9(ts) mus-21 double mutant did not progress at the restrictive temperature (37 degrees C). Even at the permissive temperature (25 degrees C), this strain exhibited a higher mutagen sensitivity than that of the mus-9 and mus-21 single mutants, as well as slow hyphal growth and low viability of conidia. These results indicate that the mus-9(ts) mutation causes hypomorphic phenotypes in the mus-21 mutant and that these two genes regulate different pathways. Interestingly, we observed accumulation of micronuclei in the conidia of this double mutant, and such micronuclei were likely to correlate with spontaneous DSBs. Our results suggest that both mus-9 and mus-21 pathways are involved in DNA damage response, normal growth and maintenance of chromosome integrity, and that at least one of the pathways must be functional for survival.
Collapse
Affiliation(s)
- Michiyoshi Wakabayashi
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Japan
| | | | | | | | | |
Collapse
|
10
|
DNA-damage response in the basidiomycete fungus Ustilago maydis relies in a sole Chk1-like kinase. DNA Repair (Amst) 2009; 8:720-31. [PMID: 19269260 DOI: 10.1016/j.dnarep.2009.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/31/2009] [Indexed: 11/23/2022]
Abstract
Chk1 is a protein kinase that acts as a key signal transducer within the complex network responsible of the cellular response to different DNA damages. It is a conserved element along the eukaryotic kingdom, together with a second checkpoint kinase, called Chk2/Rad53. In fact, all organisms studied so far carried at least one copy of each kind of checkpoint kinase. Since the relative contribution to the DNA-damage response of each type of kinase varies from one organism to other, the current view about the roles of Chk1 and Chk2/Rad53 during DNA-damage response is one of mutual complementation and intimate cooperation. However, in this work it is reported that Ustilago maydis - a phytopathogenic fungus exhibiting extreme resistance to UV and ionizing radiation - have a single kinase belonging to the Chk1 family but strikingly no kinases related to Chk2/Rad53 family are apparent. The U. maydis Chk1 kinase is able to respond to different classes of DNA damages and its activity is required for the cellular adaptation to such damages. As other described components of the Chk1 family of kinases, U. maydis Chk1 is phosphorylated and translocated to nucleus in response to DNA-damage signals. Interestingly subtle differences in this response depending on the kind of DNA damage are apparent, suggesting that in U. maydis the sole Chk1 kinase recapitulates the roles that in other organisms are shared by Chk1 and the Chk2/Rad53 family of protein kinases.
Collapse
|
11
|
Genetic analysis of CHK1 and CHK2 homologues revealed a unique cross talk between ATM and ATR pathways in Neurospora crassa. DNA Repair (Amst) 2008; 7:1951-61. [PMID: 18790091 DOI: 10.1016/j.dnarep.2008.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 08/06/2008] [Accepted: 08/13/2008] [Indexed: 01/12/2023]
Abstract
DNA damage checkpoint is an important mechanism for organisms to maintain genome integrity. In Neurospora crassa, mus-9 and mus-21 are homologues of ATR and ATM, respectively, which are pivotal factors of DNA damage checkpoint in mammals. A N. crassa clock gene prd-4 has been identified as a CHK2 homologue, but its role in DNA damage response had not been elucidated. In this study, we identified another CHK2 homologue and one CHK1 homologue from the N. crassa genome database. As disruption of these genes affected mutagen tolerance, we named them mus-59 and mus-58, respectively. The mus-58 mutant was sensitive to hydroxyurea (HU), but the mus-59 and prd-4 mutants showed the same HU sensitivity as that of the wild-type strain. This indicates the possibility that MUS-58 is involved in replication checkpoint and stabilization of stalled forks like mammalian CHK1. Phosphorylation of MUS-58 and MUS-59 was observed in the wild-type strain in response to mutagen treatments. Genetic relationships between those three genes and mus-9 or mus-21 indicated that the mus-9 mutation was epistatic to mus-58, and mus-21 was epistatic to prd-4. These relationships correspond to two signal pathways, ATR-CHK1 and ATM-CHK2 that have been established in mammalian cells. However, both the mus-9 mus-59 and mus-21 mus-58 double mutants showed an intermediate level between the two parental strains for CPT sensitivity. Furthermore, these double mutants showed severe growth defects. Our findings suggest that the DNA damage checkpoint of N. crassa is controlled by unique mechanisms.
Collapse
|