1
|
Scott K, Singh N, Gordon KL. An RNAi screen of Rab GTPase genes in C. elegans reveals that somatic cells of the reproductive system depend on rab-1 for morphogenesis but not stem cell niche maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626641. [PMID: 39677816 PMCID: PMC11642880 DOI: 10.1101/2024.12.03.626641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Membrane trafficking is a crucial function of all cells and is regulated at multiple levels from vesicle formation, packaging, and localization to fusion, exocytosis, and endocytosis. Rab GTPase proteins are core regulators of eukaryotic membrane trafficking, but developmental roles of specific Rab GTPases are less well characterized, potentially because of their essentiality for basic cellular function. C. elegans gonad development entails the coordination of cell growth, proliferation, and migration-processes in which membrane trafficking is known to be required. Here we take an organ-focused approach to Rab GTPase function in vivo to assess the roles of Rab genes in reproductive system development. We performed a whole-body RNAi screen of the entire Rab family in C. elegans to uncover Rabs essential for gonad development. Notable gonad defects resulted from RNAi knockdown of rab-1, the key regulator of ER-Golgi trafficking. We then examined the effects of tissue-specific RNAi knockdown of rab-1 in somatic reproductive system and germline cells. We interrogated the dual functions of the distal tip cell (DTC) as both a leader cell of gonad organogenesis and the germline stem cell niche. We find that rab-1 functions cell-autonomously and non-cell-autonomously to regulate both somatic gonad and germline development. Gonad migration, elongation, and gamete differentiation-but surprisingly not germline stem niche function-are highly sensitive to rab-1 RNAi.
Collapse
Affiliation(s)
- Kayt Scott
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Noor Singh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- UNC Lineberger Comprehensive Cancer Center
| |
Collapse
|
2
|
Cheng E, Lu R, Gerhold AR. Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells. PLoS Genet 2024; 20:e1011351. [PMID: 39715269 PMCID: PMC11706408 DOI: 10.1371/journal.pgen.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C. elegans germline stem and progenitor cells (GSPCs) to ask how the signaling environment influences stem and progenitor cell mitosis in vivo. Through a candidate screen we identify a new role for the insulin/IGF receptor (IGFR), daf-2, during GSPC mitosis. Mitosis is delayed in daf-2/IGFR mutants, and these delays require canonical, DAF-2/IGFR to DAF-16/FoxO insulin signaling, here acting cell non-autonomously from the soma. Interestingly, mitotic delays in daf-2/IGFR mutants depend on the spindle assembly checkpoint but are not accompanied by a loss of mitotic fidelity. Correspondingly, we show that caloric restriction, which delays GSPC mitosis and compromises mitotic fidelity, does not act via the canonical insulin signaling pathway, and instead requires AMP-activated kinase (AMPK). Together this work demonstrates that GSPC mitosis is influenced by at least two genetically separable signaling pathways and highlights the importance of signaling networks for proper stem and progenitor cell mitosis in vivo.
Collapse
Affiliation(s)
- Eric Cheng
- Department of Biology, McGill University, Montréal, Canada
| | - Ran Lu
- Department of Biology, McGill University, Montréal, Canada
| | | |
Collapse
|
3
|
Turmel-Couture S, Martel PO, Beaulieu L, Lechasseur X, Fotso Dzuna LV, Narbonne P. Bidirectional transfer of a small membrane-impermeable molecule between the Caenorhabditis elegans intestine and germline. J Biol Chem 2024; 300:107963. [PMID: 39510179 DOI: 10.1016/j.jbc.2024.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) is a positive regulator of cell proliferation often upregulated in cancer. Its Caenorhabditis elegans ortholog MPK-1 stimulates germline stem cell (GSC) proliferation nonautonomously from the intestine or somatic gonad. How MPK-1 can perform this task from either of these two tissues however remains unclear. We reasoned that somatic MPK-1 activity could lead to the generation of proproliferative small molecules that could transfer from the intestine and/or somatic gonad to the germline. Here, in support of this hypothesis, we demonstrate that a significant fraction of the small membrane-impermeable fluorescent molecule, 5-carboxyfluorescein, transfers to the germline after its microinjection in the animal's intestine. The larger part of this transfer targets oocytes and requires the germline receptor mediated endocytosis 2 (RME-2) yolk receptor. A minor quantity of the dye is however distributed independently from RME-2 and more widely in the animal, including the distal germline, gonadal sheath, coelomocytes, and hypodermis. We further show that the intestine-to-germline transfer efficiency of this RME-2 independent fraction does not vary together with GSC proliferation rates or MPK-1 activity. Therefore, if germline proliferation was influenced by small membrane-impermeable molecules generated in the intestine, it is unlikely that proliferation would be regulated at the level of molecule transfer rate. Finally, we show that conversely, a similar fraction of germline injected 5-carboxyfluorescein transfers to the intestine, demonstrating transfer bidirectionality. Altogether, our results establish the possibility of an intestine-to-germline signaling axis mediated by small membrane-impermeable molecules that could promote GSC proliferation cell nonautonomously downstream of MPK-1 activity.
Collapse
Affiliation(s)
- Sarah Turmel-Couture
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Pier-Olivier Martel
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Lucie Beaulieu
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Xavier Lechasseur
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | | | - Patrick Narbonne
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.
| |
Collapse
|
4
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis and maintain translational repression of maternal mRNA and oocyte quality. Mol Biol Cell 2024; 35:ar131. [PMID: 39167497 PMCID: PMC11481691 DOI: 10.1091/mbc.e24-05-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo Caenorhabditis elegans oogenesis model to characterize the properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and three other translational regulators. We demonstrate that MEX-3 undergoes phase separation and appears to have intrinsic gel-like properties in vitro. We also identify novel roles for the chaperonin-containing tailless complex polypeptide 1 (CCT) chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. The CCT chaperonin and actin also oppose the expansion of endoplasmic reticulum sheets that may promote ectopic condensation of RNA-binding proteins. These novel regulators of condensation are also required for the translational repression of maternal mRNA which is essential for oocyte quality and fertility. The identification of this regulatory network may also have implications for understanding the role of hMex3 phase transitions in cancer.
Collapse
Affiliation(s)
- Mohamed T. Elaswad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Mingze Gao
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Victoria E. Tice
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Cora G. Bright
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Grace M. Thomas
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Chloe Munderloh
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | | | - Christya N. Haddad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Ulysses G. Johnson
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859
| | - Ashley N. Cichon
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Jennifer A. Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| |
Collapse
|
5
|
Laranjeira AC, Berger S, Kohlbrenner T, Greter NR, Hajnal A. Nutritional vitamin B12 regulates RAS/MAPK-mediated cell fate decisions through one-carbon metabolism. Nat Commun 2024; 15:8178. [PMID: 39289374 PMCID: PMC11408588 DOI: 10.1038/s41467-024-52556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Vitamin B12 is an essential nutritional co-factor for the folate and methionine cycles, which together constitute one-carbon metabolism. Here, we show that dietary uptake of vitamin B12 modulates cell fate decisions controlled by the conserved RAS/MAPK signaling pathway in C. elegans. A bacterial diet rich in vitamin B12 increases vulval induction, germ cell apoptosis and oocyte differentiation. These effects are mediated by different one-carbon metabolites in a tissue-specific manner. Vitamin B12 enhances via the choline/phosphatidylcholine metabolism vulval induction by down-regulating fat biosynthesis genes and increasing H3K4 tri-methylation, which results in increased expression of RAS/MAPK target genes. Furthermore, the nucleoside metabolism and H3K4 tri-methylation positively regulate germ cell apoptosis and oocyte production. Using mammalian cells carrying different activated KRAS and BRAF alleles, we show that the effects of methionine on RAS/MAPK-regulated phenotype are conserved in mammals. Our findings suggest that the vitamin B12-dependent one-carbon metabolism is a limiting factor for diverse RAS/MAPK-induced cellular responses.
Collapse
Affiliation(s)
| | - Simon Berger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nadja R Greter
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Mozzarelli AM, Simanshu DK, Castel P. Functional and structural insights into RAS effector proteins. Mol Cell 2024; 84:2807-2821. [PMID: 39025071 PMCID: PMC11316660 DOI: 10.1016/j.molcel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Alessandro M Mozzarelli
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
7
|
Toraason E, Salagean A, Almanzar DE, Brown JE, Richter CM, Kurhanewicz NA, Rog O, Libuda DE. BRCA1/BRC-1 and SMC-5/6 regulate DNA repair pathway engagement during Caenorhabditis elegans meiosis. eLife 2024; 13:e80687. [PMID: 39115289 PMCID: PMC11368404 DOI: 10.7554/elife.80687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The preservation of genome integrity during sperm and egg development is vital for reproductive success. During meiosis, the tumor suppressor BRCA1/BRC-1 and structural maintenance of chromosomes 5/6 (SMC-5/6) complex genetically interact to promote high fidelity DNA double strand break (DSB) repair, but the specific DSB repair outcomes these proteins regulate remain unknown. Using genetic and cytological methods to monitor resolution of DSBs with different repair partners in Caenorhabditis elegans, we demonstrate that both BRC-1 and SMC-5 repress intersister crossover recombination events. Sequencing analysis of conversion tracts from homolog-independent DSB repair events further indicates that BRC-1 regulates intersister/intrachromatid noncrossover conversion tract length. Moreover, we find that BRC-1 specifically inhibits error prone repair of DSBs induced at mid-pachytene. Finally, we reveal functional interactions of BRC-1 and SMC-5/6 in regulating repair pathway engagement: BRC-1 is required for localization of recombinase proteins to DSBs in smc-5 mutants and enhances DSB repair defects in smc-5 mutants by repressing theta-mediated end joining (TMEJ). These results are consistent with a model in which some functions of BRC-1 act upstream of SMC-5/6 to promote recombination and inhibit error-prone DSB repair, while SMC-5/6 acts downstream of BRC-1 to regulate the formation or resolution of recombination intermediates. Taken together, our study illuminates the coordinated interplay of BRC-1 and SMC-5/6 to regulate DSB repair outcomes in the germline.
Collapse
Affiliation(s)
- Erik Toraason
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Alina Salagean
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - David E Almanzar
- School of Biological Sciences and Center for Cell and Genome Sciences, University of UtahSalt Lake CityUnited States
| | - Jordan E Brown
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Colette M Richter
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Nicole A Kurhanewicz
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of UtahSalt Lake CityUnited States
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
8
|
Kohlbrenner T, Berger S, Laranjeira AC, Aegerter-Wilmsen T, Comi LF, deMello A, Hajnal A. Actomyosin-mediated apical constriction promotes physiological germ cell death in C. elegans. PLoS Biol 2024; 22:e3002775. [PMID: 39178318 PMCID: PMC11376560 DOI: 10.1371/journal.pbio.3002775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/05/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
Germ cell apoptosis in Caenorhabditis elegans hermaphrodites is a physiological process eliminating around 60% of all cells in meiotic prophase to maintain tissue homeostasis. In contrast to programmed cell death in the C. elegans soma, the selection of germ cells undergoing apoptosis is stochastic. By live-tracking individual germ cells at the pachytene stage, we found that germ cells smaller than their neighbors are selectively eliminated through apoptosis before differentiating into oocytes. Thus, cell size is a strong predictor of physiological germ cell death. The RAS/MAPK and ECT/RHO/ROCK pathways together regulate germ cell size by controlling actomyosin constriction at the apical rachis bridges, which are cellular openings connecting the syncytial germ cells to a shared cytoplasmic core. Enhancing apical constriction reduces germ cell size and increases the rate of cell death while inhibiting the actomyosin network in the germ cells prevents their death. We propose that actomyosin contractility at the rachis bridges of the syncytial germ cells amplifies intrinsic disparities in cell size. Through this mechanism, the animals can adjust the balance between physiological germ cell death and oocyte differentiation.
Collapse
Affiliation(s)
- Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Simon Berger
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Ana Cristina Laranjeira
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University of Zürich and ETH Zürich, Zürich, Switzerland
| | | | - Laura Filomena Comi
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Meng K, Shi YC, Li WX, Wang J, Cheng BJ, Li TL, Li H, Jiang N, Liu R. Testosterone Mediates Reproductive Toxicity in Caenorhabditis elegans by Affecting Sex Determination in Germ Cells through nhr-69/ mpk-1/ fog-1/ 3. TOXICS 2024; 12:502. [PMID: 39058154 PMCID: PMC11281075 DOI: 10.3390/toxics12070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Testosterone (T), an environmental androgen, significantly disrupts endocrine systems in wildlife and ecosystems. Despite growing concern over its high levels in aquatic environments, the reproductive toxicity of testosterone and its mechanisms are not well understood. In this study, we investigated the reproductive toxicity and mechanisms of testosterone using Caenorhabditis elegans (C. elegans) and assessed its ecological toxicity through the benchmark dose (BMD) method. Our results indicate that T concentrations exceeding 0.01 μg/L significantly reduce the brood size, decrease germ cell counts, and prolong the generation time in C. elegans as T concentrations increase. Furthermore, to elucidate the specific mechanisms, we analyzed the expression of nhr-69, mpk-1, and other genes involved in sex determination. These findings suggest that the nhr-69-mediated reproductive toxicity of T primarily affects sperm formation and the offspring number by influencing its downstream targets, mpk-1 and fog-1/3, which are critical in the germ cell sex-determining pathway. Additionally, this study determined that the 10% lower boundary of the baseline dose (BMDL10) is 1.160 ng/L, offering a more protective reference dose for the ecological risk assessment of T. The present study suggests that nhr-69 mediates the reproductive toxicity of T by influencing mpk-1 and fog-1/3, critical genes at the end of the germ cell sex-determining pathway, thereby providing a basis for establishing reproductive toxicity thresholds for T.
Collapse
Affiliation(s)
- Ke Meng
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Ying-Chi Shi
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Wei-Xi Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Jia Wang
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Bei-Jing Cheng
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Tian-Lin Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Hui Li
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| | - Nan Jiang
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Ran Liu
- Key Laboratory of Environmental Engineer Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (K.M.); (Y.-C.S.); (W.-X.L.); (J.W.); (B.-J.C.); (T.-L.L.); (H.L.)
| |
Collapse
|
10
|
Jones M, Norman M, Tiet AM, Lee J, Lee MH. C. elegans Germline as Three Distinct Tumor Models. BIOLOGY 2024; 13:425. [PMID: 38927305 PMCID: PMC11200432 DOI: 10.3390/biology13060425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Tumor cells display abnormal growth and division, avoiding the natural process of cell death. These cells can be benign (non-cancerous growth) or malignant (cancerous growth). Over the past few decades, numerous in vitro or in vivo tumor models have been employed to understand the molecular mechanisms associated with tumorigenesis in diverse regards. However, our comprehension of how non-tumor cells transform into tumor cells at molecular and cellular levels remains incomplete. The nematode C. elegans has emerged as an excellent model organism for exploring various phenomena, including tumorigenesis. Although C. elegans does not naturally develop cancer, it serves as a valuable platform for identifying oncogenes and the underlying mechanisms within a live organism. In this review, we describe three distinct germline tumor models in C. elegans, highlighting their associated mechanisms and related regulators: (1) ectopic proliferation due to aberrant activation of GLP-1/Notch signaling, (2) meiotic entry failure resulting from the loss of GLD-1/STAR RNA-binding protein, (3) spermatogenic dedifferentiation caused by the loss of PUF-8/PUF RNA-binding protein. Each model requires the mutations of specific genes (glp-1, gld-1, and puf-8) and operates through distinct molecular mechanisms. Despite these differences in the origins of tumorigenesis, the internal regulatory networks within each tumor model display shared features. Given the conservation of many of the regulators implicated in C. elegans tumorigenesis, it is proposed that these unique models hold significant potential for enhancing our comprehension of the broader control mechanisms governing tumorigenesis.
Collapse
Affiliation(s)
- Mariah Jones
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; (M.J.); (M.N.)
| | - Mina Norman
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; (M.J.); (M.N.)
| | - Alex Minh Tiet
- Neuroscience Program, East Carolina University, Greenville, NC 27858, USA;
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Jiwoo Lee
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Myon Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; (M.J.); (M.N.)
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
11
|
Dufourcq Sekatcheff E, Godon C, Bailly A, Quevarec L, Camilleri V, Galas S, Frelon S. Two distinct mechanisms lead to either oocyte or spermatocyte decrease in C. elegans after whole developmental exposure to γ-rays. PLoS One 2023; 18:e0294766. [PMID: 38011087 PMCID: PMC10681227 DOI: 10.1371/journal.pone.0294766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Wildlife is subject to various sources of pollution, including ionizing radiation. Adverse effects can impact the survival, growth, or reproduction of organisms, later affecting population dynamics. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help to comprehend species-specific differences in radiosensitivity. From our previous studies, we found that decrease in reproduction is life stage dependent in the roundworm Caenorhabditis elegans, possibly resulting from an accumulation of damages during germ cell development and gamete differentiation. To go further, we used the same experimental design to assess more precisely the molecular determinants of reproductive toxicity, primarily decreases in gamete number. As before, worms were chronically exposed to 50 mGy·h-1 external gamma ionizing radiation throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). To enable cross species extrapolation, conserved molecular pathways across invertebrates and vertebrates were analysed: apoptosis and MAP kinase Ras/ERK (MPK-1), both involved in reproduction and stress responses. Our results showed that these pathways are life-stage dependent, resulting from an accumulation of damages upon chronic exposure to IR throughout the life development. The Ras/ERK pathway was activated in our conditions in the pachytene region of the gonad where it regulates cell fate including apoptosis, but not in the ovulation zone, where it controls oocyte maturation and ovulation. Additionally, assessment of germ cell proliferation via Ras/ERK pathway showed no effect. Finally, a functional analysis of apoptosis revealed that while the decrease of the ovulation rate is caused by DNA-damaged induced apoptosis, this process does not occur in spermatocytes. Thus, sperm decrease seems to be mediated via another mechanism, probably a decrease in germ cell proliferation speed that needs further investigation to better characterize sex-specific responses to IR exposure. These results are of main importance to describe radio-induced reprotoxic effects and contribute as weight of evidence for the AOP #396 "Deposition of ionizing energy leads to population decline via impaired meiosis".
Collapse
Affiliation(s)
- Elizabeth Dufourcq Sekatcheff
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, F-13115, Saint Paul-Lez-Durance, France
| | - Christian Godon
- Institut de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille University, CEA, CNRS, BIAM, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Aymeric Bailly
- CRBM, CNRS, Université de Montpellier, UMR5237, Montpellier, 34090, France
| | - Loïc Quevarec
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, F-13115, Saint Paul-Lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, F-13115, Saint Paul-Lez-Durance, France
| | - Simon Galas
- CNRS, ENSCM, IBMM Université de Montpellier, 34093, Montpellier, France
| | - Sandrine Frelon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, F-13115, Saint Paul-Lez-Durance, France
| |
Collapse
|
12
|
Sarkar GC, Rautela U, Goyala A, Datta S, Anand N, Singh A, Singh P, Chamoli M, Mukhopadhyay A. DNA damage signals from somatic uterine tissue arrest oogenesis through activated DAF-16. Development 2023; 150:dev201472. [PMID: 37577954 DOI: 10.1242/dev.201472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Germ line integrity is crucial for progeny fitness. Organisms deploy the DNA damage response (DDR) signaling to protect the germ line from genotoxic stress, facilitating the cell-cycle arrest of germ cells and DNA repair or their apoptosis. Cell-autonomous regulation of germ line quality in response to DNA damage is well studied; however, how quality is enforced cell non-autonomously on sensing somatic DNA damage is less known. Using Caenorhabditis elegans, we show that DDR disruption, only in the uterus, when insulin/IGF-1 signaling (IIS) is low, arrests oogenesis in the pachytene stage of meiosis I, in a FOXO/DAF-16 transcription factor-dependent manner. Without FOXO/DAF-16, germ cells of the IIS mutant escape the arrest to produce poor-quality oocytes, showing that the transcription factor imposes strict quality control during low IIS. Activated FOXO/DAF-16 senses DDR perturbations during low IIS to lower ERK/MPK-1 signaling below a threshold to promote germ line arrest. Altogether, we elucidate a new surveillance role for activated FOXO/DAF-16 that ensures optimal germ cell quality and progeny fitness in response to somatic DNA damage.
Collapse
Affiliation(s)
- Gautam Chandra Sarkar
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Umanshi Rautela
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anita Goyala
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sudeshna Datta
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nikhita Anand
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anupama Singh
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prachi Singh
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manish Chamoli
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
13
|
Trimmer KA, Zhao P, Seemann J, Chen SY, Mondal S, Ben-Yakar A, Arur S. Spatial single-cell sequencing of meiosis I arrested oocytes indicates acquisition of maternal transcripts from the soma. Cell Rep 2023; 42:112544. [PMID: 37227820 PMCID: PMC10592488 DOI: 10.1016/j.celrep.2023.112544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/08/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Maternal RNAs are stored from minutes to decades in oocytes throughout meiosis I arrest in a transcriptionally quiescent state. Recent reports, however, propose a role for nascent transcription in arrested oocytes. Whether arrested oocytes launch nascent transcription in response to environmental or hormonal signals while maintaining the meiosis I arrest remains undetermined. We test this by integrating single-cell RNA sequencing, RNA velocity, and RNA fluorescence in situ hybridization on C. elegans meiosis I arrested oocytes. We identify transcripts that increase as the arrested meiosis I oocyte ages, but rule out extracellular signaling through ERK MAPK and nascent transcription as a mechanism for this increase. We report transcript acquisition from neighboring somatic cells as a mechanism of transcript increase during meiosis I arrest. These analyses provide a deeper view at single-cell resolution of the RNA landscape of a meiosis I arrested oocyte and as it prepares for oocyte maturation and fertilization.
Collapse
Affiliation(s)
- Kenneth A Trimmer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peisen Zhao
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Jacob Seemann
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shin-Yu Chen
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Adela Ben-Yakar
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA; Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Liu Z, Jin X, Miao Y, Wang P, Gu Y, Shangguan X, Chen L, Wang G. Identification and Characterization of C-Mos in Pearl Mussel Hyriopsis cumingii and Its Role in Gonadal Development. Biomolecules 2023; 13:931. [PMID: 37371511 DOI: 10.3390/biom13060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
C-Mos, a proto-oncogene, regulates oocyte maturation by activating the classical MAPK pathway in cells. To examine the function of C-Mos in Hyriopsis cumingii, C-Mos was identified in this study. The full-length cDNA of C-Mos was 2213 bp, including 144 bp in the 5' UTR, 923 bp in 3' the UTR, and 1146 bp in the open reading frame (ORF) region. During early gonad development, the expression of C-Mos from 4 to 6 months of age in H. cumingii was significantly higher than that in other months, with the highest expression in 6-month-old H. cumingii, suggesting that C-Mos may be involved in early gonadal development in H. cumingii. Clear hybridization signals were found by in situ hybridization in the oocytes, oocyte nucleus and oogonium, and a small number of hybridization signals were found in the follicular wall of the male gonads. In addition, the C-Mos RNA interference (RNAi) assay results showed that the knockdown of C-Mos caused a down-regulation of ERK and P90rsk. In summary, these results indicate that C-Mos has a crucial part to play in gonadal development in H. cumingii.
Collapse
Affiliation(s)
- Zongyu Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Xin Jin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Yulin Miao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Ping Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Yang Gu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Xiaozhao Shangguan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Lijing Chen
- Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| |
Collapse
|
15
|
Park Y, Gaddy M, Hyun M, Jones ME, Aslam HM, Lee MH. Genetic and Chemical Controls of Sperm Fate and Spermatocyte Dedifferentiation via PUF-8 and MPK-1 in Caenorhabditis elegans. Cells 2023; 12:cells12030434. [PMID: 36766775 PMCID: PMC9913519 DOI: 10.3390/cells12030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Using the nematode C. elegans germline as a model system, we previously reported that PUF-8 (a PUF RNA-binding protein) and LIP-1 (a dual-specificity phosphatase) repress sperm fate at 20 °C and the dedifferentiation of spermatocytes into mitotic cells (termed "spermatocyte dedifferentiation") at 25 °C. Thus, double mutants lacking both PUF-8 and LIP-1 produce excess sperm at 20 °C, and their spermatocytes return to mitotically dividing cells via dedifferentiation at 25 °C, resulting in germline tumors. To gain insight into the molecular competence for spermatocyte dedifferentiation, we compared the germline phenotypes of three mutant strains that produce excess sperm-fem-3(q20gf), puf-8(q725); fem-3(q20gf), and puf-8(q725); lip-1(zh15). Spermatocyte dedifferentiation was not observed in fem-3(q20gf) mutants, but it was more severe in puf-8(q725); lip-1(zh15) than in puf-8(q725); fem-3(q20gf) mutants. These results suggest that MPK-1 (the C. elegans ERK1/2 MAPK ortholog) activation in the absence of PUF-8 is required to promote spermatocyte dedifferentiation. This idea was confirmed using Resveratrol (RSV), a potential activator of MPK-1 and ERK1/2 in C. elegans and human cells, respectively. Notably, spermatocyte dedifferentiation was significantly enhanced by RSV treatment in the absence of PUF-8, and its effect was blocked by mpk-1 RNAi. We, therefore, conclude that PUF-8 and MPK-1 are essential regulators for spermatocyte dedifferentiation and tumorigenesis. Since these regulators are broadly conserved, we suggest that similar regulatory circuitry may control cellular dedifferentiation and tumorigenesis in other organisms, including humans.
Collapse
Affiliation(s)
- Youngyong Park
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Matthew Gaddy
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Moonjung Hyun
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Korea Institute of Toxicology, Jinju 52834, Gyeongsangnam-do, Republic of Korea
| | - Mariah E. Jones
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Hafiz M. Aslam
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Myon Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| |
Collapse
|
16
|
Zhang L, Stauffer WT, Wang JS, Wu F, Yu Z, Liu C, Kim HJ, Dernburg AF. Recruitment of Polo-like kinase couples synapsis to meiotic progression via inactivation of CHK-2. eLife 2023; 12:84492. [PMID: 36700544 PMCID: PMC9998088 DOI: 10.7554/elife.84492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Meiotic chromosome segregation relies on synapsis and crossover (CO) recombination between homologous chromosomes. These processes require multiple steps that are coordinated by the meiotic cell cycle and monitored by surveillance mechanisms. In diverse species, failures in chromosome synapsis can trigger a cell cycle delay and/or lead to apoptosis. How this key step in 'homolog engagement' is sensed and transduced by meiotic cells is unknown. Here we report that in C. elegans, recruitment of the Polo-like kinase PLK-2 to the synaptonemal complex triggers phosphorylation and inactivation of CHK-2, an early meiotic kinase required for pairing, synapsis, and double-strand break (DSB) induction. Inactivation of CHK-2 terminates DSB formation and enables CO designation and cell cycle progression. These findings illuminate how meiotic cells ensure CO formation and accurate chromosome segregation.
Collapse
Affiliation(s)
- Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Weston T Stauffer
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - John S Wang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Fan Wu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Zhouliang Yu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Chenshu Liu
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative BiosciencesBerkeleyUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
17
|
Toraason E, Adler VL, Libuda DE. Aging and sperm signals alter DNA break formation and repair in the C. elegans germline. PLoS Genet 2022; 18:e1010282. [PMID: 36342909 PMCID: PMC9671421 DOI: 10.1371/journal.pgen.1010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/17/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Female reproductive aging is associated with decreased oocyte quality and fertility. The nematode Caenorhabditis elegans is a powerful system for understanding the biology of aging and exhibits age-related reproductive defects that are analogous to those observed in many mammals, including dysregulation of DNA repair. C. elegans germline function is influenced simultaneously by both reproductive aging and signals triggered by limited supplies of sperm, which are depleted over chronological time. To delineate the causes of DNA repair defects in aged C. elegans germlines, we assessed both DNA double strand break (DSB) induction and repair during meiotic prophase I progression in aged germlines which were depleted of self-sperm, mated, or never exposed to sperm. We find that germline DSB induction is dramatically reduced only in hermaphrodites which have exhausted their endogenous sperm, suggesting that a signal due specifically to sperm depletion downregulates DSB formation. We also find that DSB repair is delayed in aged germlines regardless of whether hermaphrodites had either a reduction in sperm supply or an inability to endogenously produce sperm. These results demonstrate that in contrast to DSB induction, DSB repair defects are a feature of C. elegans reproductive aging independent of sperm presence. Finally, we demonstrate that the E2 ubiquitin-conjugating enzyme variant UEV-2 is required for efficient DSB repair specifically in young germlines, implicating UEV-2 in the regulation of DNA repair during reproductive aging. In summary, our study demonstrates that DNA repair defects are a feature of C. elegans reproductive aging and uncovers parallel mechanisms regulating efficient DSB formation in the germline.
Collapse
Affiliation(s)
- Erik Toraason
- University of Oregon, Department of Biology, Institute of Molecular Biology, Eugene, Oregon, United States of America
| | - Victoria L. Adler
- University of Oregon, Department of Biology, Institute of Molecular Biology, Eugene, Oregon, United States of America
| | - Diana E. Libuda
- University of Oregon, Department of Biology, Institute of Molecular Biology, Eugene, Oregon, United States of America
| |
Collapse
|
18
|
Das D, Arur S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol Reprod Dev 2022; 89:353-374. [PMID: 35908193 PMCID: PMC9492652 DOI: 10.1002/mrd.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
During oogenesis, oocytes arrest at meiotic prophase I to acquire competencies for resuming meiosis, fertilization, and early embryonic development. Following this arrested period, oocytes resume meiosis in response to species-specific hormones, a process known as oocyte maturation, that precedes ovulation and fertilization. Involvement of endocrine and autocrine/paracrine factors and signaling events during maintenance of prophase I arrest, and resumption of meiosis is an area of active research. Studies in vertebrate and invertebrate model organisms have delineated the molecular determinants and signaling pathways that regulate oocyte maturation. Cell cycle regulators, such as cyclin-dependent kinase (CDK1), polo-like kinase (PLK1), Wee1/Myt1 kinase, and the phosphatase CDC25 play conserved roles during meiotic resumption. Extracellular signal-regulated kinase (ERK), on the other hand, while activated during oocyte maturation in all species, regulates both species-specific, as well as conserved events among different organisms. In this review, we synthesize the general signaling mechanisms and focus on conserved and distinct functions of ERK signaling pathway during oocyte maturation in mammals, non-mammalian vertebrates, and invertebrates such as Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
19
|
Ellis RE. Sex Determination in Nematode Germ Cells. Sex Dev 2022:1-18. [PMID: 35172320 PMCID: PMC9378769 DOI: 10.1159/000520872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Animal germ cells differentiate as sperm or as oocytes. These sexual fates are controlled by complex regulatory pathways to ensure that the proper gametes are made at the appropriate times. SUMMARY Nematodes like Caenorhabditis elegans and its close relatives are ideal models for studying how this regulation works, because the XX animals are self-fertile hermaphrodites that produce both sperm and oocytes. In these worms, germ cells use the same signal transduction pathway that functions in somatic cells. This pathway determines the activity of the transcription factor TRA-1, a Gli protein that can repress male genes. However, the pathway is extensively modified in germ cells, largely by the action of translational regulators like the PUF proteins. Many of these modifications play critical roles in allowing the XX hermaphrodites to make sperm in an otherwise female body. Finally, TRA-1 cooperates with chromatin regulators in the germ line to control the activity of fog-1 and fog-3, which are essential for spermatogenesis. FOG-1 and FOG-3 work together to determine germ cell fates by blocking the translation of oogenic transcripts. Key Messages: Although there is great diversity in how germ cell fates are controlled in other animals, many of the key nematode genes are conserved, and the critical role of translational regulators may be universal.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey, USA
| |
Collapse
|
20
|
Reevaluation of the role of LIP-1 as an ERK/MPK-1 dual specificity phosphatase in the C. elegans germline. Proc Natl Acad Sci U S A 2022; 119:2113649119. [PMID: 35022236 PMCID: PMC8784128 DOI: 10.1073/pnas.2113649119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
The RAS–ERK pathway is critical for metazoan development. In development, ERK activity is regulated by a balance of phosphorylation of ERK by MEK (MAPK kinase) and dephosphorylation by DUSPs (dual specificity phosphatases). LIP-1, a DUSP6/7 family member, was previously suggested to regulate MPK-1/ERK activity by dephosphorylating MPK-1 in the Caenorhabditis elegans germline, based on LIP-1's mutant phenotype in the germline and its DUSP role in vulval development. However, our investigations demonstrate that LIP-1 does not function as an MPK-1 DUSP in the germline and likely regulates germline functions through distinct targets. Our results present a cautionary note about misinterpreting similar mutant phenotypes caused by mutations in different genes and assuming that genes function similarly in different tissues. The fidelity of a signaling pathway depends on its tight regulation in space and time. Extracellular signal-regulated kinase (ERK) controls wide-ranging cellular processes to promote organismal development and tissue homeostasis. ERK activation depends on a reversible dual phosphorylation on the TEY motif in its active site by ERK kinase (MEK) and dephosphorylation by DUSPs (dual specificity phosphatases). LIP-1, a DUSP6/7 homolog, was proposed to function as an ERK (MPK-1) DUSP in the Caenorhabditis elegans germline primarily because of its phenotype, which morphologically mimics that of a RAS/let-60 gain-of-function mutant (i.e., small oocyte phenotype). Our investigations, however, reveal that loss of lip-1 does not lead to an increase in MPK-1 activity in vivo. Instead, we show that loss of lip-1 leads to 1) a decrease in MPK-1 phosphorylation, 2) lower MPK-1 substrate phosphorylation, 3) phenocopy of mpk-1 reduction-of-function (rather than gain-of-function) allele, and 4) a failure to rescue mpk-1–dependent germline or fertility defects. Moreover, using diverse genetic mutants, we show that the small oocyte phenotype does not correlate with increased ectopic MPK-1 activity and that ectopic increase in MPK-1 phosphorylation does not necessarily result in a small oocyte phenotype. Together, these data demonstrate that LIP-1 does not function as an MPK-1 DUSP in the C. elegans germline. Our results caution against overinterpretation of the mechanistic underpinnings of orthologous phenotypes, since they may be a result of independent mechanisms, and provide a framework for characterizing the distinct molecular targets through which LIP-1 may mediate its several germline functions.
Collapse
|
21
|
Singh R, Smit RB, Wang X, Wang C, Racher H, Hansen D. Reduction of Derlin activity suppresses Notch-dependent tumours in the C. elegans germ line. PLoS Genet 2021; 17:e1009687. [PMID: 34555015 PMCID: PMC8491880 DOI: 10.1371/journal.pgen.1009687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
Regulating the balance between self-renewal (proliferation) and differentiation is key to the long-term functioning of all stem cell pools. In the Caenorhabditis elegans germline, the primary signal controlling this balance is the conserved Notch signaling pathway. Gain-of-function mutations in the GLP-1/Notch receptor cause increased stem cell self-renewal, resulting in a tumour of proliferating germline stem cells. Notch gain-of-function mutations activate the receptor, even in the presence of little or no ligand, and have been associated with many human diseases, including cancers. We demonstrate that reduction in CUP-2 and DER-2 function, which are Derlin family proteins that function in endoplasmic reticulum-associated degradation (ERAD), suppresses the C. elegans germline over-proliferation phenotype associated with glp-1(gain-of-function) mutations. We further demonstrate that their reduction does not suppress other mutations that cause over-proliferation, suggesting that over-proliferation suppression due to loss of Derlin activity is specific to glp-1/Notch (gain-of-function) mutations. Reduction of CUP-2 Derlin activity reduces the expression of a read-out of GLP-1/Notch signaling, suggesting that the suppression of over-proliferation in Derlin loss-of-function mutants is due to a reduction in the activity of the mutated GLP-1/Notch(GF) receptor. Over-proliferation suppression in cup-2 mutants is only seen when the Unfolded Protein Response (UPR) is functioning properly, suggesting that the suppression, and reduction in GLP-1/Notch signaling levels, observed in Derlin mutants may be the result of activation of the UPR. Chemically inducing ER stress also suppress glp-1(gf) over-proliferation but not other mutations that cause over-proliferation. Therefore, ER stress and activation of the UPR may help correct for increased GLP-1/Notch signaling levels, and associated over-proliferation, in the C. elegans germline. Notch signaling is a highly conserved signaling pathway that is utilized in many cell fate decisions in many organisms. In the C. elegans germline, Notch signaling is the primary signal that regulates the balance between stem cell proliferation and differentiation. Notch gain-of-function mutations cause the receptor to be active, even when a signal that is normally needed to activate the receptor is absent. In the germline of C. elegans, gain-of-function mutations in GLP-1, a Notch receptor, results in over-proliferation of the stem cells and tumour formation. Here we demonstrate that a reduction or loss of Derlin activity, which is a conserved family of proteins involved in endoplasmic reticulum-associated degradation (ERAD), suppresses over-proliferation due to GLP-1/Notch gain-of-function mutations. Furthermore, we demonstrate that a surveillance mechanism utilized in cells to monitor and react to proteins that are not folded properly (Unfolded Protein Response-UPR) must be functioning well in order for the loss of Derlin activity to supress over-proliferation caused by glp-1/Notch gain-of-function mutations. This suggests that activation of the UPR may be the mechanism at work for suppressing this type of over-proliferation, when Derlin activity is reduced. Therefore, decreasing Derlin activity may be a means of reducing the impact of phenotypes and diseases due to certain Notch gain-of-function mutations.
Collapse
Affiliation(s)
- Ramya Singh
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Ryan B. Smit
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Hilary Racher
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
22
|
Rasmussen NR, Reiner DJ. Nuclear translocation of the tagged endogenous MAPK MPK-1 denotes a subset of activation events in C. elegans development. J Cell Sci 2021; 134:272044. [PMID: 34341823 PMCID: PMC8445601 DOI: 10.1242/jcs.258456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
Abstract
The extracellular signal-regulated kinases (ERKs) are mitogen-activated protein kinases (MAPKs) that are utilized downstream of Ras to Raf to MEK signaling to control activation of a wide array of targets. Activation of ERKs is elevated in Ras-driven tumors and RASopathies, and thus is a target for pharmacological inhibition. Regulatory mechanisms of ERK activation have been studied extensively in vitro and in cultured cells, but little in living animals. In this study, we tagged the Caenorhabditis elegans ERK-encoding gene, mpk-1. MPK-1 is ubiquitously expressed with elevated expression in certain contexts. We detected cytosol-to-nuclear translocation of MPK-1 in maturing oocytes and hence validated nuclear translocation as a reporter of some activation events. During patterning of vulval precursor cells (VPCs), MPK-1 is necessary and sufficient for the central cell, P6.p, to assume the primary fate. Yet MPK-1 translocates to the nuclei of all six VPCs in a temporal and concentration gradient centered on P6.p. This observation contrasts with previous results using the ERK nuclear kinase translocation reporter of substrate activation, raising questions about mechanisms and indicators of MPK-1 activation. This system and reagent promise to provide critical insights into the regulation of MPK-1 activation within a complex intercellular signaling network. Summary: Tagged endogenous C. elegans MPK-1 shows activation-dependent cytosol-to-nuclear translocation. This tool provides novel insights into MPK-1 localization compared with other markers of in vivo ERK activation.
Collapse
Affiliation(s)
- Neal R Rasmussen
- Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, 77030, USA
| | - David J Reiner
- Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, 77030, USA
| |
Collapse
|
23
|
Achache H, Falk R, Lerner N, Beatus T, Tzur YB. Oocyte aging is controlled by mitogen-activated protein kinase signaling. Aging Cell 2021; 20:e13386. [PMID: 34061407 PMCID: PMC8208789 DOI: 10.1111/acel.13386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/25/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022] Open
Abstract
Oogenesis is one of the first processes to fail during aging. In women, most oocytes cannot successfully complete meiotic divisions already during the fourth decade of life. Studies of the nematode Caenorhabditis elegans have uncovered conserved genetic pathways that control lifespan, but our knowledge regarding reproductive aging in worms and humans is limited. Specifically, little is known about germline internal signals that dictate the oogonial biological clock. Here, we report a thorough characterization of the changes in the worm germline during aging. We found that shortly after ovulation halts, germline proliferation declines, while apoptosis continues, leading to a gradual reduction in germ cell numbers. In late aging stages, we observed that meiotic progression is disturbed and crossover designation and DNA double-strand break repair decrease. In addition, we detected a decline in the quality of mature oocytes during aging, as reflected by decreasing size and elongation of interhomolog distance, a phenotype also observed in human oocytes. Many of these altered processes were previously attributed to MAPK signaling variations in young worms. In support of this, we observed changes in activation dynamics of MPK-1 during aging. We therefore tested the hypothesis that MAPK controls oocyte quality in aged worms using both genetic and pharmacological tools. We found that in mutants with high levels of activated MPK-1, oocyte quality deteriorates more rapidly than in wild-type worms, whereas reduction of MPK-1 levels enhances quality. Thus, our data suggest that MAPK signaling controls germline aging and could be used to attenuate the rate of oogenesis quality decline.
Collapse
Affiliation(s)
- Hanna Achache
- Department of GeneticsInstitute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Roni Falk
- Department of GeneticsInstitute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Noam Lerner
- Department of NeurobiologyThe Institute of Life ScienceThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Grass Center for BioengineeringThe Rachel and Selim Benin School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | - Tsevi Beatus
- Department of NeurobiologyThe Institute of Life ScienceThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Grass Center for BioengineeringThe Rachel and Selim Benin School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | - Yonatan B. Tzur
- Department of GeneticsInstitute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
24
|
Garner TB, Hester JM, Carothers A, Diaz FJ. Role of zinc in female reproduction. Biol Reprod 2021; 104:976-994. [PMID: 33598687 PMCID: PMC8599883 DOI: 10.1093/biolre/ioab023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Zinc is a critical component in a number of conserved processes that regulate female germ cell growth, fertility, and pregnancy. During follicle development, a sufficient intracellular concentration of zinc in the oocyte maintains meiotic arrest at prophase I until the germ cell is ready to undergo maturation. An adequate supply of zinc is necessary for the oocyte to form a fertilization-competent egg as dietary zinc deficiency or chelation of zinc disrupts maturation and reduces the oocyte quality. Following sperm fusion to the egg to initiate the acrosomal reaction, a quick release of zinc, known as the zinc spark, induces egg activation in addition to facilitating zona pellucida hardening and reducing sperm motility to prevent polyspermy. Symmetric division, proliferation, and differentiation of the preimplantation embryo rely on zinc availability, both during the oocyte development and post-fertilization. Further, the fetal contribution to the placenta, fetal limb growth, and neural tube development are hindered in females challenged with zinc deficiency during pregnancy. In this review, we discuss the role of zinc in germ cell development, fertilization, and pregnancy with a focus on recent studies in mammalian females. We further detail the fundamental zinc-mediated reproductive processes that have only been explored in non-mammalian species and speculate on the role of zinc in similar mechanisms of female mammals. The evidence collected over the last decade highlights the necessity of zinc for normal fertility and healthy pregnancy outcomes, which suggests zinc supplementation should be considered for reproductive age women at risk of zinc deficiency.
Collapse
Affiliation(s)
- Tyler Bruce Garner
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - James Malcolm Hester
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Allison Carothers
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Francisco J Diaz
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
25
|
Robinson-Thiewes S, Dufour B, Martel PO, Lechasseur X, Brou AAD, Roy V, Chen Y, Kimble J, Narbonne P. Non-autonomous regulation of germline stem cell proliferation by somatic MPK-1/MAPK activity in C. elegans. Cell Rep 2021; 35:109162. [PMID: 34038716 PMCID: PMC8182673 DOI: 10.1016/j.celrep.2021.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 11/03/2022] Open
Abstract
Extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) is a major positive regulator of cell proliferation, which is often upregulated in cancer. However, few studies have addressed ERK/MAPK regulation of proliferation within a complete organism. The Caenorhabditis elegans ERK/MAPK ortholog MPK-1 is best known for its control of somatic organogenesis and germline differentiation, but it also stimulates germline stem cell proliferation. Here, we show that the germline-specific MPK-1B isoform promotes germline differentiation but has no apparent role in germline stem cell proliferation. By contrast, the soma-specific MPK-1A isoform promotes germline stem cell proliferation non-autonomously. Indeed, MPK-1A functions in the intestine or somatic gonad to promote germline proliferation independent of its other known roles. We propose that a non-autonomous role of ERK/MAPK in stem cell proliferation may be conserved across species and various tissue types, with major clinical implications for cancer and other diseases. The prevailing paradigm is that ERK/MAPK functions autonomously to promote cell proliferation upon mitogen stimulation. Robinson-Thiewes et al. now demonstrate that C. elegans ERK/MAPK acts within somatic tissues to non-autonomously promote the proliferation of germline stem cells. Germline ERK/MAPK is thus dispensable for germline stem cell proliferation.
Collapse
Affiliation(s)
| | - Benjamin Dufour
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Pier-Olivier Martel
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Xavier Lechasseur
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Amani Ange Danielle Brou
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Vincent Roy
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada; Département de Biologie Moléculaire, de Biochimie Médicale et de pathologie, Faculté de Médecine, Université Laval, QC G1R 3S3, Canada
| | - Yunqing Chen
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Judith Kimble
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1580, USA
| | - Patrick Narbonne
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada; Département de Biologie Moléculaire, de Biochimie Médicale et de pathologie, Faculté de Médecine, Université Laval, QC G1R 3S3, Canada.
| |
Collapse
|
26
|
Kar FM, Hochwagen A. Phospho-Regulation of Meiotic Prophase. Front Cell Dev Biol 2021; 9:667073. [PMID: 33928091 PMCID: PMC8076904 DOI: 10.3389/fcell.2021.667073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Germ cells undergoing meiosis rely on an intricate network of surveillance mechanisms that govern the production of euploid gametes for successful sexual reproduction. These surveillance mechanisms are particularly crucial during meiotic prophase, when cells execute a highly orchestrated program of chromosome morphogenesis and recombination, which must be integrated with the meiotic cell division machinery to ensure the safe execution of meiosis. Dynamic protein phosphorylation, controlled by kinases and phosphatases, has emerged as one of the main signaling routes for providing readout and regulation of chromosomal and cellular behavior throughout meiotic prophase. In this review, we discuss common principles and provide detailed examples of how these phosphorylation events are employed to ensure faithful passage of chromosomes from one generation to the next.
Collapse
Affiliation(s)
- Funda M Kar
- Department of Biology, New York University, New York, NY, United States
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, United States
| |
Collapse
|
27
|
Schisa JA, Elaswad MT. An Emerging Role for Post-translational Modifications in Regulating RNP Condensates in the Germ Line. Front Mol Biosci 2021; 8:658020. [PMID: 33898525 PMCID: PMC8060454 DOI: 10.3389/fmolb.2021.658020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins undergo regulated phase transitions in an array of cell types. The phase separation of RNA-binding proteins, and subsequent formation of RNP condensates or granules, occurs during physiological conditions and can also be induced by stress. Some RNP granules have roles in post-transcriptionally regulating mRNAs, and mutations that prevent the condensation of RNA-binding proteins can reduce an organism's fitness. The reversible and multivalent interactions among RNP granule components can result in RNP complexes that transition among diffuse and condensed states, the latter of which can be pathological; for example, in neurons solid RNP aggregates contribute to disease states such as amyotrophic lateral sclerosis (ALS), and the dysregulation of RNP granules in human germ cells may be involved in Fragile X-associated primary ovarian insufficiency. Thus, regulating the assembly of mRNAs and RNA-binding proteins into discrete granules appears to provide important functions at both cellular and physiological levels. Here we review our current understanding of the role of post-translational modifications (PTMs) in regulating the condensation of RNA-binding proteins in the germ line. We compare and contrast the in vitro evidence that methylation inhibits phase separation of RNA binding proteins, with the extent to which these results apply to the in vivo germ line environment of several model systems. We also focus on the role of phosphorylation in modulating the dynamics of RNP granules in the germ line. Finally, we consider the gaps that exist in our understanding of the role of PTMs in regulating germ line RNP granules.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Mohamed T Elaswad
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
28
|
Hefel A, Honda M, Cronin N, Harrell K, Patel P, Spies M, Smolikove S. RPA complexes in Caenorhabditis elegans meiosis; unique roles in replication, meiotic recombination and apoptosis. Nucleic Acids Res 2021; 49:2005-2026. [PMID: 33476370 PMCID: PMC7913698 DOI: 10.1093/nar/gkaa1293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Replication Protein A (RPA) is a critical complex that acts in replication and promotes homologous recombination by allowing recombinase recruitment to processed DSB ends. Most organisms possess three RPA subunits (RPA1, RPA2, RPA3) that form a trimeric complex critical for viability. The Caenorhabditis elegans genome encodes RPA-1, RPA-2 and an RPA-2 paralog RPA-4. In our analysis, we determined that RPA-2 is critical for germline replication and normal repair of meiotic DSBs. Interestingly, RPA-1 but not RPA-2 is essential for somatic replication, in contrast to other organisms that require both subunits. Six different hetero- and homodimeric complexes containing permutations of RPA-1, RPA-2 and RPA-4 can be detected in whole animal extracts. Our in vivo studies indicate that RPA-1/4 dimer is less abundant in the nucleus and its formation is inhibited by RPA-2. While RPA-4 does not participate in replication or recombination, we find that RPA-4 inhibits RAD-51 filament formation and promotes apoptosis of a subset of damaged nuclei. Altogether these findings point to sub-functionalization and antagonistic roles of RPA complexes in C. elegans.
Collapse
Affiliation(s)
- Adam Hefel
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Masayoshi Honda
- Department of Biochemistry, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Nicholas Cronin
- Department of Biochemistry, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kailey Harrell
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Pooja Patel
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Maria Spies
- Department of Biochemistry, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
29
|
Maniates KA, Olson BS, Abbott AL. Sperm fate is promoted by the mir-44 microRNA family in the Caenorhabditis elegans hermaphrodite germline. Genetics 2021; 217:1-14. [PMID: 33683352 PMCID: PMC8045739 DOI: 10.1093/genetics/iyaa006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/12/2020] [Indexed: 11/12/2022] Open
Abstract
Posttranscriptional regulation of gene expression, typically effected by RNA-binding proteins, microRNAs (miRNAs), and translation initiation factors, is essential for normal germ cell function. Numerous miRNAs have been detected in the germline; however, the functions of specific miRNAs remain largely unknown. Functions of miRNAs have been difficult to determine as miRNAs often modestly repress target mRNAs and are suggested to sculpt or fine tune gene expression to allow for the robust expression of cell fates. In Caenorhabditis elegans hermaphrodites, cell fate decisions are made for germline sex determination during larval development when sperm are generated in a short window before the switch to oocyte production. Here, analysis of newly generated mir-44 family mutants has identified a family of miRNAs that modulate the germline sex determination pathway in C. elegans. Mutants with the loss of mir-44 and mir-45 produce fewer sperm, showing both a delay in the specification and formation of sperm as well as an early termination of sperm specification accompanied by a premature switch to oocyte production. mir-44 and mir-45 are necessary for the normal period of fog-1 expression in larval development. Through genetic analysis, we find that mir-44 and mir-45 may act upstream of fbf-1 and fem-3 to promote sperm specification. Our research indicates that the mir-44 family promotes sperm cell fate specification during larval development and identifies an additional posttranscriptional regulator of the germline sex determination pathway.
Collapse
Affiliation(s)
- Katherine A Maniates
- Department of Biological Sciences, Marquette University, 1428 W. Clybourn Ave, PO Box 1881, Milwaukee, WI 53233, USA
| | - Benjamin S Olson
- Department of Biological Sciences, Marquette University, 1428 W. Clybourn Ave, PO Box 1881, Milwaukee, WI 53233, USA
| | - Allison L Abbott
- Department of Biological Sciences, Marquette University, 1428 W. Clybourn Ave, PO Box 1881, Milwaukee, WI 53233, USA
| |
Collapse
|
30
|
Dalfó D, Ding Y, Liang Q, Fong A, Cipriani PG, Piano F, Zheng JC, Qin Z, Hubbard EJA. A Genome-Wide RNAi Screen for Enhancers of a Germline Tumor Phenotype Caused by Elevated GLP-1/Notch Signaling in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:4323-4334. [PMID: 33077477 PMCID: PMC7718737 DOI: 10.1534/g3.120.401632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022]
Abstract
Stem cells are tightly controlled in vivo Both the balance between self-renewal and differentiation and the rate of proliferation are often regulated by multiple factors. The Caenorhabditis elegans hermaphrodite germ line provides a simple and accessible system for studying stem cells in vivo In this system, GLP-1/Notch activity prevents the differentiation of distal germ cells in response to ligand production from the nearby distal tip cell, thereby supporting a stem cell pool. However, a delay in germline development relative to somatic gonad development can cause a pool of undifferentiated germ cells to persist in response to alternate Notch ligands expressed in the proximal somatic gonad. This pool of undifferentiated germ cells forms a proximal tumor that, in adulthood, blocks the oviduct. This type of "latent niche"-driven proximal tumor is highly penetrant in worms bearing the temperature-sensitive weak gain-of-function mutation glp-1(ar202) at the restrictive temperature. At the permissive temperature, few worms develop tumors. Nevertheless, several interventions elevate the penetrance of proximal tumor formation at the permissive temperature, including reduced insulin signaling or the ablation of distal-most sheath cells. To systematically identify genetic perturbations that enhance proximal tumor formation, we sought genes that, upon RNAi depletion, elevate the percentage of worms bearing proximal germline tumors in glp-1(ar202) at the permissive temperature. We identified 43 genes representing a variety of functional classes, the most enriched of which is "translation". Some of these genes also influence the distal germ line, and some are conserved genes for which genetic interactions with Notch were not previously known in this system.
Collapse
Affiliation(s)
- Diana Dalfó
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, NYU Grossman School of Medicine
| | | | | | - Alex Fong
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, NYU Grossman School of Medicine
| | - Patricia Giselle Cipriani
- Center for Genomics and Systems Biology, Department of Biology, New York University and Center for Genomics and Systems Biology, New York University Abu Dhabi
| | - Fabio Piano
- Center for Genomics and Systems Biology, Department of Biology, New York University and Center for Genomics and Systems Biology, New York University Abu Dhabi
| | | | - Zhao Qin
- School of Medicine, Tongji University
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, NYU Grossman School of Medicine
| |
Collapse
|
31
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
32
|
Robinson-Thiewes S, McCloskey J, Kimble J. Two classes of active transcription sites and their roles in developmental regulation. Proc Natl Acad Sci U S A 2020; 117:26812-26821. [PMID: 33033228 PMCID: PMC7604424 DOI: 10.1073/pnas.2013163117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of genes encoding powerful developmental regulators is exquisitely controlled, often at multiple levels. Here, we investigate developmental expression of three conserved genes, Caenorhabditis elegans mpk-1, lag-1, and lag-3/sel-8, which encode homologs of ERK/MAPK and core components of the Notch-dependent transcription complex, respectively. We use single-molecule FISH (smFISH) and MATLAB to visualize and quantify nuclear nascent transcripts and cytoplasmic mRNAs as a function of position along the germline developmental axis. Using differentially labeled probes, one spanning an exceptionally long first intron and the other spanning exons, we identify two classes of active transcription sites (ATS). The iATS class, for "incomplete" ATS, harbors only partial nascent transcripts; the cATS class, for "complete" ATS, harbors full-length nascent transcripts. Remarkably, the frequencies of iATS and cATS are patterned along the germline axis. For example, most mpk-1 ATS are iATS in hermaphrodite germline stem cells, but most are cATS in differentiating stem cell daughters. Thus, mpk-1 ATS class frequencies switch in a graded manner as stem cell daughters begin differentiation. Importantly, the patterns of ATS class frequency are gene-, stage-, and sex-specific, and cATS frequency strongly correlates with transcriptional output. Although the molecular mechanism underlying ATS classes is not understood, their primary difference is the extent of transcriptional progression. To generate only partial nascent transcripts in iATS, progression must be slowed, paused, or aborted midway through the gene. We propose that regulation of ATS class can be a critical mode of developmental gene regulation.
Collapse
Affiliation(s)
| | - John McCloskey
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
33
|
Sorrenti M, Klinger FG, Iona S, Rossi V, Marcozzi S, DE Felici M. Expression and possible roles of extracellular signal-related kinases 1-2 (ERK1-2) in mouse primordial germ cell development. J Reprod Dev 2020; 66:399-409. [PMID: 32418930 PMCID: PMC7593634 DOI: 10.1262/jrd.2019-141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the present work, we described the expression and activity of extracellular signal-related kinases 1-2 (ERK1-2) in mouse primordial germ cells (PGCs) from
8.5–14.5 days post coitum (dpc) and investigated whether these kinases play a role in regulating the various processes of PGC development. Using
immunofluorescence and immunoblotting to detect the active phosphorylated form of ERK1-2 (p-ERK1-2), we found that the kinases were present in most
proliferating 8.5–10.5 dpc PGCs, low in 11.5 dpc PGCs, and progressively increasing between 12.5–14.5 dpc both in female and male PGCs. In
vitro culture experiments showed that inhibiting activation of ERK1-2 with the MEK-specific inhibitor U0126 significantly reduced the growth of 8.5
dpc PGCs in culture but had little effect on 11.5–12.5 dpc PGCs. Moreover, we found that the inhibitor did not affect the adhesion of 11.5 dpc PGCs, but it
significantly reduced their motility features onto a cell monolayer. Further, while the ability of female PGCs to begin meiosis was not significantly affected
by U0126, their progression through meiotic prophase I was slowed down. Notably, the activity of ERK1-2 was necessary for maintaining the correct expression of
oocyte-specific genes crucial for germ cells survival and the formation of primordial follicles.
Collapse
Affiliation(s)
- Maria Sorrenti
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Saveria Iona
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Valerio Rossi
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Serena Marcozzi
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Massimo DE Felici
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| |
Collapse
|
34
|
Das D, Chen SY, Arur S. ERK phosphorylates chromosomal axis component HORMA domain protein HTP-1 to regulate oocyte numbers. SCIENCE ADVANCES 2020; 6:6/44/eabc5580. [PMID: 33127680 PMCID: PMC7608811 DOI: 10.1126/sciadv.abc5580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/18/2020] [Indexed: 05/10/2023]
Abstract
Oocyte numbers, a critical determinant of female reproductive fitness, are highly regulated, yet the mechanisms underlying this regulation remain largely undefined. In the Caenorhabditis elegans gonad, RAS/extracellular signal-regulated kinase (ERK) signaling regulates oocyte numbers; mechanisms are unknown. We show that the RAS/ERK pathway phosphorylates meiotic chromosome axis protein HTP-1 at serine-325 to control chromosome dynamics and regulate oocyte number. Phosphorylated HTP-1(S325) accumulates in vivo in an ERK-dependent manner in early-mid pachytene stage germ cells and is necessary for synaptonemal complex extension and/or maintenance. Lack of HTP-1 phosphorylation leads to asynapsis and persistence of meiotic double-strand breaks, causing delayed meiotic progression and reduced oocyte number. In contrast, early onset of ERK activation causes precocious meiotic progression, resulting in increased oocyte number, which is reversed by removal of HTP-1 phosphorylation. The RAS/ERK/HTP-1 signaling cascade thus functions to monitor formation and maintenance of synapsis for timely resolution of double-strand breaks, oocyte production, and reproductive fitness.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shin-Yu Chen
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Li Q, Hariri S, Engebrecht J. Meiotic Double-Strand Break Processing and Crossover Patterning Are Regulated in a Sex-Specific Manner by BRCA1-BARD1 in Caenorhabditis elegans. Genetics 2020; 216:359-379. [PMID: 32796008 PMCID: PMC7536853 DOI: 10.1534/genetics.120.303292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022] Open
Abstract
Meiosis is regulated in a sex-specific manner to produce two distinct gametes, sperm and oocytes, for sexual reproduction. To determine how meiotic recombination is regulated in spermatogenesis, we analyzed the meiotic phenotypes of mutants in the tumor suppressor E3 ubiquitin ligase BRC-1-BRD-1 complex in Caenorhabditis elegans male meiosis. Unlike in mammals, this complex is not required for meiotic sex chromosome inactivation, the process whereby hemizygous sex chromosomes are transcriptionally silenced. Interestingly, brc-1 and brd-1 mutants show meiotic recombination phenotypes that are largely opposing to those previously reported for female meiosis. Fewer meiotic recombination intermediates marked by the recombinase RAD-51 were observed in brc-1 and brd-1 mutants, and the reduction in RAD-51 foci could be suppressed by mutation of nonhomologous-end-joining proteins. Analysis of GFP::RPA-1 revealed fewer foci in the brc-1brd-1 mutant and concentration of BRC-1-BRD-1 to sites of meiotic recombination was dependent on DNA end resection, suggesting that the complex regulates the processing of meiotic double-strand breaks to promote repair by homologous recombination. Further, BRC-1-BRD-1 is important to promote progeny viability when male meiosis is perturbed by mutations that block the pairing and synapsis of different chromosome pairs, although the complex is not required to stabilize the RAD-51 filament as in female meiosis under the same conditions. Analyses of crossover designation and formation revealed that BRC-1-BRD-1 inhibits supernumerary COs when meiosis is perturbed. Together, our findings suggest that BRC-1-BRD-1 regulates different aspects of meiotic recombination in male and female meiosis.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - Sara Hariri
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| |
Collapse
|
36
|
Qu Z, Ji S, Zheng S. Glucose and cholesterol induce abnormal cell divisions via DAF-12 and MPK-1 in C. elegans. Aging (Albany NY) 2020; 12:16255-16269. [PMID: 32857726 PMCID: PMC7485695 DOI: 10.18632/aging.103647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
People exposed to starvation have a high risk of developing cancer later in life, and prior studies have shown these individuals have high insulin and cholesterol levels and are sensitive to glucose. Using C. elegans as a model, we found that glucose and cholesterol can promote survival and cause starved L1 diapause worms to undergo abnormal neuronal cell divisions. Starvation has also been shown to promote long-term survival; however, we found that the functions of glucose and cholesterol in relation to these cell divisions are distinct from their effects on survival. We demonstrate that glucose functions in a DAF-16/FOXO-independent IIS pathway to activate the MAPK ontogenetic signaling to induce neuronal Q-cell divisions, and cholesterol works through DAF-12/steroidogenic pathways to promote these cell divisions. daf-12 and mpk-1/MAPK mutants suppress the function of glucose and cholesterol in these divisions, and a fully functioning dpMPK-1 requires the steroid hormone receptor DAF-12 for these divisions to occur. These afflictions also can be passed on to the immediate progeny. This work indicates a possible link between glucose and cholesterol in starved animals and an increased risk of cancer.
Collapse
Affiliation(s)
- Zhi Qu
- School of Nursing and Health, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| | - Shaoping Ji
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| | - Shanqing Zheng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| |
Collapse
|
37
|
Qu M, Li D, Qiu Y, Wang D. Neuronal ERK MAPK signaling in response to low-dose nanopolystyrene exposure by suppressing insulin peptide expression in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138378. [PMID: 32272418 DOI: 10.1016/j.scitotenv.2020.138378] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 05/21/2023]
Abstract
The responses of different organs are important for organisms against the toxicity of environmental toxicants. So far, the neuronal response to nanoplastic exposure and the underlying mechanisms are still largely unclear. Due to the sensitivity to environmental exposures, we here employed Caenorhabditis elegans as an animal model to examine the role of ERK MAPK signaling pathway in the neurons to regulate the response to nanopolystyrene (100 nm). Nanopolystyrene exposure in the range of μg/L could significantly increase expressions of genes (lin-45, mek-2, and mpk-1) encoding ERK MAPK signaling pathway. Nanopolystyrene at the predicted environmental concentration of 1 μg/L could only significantly increase the mpk-1 expression. Meanwhile, RNAi knockdown of any of these genes caused a susceptibility to nanopolystyrene toxicity. ERK/MPK-1 acted in the neurons to regulate the response to nanopolystyrene. Moreover, three genes (ins-4, ins-39, and daf-28) encoding insulin peptides were identified as the downstream targeted genes of neuronal mpk-1 in regulating the response to nanopolystyrene. In nanopolystyrene exposed nematodes, neuronal RNAi knockdown of ins-4, ins-39, or daf-28 decreased expression of intestinal daf-2 encoding insulin receptor and increased expression of intestinal daf-16 encoding FOXO transcriptional factor. Therefore, the neuronal ERK MAPK signaling responded to nanopolystyrene by modulating the insulin signaling-mediated communication between neurons and intestine in nematodes. Our findings are helpful for understanding the molecular basis of neuronal response to nanopolystyrene in organisms.
Collapse
Affiliation(s)
- Man Qu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dan Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yuexiu Qiu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
38
|
Wang X, Voronina E. Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans. Front Cell Dev Biol 2020; 8:29. [PMID: 32117964 PMCID: PMC7015873 DOI: 10.3389/fcell.2020.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The C. elegans germline is a simple and powerful model system for analyzing regulation of stem cell development. Studies in C. elegans uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the C. elegans model system are likely relevant for other organisms.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
39
|
Charmpilas N, Tavernarakis N. Mitochondrial maturation drives germline stem cell differentiation in Caenorhabditis elegans. Cell Death Differ 2020; 27:601-617. [PMID: 31217501 PMCID: PMC7206027 DOI: 10.1038/s41418-019-0375-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 01/07/2023] Open
Abstract
The C. elegans germline recapitulates mammalian stem cell niches and provides an effective platform for investigating key aspects of stem cell biology. However, the molecular and physiological requirements for germline stem cell homeostasis remain largely elusive. Here, we report that mitochondrial biogenesis and function are crucial for germline stem cell identity. We show that general transcription activity in germline mitochondria is highly compartmentalized, and determines mitochondrial maturation. RPOM-1, the mitochondrial RNA polymerase, is differentially expressed as germ nuclei progress from the distal to the proximal gonad arm to form oocytes. Mitochondria undergo changes from globular to tubular morphology and become polarized, as they approach the proximal gonad arm. Notably, this mitochondrial maturation trajectory is evolutionarily conserved. We find that a similar transition and temporal mitochondrial RNA polymerase expression profile characterizes differentiation of mammalian stem cells. In C. elegans, ATP, and ROS production increases sharply during maturation. Impaired mitochondrial bioenergetics causes gonad syncytium tumor formation by disrupting the balance between mitosis and differentiation to oocytes, which results in a marked reduction of fecundity. Consequently, compensatory apoptosis is induced in the germline. Sperm-derived signals promote mitochondrial maturation and proper germ cell differentiation via the MEK/ERK kinase pathway. Germ cell fate decisions are determined by a crosstalk between Insulin/IGF-1 and TGF-β signaling, mitochondria and protein synthesis. Our findings demonstrate that mitochondrial transcription activity determines a shift in mitochondrial bioenergetics, which in turn regulates germline stem cell survival and differentiation. Perturbation of mitochondrial transcription hinders proper germ cell differentiation and causes germline tumor development.
Collapse
Affiliation(s)
- Nikolaos Charmpilas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.
- Department of Basic Sciences, School of Medicine, University of Crete, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
40
|
Park Y, O'Rourke S, Taki FA, Alfhili MA, Lee MH. Dose-Dependent Effects of GLD-2 and GLD-1 on Germline Differentiation and Dedifferentiation in the Absence of PUF-8. Front Cell Dev Biol 2020; 8:5. [PMID: 32039211 PMCID: PMC6992537 DOI: 10.3389/fcell.2020.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022] Open
Abstract
PUMILIO/FBF (PUF) proteins have a conserved function in stem cell regulation. Caenorhabditis elegans PUF-8 protein inhibits the translation of target mRNAs by interacting with PUF binding element (PBE) in the 3′ untranslated region (3′ UTR). In this work, an in silico analysis has identified gld-2 [a poly(A) polymerase] as a putative PUF-8 target. Biochemical and reporter analyses showed that PUF-8 specifically binds to a PBE in gld-2 3′ UTR and represses a GFP reporter gene carrying gld-2 3′ UTR in the C. elegans mitotic germ cells. GLD-2 enhances meiotic entry at least in part by activating GLD-1 (a KH motif-containing RNA-binding protein). Our genetic analyses also demonstrated that heterozygous gld-2(+/−) gld-1(+/−) genes in the absence of PUF-8 are competent for meiotic entry (early differentiation), but haplo-insufficient for the meiotic division (terminal differentiation) of spermatocytes. Indeed, the arrested spermatocytes return to mitotic cells via dedifferentiation, which results in germline tumors. Since these regulators are broadly conserved, we thus suggest that similar molecular mechanisms may control differentiation, dedifferentiation, and tumorigenesis in other organisms, including humans.
Collapse
Affiliation(s)
- Youngyong Park
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Samuel O'Rourke
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Faten A Taki
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States
| | - Mohammad A Alfhili
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Myon Hee Lee
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| |
Collapse
|
41
|
Hubbard EJA, Schedl T. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics 2019; 213:1145-1188. [PMID: 31796552 PMCID: PMC6893382 DOI: 10.1534/genetics.119.300238] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environmental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York 10016
| | - Tim Schedl
- and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
42
|
Rive C, Reina G, Wagle P, Treossi E, Palermo V, Bianco A, Delogu LG, Rieckher M, Schumacher B. Improved Biocompatibility of Amino-Functionalized Graphene Oxide in Caenorhabditis elegans. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902699. [PMID: 31576668 DOI: 10.1002/smll.201902699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) holds high promise for diagnostic and therapeutic applications in nanomedicine but reportedly displays immunotoxicity, underlining the need for developing functionalized GO with improved biocompatibility. This study describes adverse effects of GO and amino-functionalized GO (GONH2 ) during Caenorhabditis elegans development and ageing upon acute or chronic exposure. Chronic GO treatment throughout the C. elegans development causes decreased fecundity and a reduction of animal size, while acute treatment does not lead to any measurable physiological decline. However, RNA-Sequencing data reveal that acute GO exposure induces innate immune gene expression. The p38 MAP kinase, PMK-1, which is a well-established master regulator of innate immunity, protects C. elegans from chronic GO toxicity, as pmk-1 mutants show reduced tissue-functionality and facultative vivipary. In a direct comparison, GONH2 exposure does not cause detrimental effects in the wild type or in pmk-1 mutants, and the innate immune response is considerably less pronounced. This work establishes enhanced biocompatibility of amino-functionalized GO in a whole-organism, emphasizing its potential as a biomedical nanomaterial.
Collapse
Affiliation(s)
- Corvin Rive
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Giacomo Reina
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000, Strasbourg, France
| | - Prerana Wagle
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | | | | | - Alberto Bianco
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000, Strasbourg, France
| | - Lucia Gemma Delogu
- University of Sassari, via Muroni, 23, 07100, Sassari, Italy
- Institute of Pediatric Research, Fondazione Città della Speranza, corso stati uniti 4, 35127, Padua, Italy
- Department of Biomedical Sciences, University of Padua, via Ugo bassi 58, 35121, Padua, Italy
| | - Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| |
Collapse
|
43
|
Blackwell TK, Sewell AK, Wu Z, Han M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics 2019; 213:329-360. [PMID: 31594908 PMCID: PMC6781902 DOI: 10.1534/genetics.119.302504] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
The Target of Rapamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and in vivo studies, Caenorhabditis elegans has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, C. elegans has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in C. elegans, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for C. elegans biology, and how C. elegans work has developed paradigms of great importance for the broader TOR field.
Collapse
Affiliation(s)
- T Keith Blackwell
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Aileen K Sewell
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| |
Collapse
|
44
|
Doll MA, Soltanmohammadi N, Schumacher B. ALG-2/AGO-Dependent mir-35 Family Regulates DNA Damage-Induced Apoptosis Through MPK-1/ERK MAPK Signaling Downstream of the Core Apoptotic Machinery in Caenorhabditis elegans. Genetics 2019; 213:173-194. [PMID: 31296532 PMCID: PMC6727803 DOI: 10.1534/genetics.119.302458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) associate with argonaute (AGO) proteins to post-transcriptionally modulate the expression of genes involved in various cellular processes. Herein, we show that loss of the Caenorhabditis elegans AGO gene alg-2 results in rapid and significantly increased germ cell apoptosis in response to DNA damage inflicted by ionizing radiation (IR). We demonstrate that the abnormal apoptosis phenotype in alg-2 mutant animals can be explained by reduced expression of mir-35 miRNA family members. We show that the increased apoptosis levels in IR-treated alg-2 or mir-35 family mutants depend on a transient hyperactivation of the C. elegans ERK1/2 MAPK ortholog MPK-1 in dying germ cells. Unexpectedly, MPK-1 phosphorylation occurs downstream of caspase activation and depends at least in part on a functional cell corpse-engulfment machinery. Therefore, we propose a refined mechanism, in which an initial proapoptotic stimulus by the core apoptotic machinery initiates the engulfment process, which in turn activates MAPK signaling to facilitate the demise of genomically compromised germ cells.
Collapse
Affiliation(s)
- Markus Alexander Doll
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Najmeh Soltanmohammadi
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| |
Collapse
|
45
|
Bianco JN, Schumacher B. MPK-1/ERK pathway regulates DNA damage response during development through DAF-16/FOXO. Nucleic Acids Res 2019; 46:6129-6139. [PMID: 29788264 PMCID: PMC6159517 DOI: 10.1093/nar/gky404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/01/2018] [Indexed: 01/25/2023] Open
Abstract
Ultraviolet (UV) induces distorting lesions to the DNA that can lead to stalling of the RNA polymerase II (RNAP II) and that are removed by transcription-coupled nucleotide excision repair (TC-NER). In humans, mutations in the TC-NER genes CSA and CSB lead to severe postnatal developmental defects in Cockayne syndrome patients. In Caenorhabditis elegans, mutations in the TC-NER genes csa-1 and csb-1, lead to developmental growth arrest upon UV treatment. We conducted a genetic suppressor screen in the nematode to identify mutations that could suppress the developmental defects in csb-1 mutants. We found that mutations in the ERK1/2 MAP kinase mpk-1 alleviate the developmental retardation in TC-NER mutants, while constitutive activation of the RAS-MAPK pathway exacerbates the DNA damage-induced growth arrest. We show that MPK-1 act via insulin/insulin-like signaling pathway and regulates the FOXO transcription factor DAF-16 to mediate the developmental DNA damage response.
Collapse
Affiliation(s)
- Julien N Bianco
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
46
|
Achache H, Laurent L, Hecker-Mimoun Y, Ishtayeh H, Rappaport Y, Kroizer E, Colaiácovo MP, Tzur YB. Progression of Meiosis Is Coordinated by the Level and Location of MAPK Activation Via OGR-2 in Caenorhabditis elegans. Genetics 2019; 212:213-229. [PMID: 30867196 PMCID: PMC6499523 DOI: 10.1534/genetics.119.302080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
During meiosis, a series of evolutionarily conserved events allow for reductional chromosome division, which is required for sexual reproduction. Although individual meiotic processes have been extensively studied, we currently know far less about how meiosis is regulated and coordinated. In the Caenorhabditis elegans gonad, mitogen-activated protein kinase (MAPK) signaling drives oogenesis while undergoing spatial activation and deactivation waves. However, it is currently unclear how MAPK activation is governed and how it facilitates the progression of oogenesis. Here, we show that the oocyte and germline-related 2 (ogr-2) gene affects proper progression of oogenesis. Complete deletion of ogr-2 results in delayed meiotic entry and late spatial onset of double-strand break repair. Elevated levels of apoptosis are observed in this mutant, independent of the meiotic canonical checkpoints; however, they are dependent on the MAPK terminal member MPK-1/ERK. MPK-1 activation is elevated in diplotene in ogr-2 mutants and its aberrant spatial activation correlates with stages where meiotic progression defects are evident. Deletion of ogr-2 significantly reduces the expression of lip-1, a phosphatase reported to repress MPK-1, which is consistent with OGR-2 localization at chromatin in germ cells. We suggest that OGR-2 modulates the expression of lip-1 to promote the timely progression of meiosis through MPK-1 spatial deactivation.
Collapse
Affiliation(s)
- Hanna Achache
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Lévana Laurent
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Yaël Hecker-Mimoun
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Hasan Ishtayeh
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Yisrael Rappaport
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Eitan Kroizer
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | | | - Yonatan B Tzur
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| |
Collapse
|
47
|
Chapman EM, Lant B, Ohashi Y, Yu B, Schertzberg M, Go C, Dogra D, Koskimäki J, Girard R, Li Y, Fraser AG, Awad IA, Abdelilah-Seyfried S, Gingras AC, Derry WB. A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun 2019; 10:1791. [PMID: 30996251 PMCID: PMC6470173 DOI: 10.1038/s41467-019-09829-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Apoptotic death of cells damaged by genotoxic stress requires regulatory input from surrounding tissues. The C. elegans scaffold protein KRI-1, ortholog of mammalian KRIT1/CCM1, permits DNA damage-induced apoptosis of cells in the germline by an unknown cell non-autonomous mechanism. We reveal that KRI-1 exists in a complex with CCM-2 in the intestine to negatively regulate the ERK-5/MAPK pathway. This allows the KLF-3 transcription factor to facilitate expression of the SLC39 zinc transporter gene zipt-2.3, which functions to sequester zinc in the intestine. Ablation of KRI-1 results in reduced zinc sequestration in the intestine, inhibition of IR-induced MPK-1/ERK1 activation, and apoptosis in the germline. Zinc localization is also perturbed in the vasculature of krit1-/- zebrafish, and SLC39 zinc transporters are mis-expressed in Cerebral Cavernous Malformations (CCM) patient tissues. This study provides new insights into the regulation of apoptosis by cross-tissue communication, and suggests a link between zinc localization and CCM disease.
Collapse
Affiliation(s)
- Eric M Chapman
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Benjamin Lant
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Yota Ohashi
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Michael Schertzberg
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Christopher Go
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - Deepika Dogra
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, 14476, Germany
| | - Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Yan Li
- University of Chicago Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA
| | - Andrew G Fraser
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | | | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada.
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada.
| |
Collapse
|
48
|
MiR-35 buffers apoptosis thresholds in the C. elegans germline by antagonizing both MAPK and core apoptosis pathways. Cell Death Differ 2019; 26:2637-2651. [PMID: 30952991 PMCID: PMC7224216 DOI: 10.1038/s41418-019-0325-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is a genetically programmed cell death process with profound roles in development and disease. MicroRNAs modulate the expression of many proteins and are often deregulated in human diseases, such as cancer. C. elegans germ cells undergo apoptosis in response to genotoxic stress by the combined activities of the core apoptosis and MAPK pathways, but how their signalling thresholds are buffered is an open question. Here we show mir-35–42 miRNA family play a dual role in antagonizing both NDK-1, a positive regulator of MAPK signalling, and the BH3-only pro-apoptotic protein EGL-1 to regulate the magnitude of DNA damage-induced apoptosis in the C. elegans germline. We show that while miR-35 represses EGL-1 by promoting transcript degradation, repression of NDK-1 may be through sequestration of the transcript to inhibit translation. Importantly, dramatic increase in NDK-1 expression was observed in cells about to die. In the absence of miR-35, increased NDK-1 activity enhanced MAPK signalling that lead to significant increases in germ cell death. Our findings demonstrate that NDK-1 acts upstream of (or in parallel to) EGL-1, and that miR-35 targets both egl-1 and ndk-1 to fine-tune cell killing in response to genotoxic stress.
Collapse
|
49
|
Yoon DS, Cha DS, Choi Y, Lee JW, Lee M. MPK-1/ERK is required for the full activity of resveratrol in extended lifespan and reproduction. Aging Cell 2019; 18:e12867. [PMID: 30575269 PMCID: PMC6351825 DOI: 10.1111/acel.12867] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Resveratrol (RSV) extends the lifespan of various organisms through activation of sirtuin. However, whether RSV-mediated longevity is entirely dependent upon sirtuin is still controversial. Thus, understanding additional mechanisms concerning the genetic requirements for the biological activity of RSV needs to be clarified to utilize the beneficial effects of RSV. In this study using Caenorhabditis elegans as a model system, we found that MPK-1 (an ERK homolog) signaling is necessarily required for RSV-mediated longevity of sir-2.1/sirtuin mutants as well as for wild-type worms. We demonstrated that MPK-1 contributes to RSV-mediated longevity through nuclear accumulation of SKN-1 in a SIR-2.1/DAF-16 pathway-independent manner. The positive effect of RSV in regulating lifespan was completely abolished by RNA interference against mpk-1 in the sir-2.1 and daf-16 mutants, strongly indicating that the MPK-1/SKN-1 pathway is involved in RSV-mediated longevity, independently of SIR-2.1/DAF-16. We additionally found that RSV protected worms from oxidative stress via MPK-1. In addition to organismal aging, RSV prevented the age-associated loss of mitotic germ cells, brood size, and reproductive span through MPK-1 in C. elegans germline. Therefore, our findings not only provide new mechanistic insight into the controversial effects of RSV on organismal longevity, but additionally have important implications in utilizing RSV to improve the outcome of aging-related diseases.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of MedicineBrody School of Medicine at East Carolina UniversityGreenvilleNorth Carolina
- Department of Orthopaedic SurgeryYonsei University College of MedicineSeoulSouth Korea
| | - Dong Seok Cha
- Department of Oriental Pharmacy, College of PharmacyWoosuk UniversityJeonbukSouth Korea
| | - Yoorim Choi
- Department of Orthopaedic SurgeryYonsei University College of MedicineSeoulSouth Korea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulSouth Korea
| | - Jin Woo Lee
- Department of Orthopaedic SurgeryYonsei University College of MedicineSeoulSouth Korea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulSouth Korea
- Severance Biomedical Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Myon‐Hee Lee
- Department of MedicineBrody School of Medicine at East Carolina UniversityGreenvilleNorth Carolina
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina‐Chapel HillChapel HillNorth Carolina
| |
Collapse
|
50
|
Functional genomic analysis identifies miRNA repertoire regulating C. elegans oocyte development. Nat Commun 2018; 9:5318. [PMID: 30552320 PMCID: PMC6294007 DOI: 10.1038/s41467-018-07791-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Oocyte-specific miRNA function remains unclear in mice and worms because loss of Dgcr8 and Dicer from mouse and worm oocytes, respectively, does not yield oogenic defects. These data lead to several models: (a) miRNAs are not generated in oocytes; (b) miRNAs are generated but do not perform an oogenic function; (c) functional oocyte miRNAs are generated in a manner independent of these enzymes. Here, we test these models using a combination of genomic, expression and functional analyses on the C. elegans germline. We identify a repertoire of at least twenty-three miRNAs that accumulate in four spatial domains in oocytes. Genetic tests demonstrate that oocyte-expressed miRNAs regulate key oogenic processes within their respective expression domains. Unexpectedly, we find that over half of the oocyte-expressed miRNAs are generated through an unknown Drosha independent mechanism. Thus, a functional miRNA repertoire generated via Drosha dependent and independent pathways regulates C. elegans oocyte development.
Collapse
|