1
|
Woodruff GC, Willis JH, Phillips PC. Patterns of Genomic Diversity in a Fig-Associated Close Relative of Caenorhabditis elegans. Genome Biol Evol 2024; 16:evae020. [PMID: 38302111 PMCID: PMC10883733 DOI: 10.1093/gbe/evae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The evolution of reproductive mode is expected to have profound impacts on the genetic composition of populations. At the same time, ecological interactions can generate close associations among species, which can in turn generate a high degree of overlap in their spatial distributions. Caenorhabditis elegans is a hermaphroditic nematode that has enabled extensive advances in developmental genetics. Caenorhabditis inopinata, the sister species of C. elegans, is a gonochoristic nematode that thrives in figs and obligately disperses on fig wasps. Here, we describe patterns of genomic diversity in C. inopinata. We performed RAD-seq on individual worms isolated from the field across three Okinawan island populations. C. inopinata is about five times more diverse than C. elegans. Additionally, C. inopinata harbors greater differences in diversity among functional genomic regions (such as between genic and intergenic sequences) than C. elegans. Conversely, C. elegans harbors greater differences in diversity between high-recombining chromosome arms and low-recombining chromosome centers than C. inopinata. FST is low among island population pairs, and clear population structure could not be easily detected among islands, suggesting frequent migration of wasps between islands. These patterns of population differentiation appear comparable with those previously reported in its fig wasp vector. These results confirm many theoretical population genetic predictions regarding the evolution of reproductive mode and suggest C. inopinata population dynamics may be driven by wasp dispersal. This work sets the stage for future evolutionary genomic studies aimed at understanding the evolution of sex as well as the evolution of ecological interactions.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Present address: Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
2
|
Existence of Bov-B LINE Retrotransposons in Snake Lineages Reveals Recent Multiple Horizontal Gene Transfers with Copy Number Variation. Genes (Basel) 2020; 11:genes11111241. [PMID: 33105659 PMCID: PMC7716205 DOI: 10.3390/genes11111241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are dynamic elements present in all eukaryotic genomes. They can “jump” and amplify within the genome and promote segmental genome rearrangements on both autosomes and sex chromosomes by disruption of gene structures. The Bovine-B long interspersed nuclear element (Bov-B LINE) is among the most abundant TE-retrotransposon families in vertebrates due to horizontal transfer (HT) among vertebrate lineages. Recent studies have shown multiple HTs or the presence of diverse Bov-B LINE groups in the snake lineage. It is hypothesized that Bov-B LINEs are highly dynamic and that the diversity reflects multiple HTs in snake lineages. Partial sequences of Bov-B LINE from 23 snake species were characterized. Phylogenetic analysis resolved at least two Bov-B LINE groups that might correspond to henophidian and caenophidian snakes; however, the tree topology differed from that based on functional nuclear and mitochondrial gene sequences. Several Bov-B LINEs of snakes showed greater than 80% similarity to sequences obtained from insects, whereas the two Bov-B LINE groups as well as sequences from the same snake species classified in different Bov-B LINE groups showed sequence similarities of less than 80%. Calculation of estimated divergence time and pairwise divergence between all individual Bov-B LINE copies suggest invasion times ranging from 79.19 to 98.8 million years ago in snakes. Accumulation of elements in a lineage-specific fashion ranged from 9 × 10−6% to 5.63 × 10−2% per genome. The genomic proportion of Bov-B LINEs varied among snake species but was not directly associated with genome size or invasion time. No differentiation in Bov-B LINE copy number between males and females was observed in any of the snake species examined. Incongruence in tree topology between Bov-B LINEs and other snake phylogenies may reflect past HT events. Sequence divergence of Bov-B LINEs between copies suggests that recent multiple HTs occurred within the same evolutionary timeframe in the snake lineage. The proportion of Bov-B LINEs varies among species, reflecting species specificity in TE invasion. The rapid speciation of snakes, coinciding with Bov-B LINE invasion in snake genomes, leads us to better understand the effect of Bov-B LINEs on snake genome evolution.
Collapse
|
3
|
Relation between mitochondrial DNA hyperdiversity, mutation rate and mitochondrial genome evolution in Melarhaphe neritoides (Gastropoda: Littorinidae) and other Caenogastropoda. Sci Rep 2018; 8:17964. [PMID: 30568252 PMCID: PMC6299273 DOI: 10.1038/s41598-018-36428-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/19/2018] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA hyperdiversity is primarily caused by high mutation rates (µ) and has potential implications for mitogenome architecture and evolution. In the hyperdiverse mtDNA of Melarhaphe neritoides (Gastropoda: Littorinidae), high mutational pressure generates unusually large amounts of synonymous variation, which is expected to (1) promote changes in synonymous codon usage, (2) reflect selection at synonymous sites, (3) increase mtDNA recombination and gene rearrangement, and (4) be correlated with high mtDNA substitution rates. The mitogenome of M. neritoides was sequenced, compared to closely related littorinids and put in the phylogenetic context of Caenogastropoda, to assess the influence of mtDNA hyperdiversity and high µ on gene content and gene order. Most mitogenome features are in line with the trend in Mollusca, except for the atypical secondary structure of the methionine transfer RNA lacking the TΨC-loop. Therefore, mtDNA hyperdiversity and high µ in M. neritoides do not seem to affect its mitogenome architecture. Synonymous sites are under positive selection, which adds to the growing evidence of non-neutral evolution at synonymous sites. Under such non-neutrality, substitution rate involves neutral and non-neutral substitutions, and high µ is not necessarily associated with high substitution rate, thus explaining that, unlike high µ, a high substitution rate is associated with gene order rearrangement.
Collapse
|
4
|
Abstract
Micro-RNA (miRNA) genes encode abundant small regulatory RNAs that play key roles during development and in homeostasis by fine tuning and buffering gene expression. This layer of regulatory control over transcriptional networks is preserved by selection across deep evolutionary time, yet selection pressures on individual miRNA genes in contemporary populations remain poorly characterized in any organism. Here, we quantify nucleotide variability for 129 miRNAs in the genome of the nematode Caenorhabditis remanei to understand the microevolution of this important class of regulatory genes. Our analysis of three population samples and C. remanei's sister species revealed ongoing natural selection that constrains evolution of all sequence domains within miRNA hairpins. We also show that new miRNAs evolve faster than older miRNAs but that selection nevertheless favors their persistence. Despite the ongoing importance of purging of new mutations, we discover a trove of >400 natural miRNA sequence variants that include single nucleotide polymorphisms in seed motifs, indels that ablate miRNA functional domains, and origination of new miRNAs by duplication. Moreover, we demonstrate substantial nucleotide divergence of pre-miRNA hairpin alleles between populations and sister species. These findings from the first global survey of miRNA microevolution in Caenorhabditis support the idea that changes in gene expression, mediated through divergence in miRNA regulation, can contribute to phenotypic novelty and adaptation to specific environments in the present day as well as the distant past.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| |
Collapse
|
5
|
A recent global selective sweep on the age-1 phosphatidylinositol 3-OH kinase regulator of the insulin-like signaling pathway within Caenorhabditis remanei. G3-GENES GENOMES GENETICS 2014; 4:1123-33. [PMID: 24727287 PMCID: PMC4065255 DOI: 10.1534/g3.114.010629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The discovery that genetic pathways can be manipulated to extend lifespan has revolutionized our understanding of aging, yet their function within natural populations remains poorly characterized. In particular, evolutionary theories of aging predict tradeoffs in resource investment toward somatic maintenance vs. reproductive output that should impose strong natural selection on genetic components that influence this balance. To explore such selective pressure at the molecular level, we examine population genetic variation in the insulin-like signaling pathway of the nematode Caenorhabditis remanei. We document a recent global selective sweep on the phosphoinositide-3-kinase pathway regulator, age-1, the first life-extension gene to have been identified. In particular, we find that age-1 has 5−20 times less genetic variation than any other insulin-like signaling pathway components and that evolutionary signatures of selection center on the age-1 locus within its genomic environment. These results demonstrate that critical components of aging-related pathways can be subject to shifting patterns of strong selection, as predicted by theory. This highly polymorphic outcrossing species offers high-resolution, population-level analyses of molecular variation as a complement to functional genetic studies within the self-reproducing C. elegans model system.
Collapse
|
6
|
Gimond C, Jovelin R, Han S, Ferrari C, Cutter AD, Braendle C. OUTBREEDING DEPRESSION WITH LOW GENETIC VARIATION IN SELFINGCAENORHABDITISNEMATODES. Evolution 2013; 67:3087-101. [DOI: 10.1111/evo.12203] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Clotilde Gimond
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Shery Han
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Céline Ferrari
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Christian Braendle
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| |
Collapse
|
7
|
Molecular hyperdiversity defines populations of the nematode Caenorhabditis brenneri. Proc Natl Acad Sci U S A 2013; 110:11056-60. [PMID: 23776215 DOI: 10.1073/pnas.1303057110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The biology of Sydney Brenner's eponymous species of nematode, Caenorhabditis brenneri, is little known to science, despite its famous sibling Caenorhabditis elegans. Here we demonstrate that C. brenneri harbors the most molecular diversity of any eukaryote, with its 14.1% of polymorphic synonymous sites between individuals being 150-fold greater than humans and most comparable to hyperdiverse bacteria. This diversity is not an artifact of cryptic species divergence but reflects an enormous pan-tropical population, confirmed by fully viable genetic crosses between continents, extensive intralocus recombination, selection on codon use, and only weak geographic genetic structure. These findings in an animal galvanize tests of theory about the evolution of complexity in genomes and phenotypes and enable molecular population genetics methods to finely resolve uncharacterized functional noncoding elements.
Collapse
|
8
|
Cutter AD, Jovelin R, Dey A. Molecular hyperdiversity and evolution in very large populations. Mol Ecol 2013; 22:2074-95. [PMID: 23506466 PMCID: PMC4065115 DOI: 10.1111/mec.12281] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 02/06/2023]
Abstract
The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of noncrossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on noncoding regulatory elements.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
9
|
Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet 2013; 14:262-74. [PMID: 23478346 DOI: 10.1038/nrg3425] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and the removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive differences in linked selection among species--including roles for selective sweeps being 'hard' or 'soft'--and the concealing effects of demography and confounding genomic variables. We advocate targeted studies of closely related species to unify our understanding of how selection and linkage interact to shape genome evolution.
Collapse
|
10
|
Harrang E, Lapègue S, Morga B, Bierne N. A high load of non-neutral amino-acid polymorphisms explains high protein diversity despite moderate effective population size in a marine bivalve with sweepstakes reproduction. G3 (BETHESDA, MD.) 2013; 3:333-41. [PMID: 23390609 PMCID: PMC3564993 DOI: 10.1534/g3.112.005181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/15/2012] [Indexed: 12/14/2022]
Abstract
Marine bivalves show among the greatest allozyme diversity ever reported in Eukaryotes, putting them historically at the heart of the neutralist-selectionist controversy on the maintenance of genetic variation. Although it is now acknowledged that this high diversity is most probably a simple consequence of a large population size, convincing support for this explanation would require a rigorous assessment of the silent nucleotide diversity in natural populations of marine bivalves, which has not yet been done. This study investigated DNA sequence polymorphism in a set of 37 nuclear loci in wild samples of the flat oyster Ostrea edulis. Silent diversity was found to be only moderate (0.7%), and there was no departure from demographic equilibrium under the Wright-Fisher model, suggesting that the effective population size might not be as large as might have been expected. In accordance with allozyme heterozygosity, nonsynonymous diversity was comparatively very high (0.3%), so that the nonsynonymous to silent diversity ratio reached a value rarely observed in any other organism. We estimated that one-quarter of amino acid-changing mutations behave as neutral in O. edulis, and as many as one-third are sufficiently weakly selected to segregate at low frequency in the polymorphism. Finally, we inferred that one oyster is expected to carry more than 4800 non-neutral alleles (or 4.2 cM(-1)). We conclude that a high load of segregating non-neutral amino-acid polymorphisms contributes to high protein diversity in O. edulis. The high fecundity of marine bivalves together with an unpredictable and highly variable success of reproduction and recruitment (sweepstakes reproduction) might produce a greater decoupling between Ne and N than in other organisms with lower fecundities, and we suggest this could explain why a higher segregating load could be maintained for a given silent mutation effective size.
Collapse
Affiliation(s)
- Estelle Harrang
- Ifremer, Laboratoire de génétique et pathologie, 17390 La Tremblade, France
| | - Sylvie Lapègue
- Ifremer, Laboratoire de génétique et pathologie, 17390 La Tremblade, France
| | - Benjamin Morga
- Ifremer, Laboratoire de génétique et pathologie, 17390 La Tremblade, France
| | - Nicolas Bierne
- Université Montpellier 2, 34095 Montpellier cedex 5, France
- CNRS - Institut des Sciences de l'Evolution, UMR5554, Station Méditerranéenne de l’Environnement Littoral, 34200 Sète, France
| |
Collapse
|
11
|
Global population genetic structure of Caenorhabditis remanei reveals incipient speciation. Genetics 2012; 191:1257-69. [PMID: 22649079 DOI: 10.1534/genetics.112.140418] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mating system transitions dramatically alter the evolutionary trajectories of genomes that can be revealed by contrasts of species with disparate modes of reproduction. For such transitions in Caenorhabditis nematodes, some major causes of genome variation in selfing species have been discerned. And yet, we have only limited understanding of species-wide population genetic processes for their outcrossing relatives, which represent the reproductive state of the progenitors of selfing species. Multilocus-multipopulation sequence polymorphism data provide a powerful means to uncover the historical demography and evolutionary processes that shape genomes. Here we survey nucleotide polymorphism across the X chromosome for three populations of the outcrossing nematode Caenorhabditis remanei and demonstrate its divergence from a fourth population describing a closely related new species from China, C. sp. 23. We find high genetic variation globally and within each local population sample. Despite geographic barriers and moderate genetic differentiation between Europe and North America, considerable gene flow connects C. remanei populations. We discovered C. sp. 23 while investigating C. remanei, observing strong genetic differentiation characteristic of reproductive isolation that was confirmed by substantial F2 hybrid breakdown in interspecific crosses. That C. sp. 23 represents a distinct biological species provides a cautionary example of how standard practice can fail for mating tests of species identity in this group. This species pair permits full application of divergence population genetic methods to obligately outcrossing species of Caenorhabditis and also presents a new focus for interrogation of the genetics and evolution of speciation with the Caenorhabditis model system.
Collapse
|
12
|
Cutter AD, Wang GX, Ai H, Peng Y. Influence of finite-sites mutation, population subdivision and sampling schemes on patterns of nucleotide polymorphism for species with molecular hyperdiversity. Mol Ecol 2012; 21:1345-59. [PMID: 22320847 DOI: 10.1111/j.1365-294x.2012.05475.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular hyperdiversity has been documented in viruses, prokaryotes and eukaryotes. Such organisms undermine the assumptions of the infinite-sites mutational model, because multiple mutational events at a site comprise a non-negligible portion of polymorphisms. Moreover, different sampling schemes of individuals from species with subdivided populations can profoundly influence resulting patterns and interpretations of molecular variation. Inspired by molecular hyperdiversity in the nematode Caenorhabditis sp. 5, which exhibits average pairwise differences among synonymous sites of >5% as well as modest population structure, we investigated via coalescent simulation the joint effects of a finite-sites mutation (FSM) process and population subdivision on the variant frequency spectrum. From many demes interconnected through a stepping-stone migration model, we constructed local samples from a single deme, pooled samples from several demes and scattered samples of a single individual from numerous demes. Compared with a single panmictic population at equilibrium, we find that high population mutation rates induce a deficit of rare variants (positive Tajima's D) under a FSM model. Population structure also induces such a skew for local samples when migration is high and for pooled samples when migration is low. Contrasts of sampling schemes for C. sp. 5 imply high mutational input coupled with high migration. We propose that joint analysis of local, pooled and scattered samples for species with subdivided populations provides a means of improving inference of demographic history, by virtue of the partially distinct patterns of polymorphism that manifest when sequences are analyzed according to differing sampling schemes.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
13
|
Flowers JM, Molina J, Rubinstein S, Huang P, Schaal BA, Purugganan MD. Natural Selection in Gene-Dense Regions Shapes the Genomic Pattern of Polymorphism in Wild and Domesticated Rice. Mol Biol Evol 2011; 29:675-87. [DOI: 10.1093/molbev/msr225] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Zeng K, Charlesworth B. The effects of demography and linkage on the estimation of selection and mutation parameters. Genetics 2010; 186:1411-24. [PMID: 20923980 PMCID: PMC2998320 DOI: 10.1534/genetics.110.122150] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022] Open
Abstract
We explore the effects of demography and linkage on a maximum-likelihood (ML) method for estimating selection and mutation parameters in a reversible mutation model. This method assumes free recombination between sites and a randomly mating population of constant size and uses information from both polymorphic and monomorphic sites in the sample. Two likelihood-ratio test statistics were constructed under this ML framework: LRTγ for detecting selection and LRTκ for detecting mutational bias. By carrying out extensive simulations, we obtain the following results. When mutations are neutral and population size is constant, LRTγ and LRTκ follow a chi-square distribution with 1 d.f. regardless of the level of linkage, as long as the mutation rate is not very high. In addition, LRTγ and LRTκ are relatively insensitive to demographic effects and selection at linked sites. We find that the ML estimators of the selection and mutation parameters are usually approximately unbiased and that LRTκ usually has good power to detect mutational bias. Finally, with a recombination rate that is typical for Drosophila, LRTγ has good power to detect weak selection acting on synonymous sites. These results suggest that the method should be useful under many different circumstances.
Collapse
Affiliation(s)
- Kai Zeng
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | |
Collapse
|
15
|
Wang GX, Ren S, Ren Y, Ai H, Cutter AD. Extremely high molecular diversity within the East Asian nematode Caenorhabditis sp. 5. Mol Ecol 2010; 19:5022-9. [PMID: 20958820 DOI: 10.1111/j.1365-294x.2010.04862.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most relatives of the self-fertilizing hermaphroditic nematode model organism Caenorhabditis elegans reproduce via obligate outbreeding between males and females, which also represents the ancestral mode of reproduction within the genus. However, little is known about the scope of genetic diversity and differentiation within such gonochoristic species, especially those found outside of temperate Europe and North America. It is critical to understand the evolutionary processes operating in these species to provide a framework for deciphering the evolution of hermaphroditism and a baseline for the application of outcrossing Caenorhabditis to problems in evolutionary genetics. Here, we investigate for the first time molecular sequence variation for Caenorhabditis sp. 5, a species found commonly in eastern Asia. We identify enormous levels of standing genetic variation that approach the levels observed in the marine broadcast-spawning sea squirt, Ciona savignyi. Although we document significant isolation by distance, we demonstrate that the high polymorphism within C. sp. 5 is not because of strong differentiation among populations or to the presence of cryptic species. These findings illustrate that molecular population genetic approaches to studying obligately outbreeding species of Caenorhabditis will prove powerful in identifying and characterizing functionally and evolutionarily important features of the genome.
Collapse
Affiliation(s)
- Guo-Xiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, HuaZhong Normal University, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
16
|
Abstract
The frequencies of alternative synonymous codons vary both among species and among genes from the same genome. These patterns have been inferred to reflect the action of natural selection. Here we evaluate this in bacteria. While intragenomic variation in many species is consistent with selection favouring translationally optimal codons, much of the variation among species appears to be due to biased patterns of mutation. The strength of selection on codon usage can be estimated by two different approaches. First, the extent of bias in favour of translationally optimal codons in highly expressed genes, compared to that in genes where selection is weak, reveals the long-term effectiveness of selection. Here we show that the strength of selected codon usage bias is highly correlated with bacterial growth rate, suggesting that selection has favoured translational efficiency. Second, the pattern of bias towards optimal codons at polymorphic sites reveals the ongoing action of selection. Using this approach we obtained results that were completely consistent with the first method; importantly, the frequency spectra of optimal codons at polymorphic sites were similar to those predicted under an equilibrium model. Highly expressed genes in Escherichia coli appear to be under continuing strong selection, whereas selection is very weak in genes expressed at low levels.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, , Kings Buildings, Edinburgh EH9 3JT, UK.
| | | | | |
Collapse
|
17
|
Mating-system variation, demographic history and patterns of nucleotide diversity in the Tristylous plant Eichhornia paniculata. Genetics 2009; 184:381-92. [PMID: 19917767 DOI: 10.1534/genetics.109.110130] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inbreeding in highly selfing populations reduces effective size and, combined with demographic conditions associated with selfing, this can erode genetic diversity and increase population differentiation. Here we investigate the role that variation in mating patterns and demographic history play in shaping the distribution of nucleotide variation within and among populations of the annual neotropical colonizing plant Eichhornia paniculata, a species with wide variation in selfing rates. We sequenced 10 EST-derived nuclear loci in 225 individuals from 25 populations sampled from much of the geographic range and used coalescent simulations to investigate demographic history. Highly selfing populations exhibited moderate reductions in diversity but there was no significant difference in variation between outcrossing and mixed mating populations. Population size interacted strongly with mating system and explained more of the variation in diversity within populations. Bayesian structure analysis revealed strong regional clustering and selfing populations were highly differentiated on the basis of an analysis of F(st). There was no evidence for a significant loss of within-locus linkage disequilibrium within populations, but regional samples revealed greater breakdown in Brazil than in selfing populations from the Caribbean. Coalescent simulations indicate a moderate bottleneck associated with colonization of the Caribbean from Brazil approximately 125,000 years before the present. Our results suggest that the recent multiple origins of selfing in E. paniculata from diverse outcrossing populations result in higher diversity than expected under long-term equilibrium.
Collapse
|
18
|
Jovelin R. Rapid sequence evolution of transcription factors controlling neuron differentiation in Caenorhabditis. Mol Biol Evol 2009; 26:2373-86. [PMID: 19589887 DOI: 10.1093/molbev/msp142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Whether phenotypic evolution proceeds predominantly through changes in regulatory sequences is a controversial issue in evolutionary genetics. Ample evidence indicates that the evolution of gene regulatory networks via changes in cis-regulatory sequences is an important determinant of phenotypic diversity. However, recent experimental work suggests that the role of transcription factor (TF) divergence in developmental evolution may be underestimated. In order to help understand what levels of constraints are acting on the coding sequence of developmental regulatory genes, evolutionary rates were investigated among 48 TFs required for neuronal development in Caenorhabditis elegans. Allelic variation was then sampled for 28 of these genes within a population of the related species Caenorhabditis remanei. Neuronal TFs are more divergent, both within and between species, than structural genes. TFs affecting different neuronal classes are under different levels of selective constraints. The regulatory genes controlling the differentiation of chemosensory neurons evolve particularly fast and exhibit higher levels of within- and between-species nucleotide variation than TFs required for the development of several neuronal classes and TFs required for motorneuron differentiation. The TFs affecting chemosensory neuron development are also more divergent than chemosensory genes expressed in the neurons they differentiate. These results illustrate that TFs are not as highly constrained as commonly thought and suggest that the role of divergence in developmental regulatory genes during the evolution of gene regulatory networks requires further attention.
Collapse
Affiliation(s)
- Richard Jovelin
- Center for Ecology and Evolutionary Biology, University of Oregon, Oregon, USA.
| |
Collapse
|
19
|
Cutter AD, Dey A, Murray RL. Evolution of the Caenorhabditis elegans genome. Mol Biol Evol 2009; 26:1199-234. [PMID: 19289596 DOI: 10.1093/molbev/msp048] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A fundamental problem in genome biology is to elucidate the evolutionary forces responsible for generating nonrandom patterns of genome organization. As the first metazoan to benefit from full-genome sequencing, Caenorhabditis elegans has been at the forefront of research in this area. Studies of genomic patterns, and their evolutionary underpinnings, continue to be augmented by the recent push to obtain additional full-genome sequences of related Caenorhabditis taxa. In the near future, we expect to see major advances with the onset of whole-genome resequencing of multiple wild individuals of the same species. In this review, we synthesize many of the important insights to date in our understanding of genome organization and function that derive from the evolutionary principles made explicit by theoretical population genetics and molecular evolution and highlight fertile areas for future research on unanswered questions in C. elegans genome evolution. We call attention to the need for C. elegans researchers to generate and critically assess nonadaptive hypotheses for genomic and developmental patterns, in addition to adaptive scenarios. We also emphasize the potential importance of evolution in the gonochoristic (female and male) ancestors of the androdioecious (hermaphrodite and male) C. elegans as the source for many of its genomic and developmental patterns.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology and the Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
20
|
Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes. Genet Res (Camb) 2008; 90:317-29. [PMID: 18840306 DOI: 10.1017/s0016672308009440] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Population genetics theory predicts that differences in breeding systems should be an important factor in the dynamics of selfish genetic elements, because of different intensities of selection on both hosts and elements. We examined population frequencies of transposable elements (TEs) in natural populations of the self-fertilizing nematode Caenorhabditis elegans and its outcrossing relative Caenorhabditis remanei. We identified a Tc1-like class of elements in the C. remanei genome with homology to the terminal inverted repeats of the C. elegans Tc1 transposon, which we name mTcre1. We measured levels of insertion polymorphism for all 32 Tc1 elements present in the genome sequence of the C. elegans N2 strain, and 16 mTcre1 elements from the genome sequence of the C. remanei PB4641 strain. We show that transposons are less polymorphic and segregate at higher frequencies in C. elegans compared with C. remanei. Estimates of the intensity of selection based on the population frequencies of polymorphic elements suggest that transposons are selectively neutral in C. elegans, but subject to purifying selection in C. remanei. These results are consistent with a reduced efficacy of natural selection against TEs in selfing populations, but may in part be explained by non-equilibrium TE dynamics.
Collapse
|
21
|
Patterns of molecular evolution in Caenorhabditis preclude ancient origins of selfing. Genetics 2008; 178:2093-104. [PMID: 18430935 DOI: 10.1534/genetics.107.085787] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of self-fertilization can mediate pronounced changes in genomes as a by-product of a drastic reduction in effective population size and the concomitant accumulation of slightly deleterious mutations by genetic drift. In the nematode genus Caenorhabditis, a highly selfing lifestyle has evolved twice independently, thus permitting an opportunity to test for the effects of mode of reproduction on patterns of molecular evolution on a genomic scale. Here we contrast rates of nucleotide substitution and codon usage bias among thousands of orthologous groups of genes in six species of Caenorhabditis, including the classic model organism Caenorhabditis elegans. Despite evidence that weak selection on synonymous codon usage is pervasive in the history of all species in this genus, we find little difference among species in the patterns of codon usage bias and in replacement-site substitution. Applying a model of relaxed selection on codon usage to the C. elegans and C. briggsae lineages suggests that self-fertilization is unlikely to have evolved more than approximately 4 million years ago, which is less than a quarter of the time since they shared a common ancestor with outcrossing species. We conclude that the profound changes in mating behavior, physiology, and developmental mechanisms that accompanied the transition from an obligately outcrossing to a primarily selfing mode of reproduction evolved in the not-too-distant past.
Collapse
|
22
|
Thomas JH. Genome evolution in Caenorhabditis. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:211-6. [PMID: 18573804 DOI: 10.1093/bfgp/eln022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Since the completion of the Caenorhabditis elegans genome sequence 10 years ago, efforts of the large community of C. elegans geneticists have resulted in a high-quality annotation of the structures and sequence relatedness of nearly all the protein encoding and RNA genes. Based on increasingly accurate gene counts in other species, it now appears that C. elegans has more functional genes than most insects and approximately the same number as most mammals. In the last few years, draft genome sequences for several other nematodes have been published (C. briggsae and Brugia malayi) or publicly released (C. remanei, C. brenneri, C. japonica, Pristionchus pacificus, Trichinella spiralis and Haemonchus contortus). Comparisons of gene content within the phylum and to other phyla reveal complex patterns of genome evolution. These patterns include substantial numbers of genes conserved across all the major metazoan phyla (core metazoan genes) and many nematode-specific genes and gene families. Nematode-specific genes are located predominantly on autosomal arms, which also have higher recombination rates. It appears that evolutionary innovations occur mostly in these regions, probably facilitated by higher recombination. Few of these genes have gross phenotypes when knocked down by RNAi, suggesting that many of them function in specific aspects of nematode biology that were not tested, including chemosensation, pathogen response and xenobiotic detoxification.
Collapse
Affiliation(s)
- James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
23
|
Loewe L, Cutter AD. On the potential for extinction by Muller's ratchet in Caenorhabditis elegans. BMC Evol Biol 2008; 8:125. [PMID: 18447910 PMCID: PMC2408595 DOI: 10.1186/1471-2148-8-125] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/30/2008] [Indexed: 11/10/2022] Open
Abstract
Background The self-fertile hermaphrodite worm C. elegans is an important model organism for biology, yet little is known about the origin and persistence of the self-fertilizing mode of reproduction in this lineage. Recent work has demonstrated an extraordinary degree of selfing combined with a high deleterious mutation rate in contemporary populations. These observations raise the question as to whether the mutation load might rise to such a degree as to eventually threaten the species with extinction. The potential for such a process to occur would inform our understanding of the time since the origin of self-fertilization in C. elegans history. Results To address this issue, here we quantify the rate of fitness decline expected to occur via Muller's ratchet for a purely selfing population, using both analytical approximations and globally distributed individual-based simulations from the evolution@home system to compute the rate of deleterious mutation accumulation. Using the best available estimates for parameters of how C. elegans evolves, we conclude that pure selfing can persist for only short evolutionary intervals, and is expected to lead to extinction within thousands of years for a plausible portion of parameter space. Credible lower-bound estimates of nuclear mutation rates do not extend the expected time to extinction much beyond a million years. Conclusion Thus we conclude that either the extreme self-fertilization implied by current patterns of genetic variation in C. elegans arose relatively recently or that low levels of outcrossing and other factors are key to the persistence of C. elegans into the present day. We also discuss results for the mitochondrial genome and the implications for C. briggsae, a close relative that made the transition to selfing independently of C. elegans.
Collapse
Affiliation(s)
- Laurence Loewe
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | | |
Collapse
|