1
|
Guo F, Dai Z, Peng W, Zhang S, Zhou J, Ma J, Dong W, Xin F, Zhang W, Jiang M. Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnol Bioeng 2020; 118:357-371. [PMID: 32965690 DOI: 10.1002/bit.27575] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/24/2020] [Accepted: 09/19/2020] [Indexed: 01/03/2023]
Abstract
The application of rational design in reallocating metabolic flux to accumulate desired chemicals is always restricted by the native regulatory network. In this study, recombinant Pichia pastoris was constructed for malic acid production from sole methanol through rational redistribution of metabolic flux. Different malic acid accumulation modules were systematically evaluated and optimized in P. pastoris. The recombinant PP-CM301 could produce 8.55 g/L malic acid from glucose, which showed a 3.45-fold increase compared to the parent strain. To improve the efficiency of site-directed gene knockout, NHEJ-related protein Ku70 was destroyed, whereas leading to the silencing of heterogenous genes. Hence, genes related to by-product generation were deleted via a specially designed FRT/FLP system, which successfully reduced succinic acid and ethanol production. Furthermore, a key node in the methanol assimilation pathway, glucose-6-phosphate isomerase was knocked out to liberate metabolic fluxes trapped in the XuMP cycle, which finally enabled 2.79 g/L malic acid accumulation from sole methanol feeding with nitrogen source optimization. These results will provide guidance and reference for the metabolic engineering of P. pastoris to produce value-added chemicals from methanol.
Collapse
Affiliation(s)
- Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Dodson AE, Rine J. Donor Preference Meets Heterochromatin: Moonlighting Activities of a Recombinational Enhancer in Saccharomyces cerevisiae. Genetics 2016; 204:1065-1074. [PMID: 27655944 PMCID: PMC5105842 DOI: 10.1534/genetics.116.194696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, a small, intergenic region known as the recombination enhancer regulates donor selection during mating-type switching and also helps shape the conformation of chromosome III. Using an assay that detects transient losses of heterochromatic repression, we found that the recombination enhancer also acts at a distance in cis to modify the stability of gene silencing. In a mating-type-specific manner, the recombination enhancer destabilized the heterochromatic repression of a gene located ∼17 kbp away. This effect depended on a subregion of the recombination enhancer that is largely sufficient to determine donor preference. Therefore, this subregion affects both recombination and transcription from a distance. These observations identify a rare example of long-range transcriptional regulation in yeast and raise the question of whether other cis elements also mediate dual effects on recombination and gene expression.
Collapse
Affiliation(s)
- Anne E Dodson
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720-3220
| | - Jasper Rine
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720-3220
| |
Collapse
|
3
|
Methods to Study the Atypical Roles of DNA Repair and SMC Proteins in Gene Silencing. Methods Mol Biol 2016. [PMID: 27797079 DOI: 10.1007/978-1-4939-6545-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Silenced heterochromatin influences all nuclear processes including chromosome structure, nuclear organization, transcription, replication, and repair. Proteins that mediate silencing affect all of these nuclear processes. Similarly proteins involved in replication, repair, and chromosome structure play a role in the formation and maintenance of silenced heterochromatin. In this chapter we describe a handful of simple tools and methods that can be used to study the atypical role of proteins in gene silencing.
Collapse
|
4
|
Duan YM, Zhou BO, Peng J, Tong XJ, Zhang QD, Zhou JQ. Molecular dynamics of de novo telomere heterochromatin formation in budding yeast. J Genet Genomics 2016; 43:451-65. [DOI: 10.1016/j.jgg.2016.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/09/2016] [Accepted: 03/17/2016] [Indexed: 11/26/2022]
|
5
|
Abstract
The budding yeast Saccharomyces cerevisiae has two alternative mating types designated MATa and MATα. These are distinguished by about 700 bp of unique sequences, Ya or Yα, including divergent promoter sequences and part of the open reading frames of genes that regulate mating phenotype. Homothallic budding yeast, carrying an active HO endonuclease gene, HO, can switch mating type through a recombination process known as gene conversion, in which a site-specific double-strand break (DSB) created immediately adjacent to the Y region results in replacement of the Y sequences with a copy of the opposite mating type information, which is harbored in one of two heterochromatic donor loci, HMLα or HMRa. HO gene expression is tightly regulated to ensure that only half of the cells in a lineage switch to the opposite MAT allele, thus promoting conjugation and diploid formation. Study of the silencing of these loci has provided a great deal of information about the role of the Sir2 histone deacetylase and its associated Sir3 and Sir4 proteins in creating heterochromatic regions. MAT switching has been examined in great detail to learn about the steps in homologous recombination. MAT switching is remarkably directional, with MATa recombining preferentially with HMLα and MATα using HMRa. Donor preference is controlled by a cis-acting recombination enhancer located near HML. RE is turned off in MATα cells but in MATa binds multiple copies of the Fkh1 transcription factor whose forkhead-associated phosphothreonine binding domain localizes at the DSB, bringing HML into conjunction with MATa.
Collapse
|
6
|
Larin ML, Harding K, Williams EC, Lianga N, Doré C, Pilon S, Langis É, Yanofsky C, Rudner AD. Competition between Heterochromatic Loci Allows the Abundance of the Silencing Protein, Sir4, to Regulate de novo Assembly of Heterochromatin. PLoS Genet 2015; 11:e1005425. [PMID: 26587833 PMCID: PMC4654584 DOI: 10.1371/journal.pgen.1005425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 07/06/2015] [Indexed: 12/24/2022] Open
Abstract
Changes in the locations and boundaries of heterochromatin are critical during development, and de novo assembly of silent chromatin in budding yeast is a well-studied model for how new sites of heterochromatin assemble. De novo assembly cannot occur in the G1 phase of the cell cycle and one to two divisions are needed for complete silent chromatin assembly and transcriptional repression. Mutation of DOT1, the histone H3 lysine 79 (K79) methyltransferase, and SET1, the histone H3 lysine 4 (K4) methyltransferase, speed de novo assembly. These observations have led to the model that regulated demethylation of histones may be a mechanism for how cells control the establishment of heterochromatin. We find that the abundance of Sir4, a protein required for the assembly of silent chromatin, decreases dramatically during a G1 arrest and therefore tested if changing the levels of Sir4 would also alter the speed of de novo establishment. Halving the level of Sir4 slows heterochromatin establishment, while increasing Sir4 speeds establishment. yku70Δ and ubp10Δ cells also speed de novo assembly, and like dot1Δ cells have defects in subtelomeric silencing, suggesting that these mutants may indirectly speed de novo establishment by liberating Sir4 from telomeres. Deleting RIF1 and RIF2, which suppresses the subtelomeric silencing defects in these mutants, rescues the advanced de novo establishment in yku70Δ and ubp10Δ cells, but not in dot1Δ cells, suggesting that YKU70 and UBP10 regulate Sir4 availability by modulating subtelomeric silencing, while DOT1 functions directly to regulate establishment. Our data support a model whereby the demethylation of histone H3 K79 and changes in Sir4 abundance and availability define two rate-limiting steps that regulate de novo assembly of heterochromatin.
Collapse
Affiliation(s)
- Michelle L. Larin
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katherine Harding
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Elizabeth C. Williams
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Noel Lianga
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carole Doré
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sophie Pilon
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Éric Langis
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Corey Yanofsky
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Adam D. Rudner
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Kirkland JG, Peterson MR, Still CD, Brueggeman L, Dhillon N, Kamakaka RT. Heterochromatin formation via recruitment of DNA repair proteins. Mol Biol Cell 2015; 26:1395-410. [PMID: 25631822 PMCID: PMC4454184 DOI: 10.1091/mbc.e14-09-1413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Double-strand-break repair proteins interact with and recruit Sir proteins to ectopic sites in the genome. Recruitment results in gene silencing, which depends on Sir proteins, as well as on histone H2A modification. Silencing also results in the localization of the locus to the nuclear periphery. Heterochromatin formation and nuclear organization are important in gene regulation and genome fidelity. Proteins involved in gene silencing localize to sites of damage and some DNA repair proteins localize to heterochromatin, but the biological importance of these correlations remains unclear. In this study, we examined the role of double-strand-break repair proteins in gene silencing and nuclear organization. We find that the ATM kinase Tel1 and the proteins Mre11 and Esc2 can silence a reporter gene dependent on the Sir, as well as on other repair proteins. Furthermore, these proteins aid in the localization of silenced domains to specific compartments in the nucleus. We identify two distinct mechanisms for repair protein–mediated silencing—via direct and indirect interactions with Sir proteins, as well as by tethering loci to the nuclear periphery. This study reveals previously unknown interactions between repair proteins and silencing proteins and suggests insights into the mechanism underlying genome integrity.
Collapse
Affiliation(s)
- Jacob G Kirkland
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Misty R Peterson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Christopher D Still
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Leo Brueggeman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Namrita Dhillon
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rohinton T Kamakaka
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
8
|
Yáñez-Carrillo P, Robledo-Márquez KA, Ramírez-Zavaleta CY, De Las Peñas A, Castaño I. The mating type-like loci of Candida glabrata. Rev Iberoam Micol 2014; 31:30-4. [DOI: 10.1016/j.riam.2013.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022] Open
|
9
|
Kirkland JG, Kamakaka RT. Long-range heterochromatin association is mediated by silencing and double-strand DNA break repair proteins. ACTA ACUST UNITED AC 2013; 201:809-26. [PMID: 23733345 PMCID: PMC3678155 DOI: 10.1083/jcb.201211105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In yeast, the localization of homologous recombination–associated proteins to heterochromatic regions of the genome is necessary for proper nuclear organization. The eukaryotic genome is highly organized in the nucleus, and this organization affects various nuclear processes. However, the molecular details of higher-order organization of chromatin remain obscure. In the present study, we show that the Saccharomyces cerevisiae silenced loci HML and HMR cluster in three-dimensional space throughout the cell cycle and independently of the telomeres. Long-range HML–HMR interactions require the homologous recombination (HR) repair pathway and phosphorylated H2A (γ-H2A). γ-H2A is constitutively present at silenced loci in unperturbed cells, its localization requires heterochromatin, and it is restricted to the silenced domain by the transfer DNA boundary element. SMC proteins and Scc2 localize to the silenced domain, and Scc2 binding requires the presence of γ-H2A. These findings illustrate a novel pathway for heterochromatin organization and suggest a role for HR repair proteins in genomic organization.
Collapse
Affiliation(s)
- Jacob G Kirkland
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
10
|
Abstract
Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break.
Collapse
|
11
|
Kueng S, Tsai-Pflugfelder M, Oppikofer M, Ferreira HC, Roberts E, Tsai C, Roloff TC, Sack R, Gasser SM. Regulating repression: roles for the sir4 N-terminus in linker DNA protection and stabilization of epigenetic states. PLoS Genet 2012; 8:e1002727. [PMID: 22654676 PMCID: PMC3359979 DOI: 10.1371/journal.pgen.1002727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 04/11/2012] [Indexed: 01/19/2023] Open
Abstract
Silent information regulator proteins Sir2, Sir3, and Sir4 form a heterotrimeric complex that represses transcription at subtelomeric regions and homothallic mating type (HM) loci in budding yeast. We have performed a detailed biochemical and genetic analysis of the largest Sir protein, Sir4. The N-terminal half of Sir4 is dispensable for SIR–mediated repression of HM loci in vivo, except in strains that lack Yku70 or have weak silencer elements. For HM silencing in these cells, the C-terminal domain (Sir4C, residues 747–1,358) must be complemented with an N-terminal domain (Sir4N; residues 1–270), expressed either independently or as a fusion with Sir4C. Nonetheless, recombinant Sir4C can form a complex with Sir2 and Sir3 in vitro, is catalytically active, and has sedimentation properties similar to a full-length Sir4-containing SIR complex. Sir4C-containing SIR complexes bind nucleosomal arrays and protect linker DNA from nucleolytic digestion, but less effectively than wild-type SIR complexes. Consistently, full-length Sir4 is required for the complete repression of subtelomeric genes. Supporting the notion that the Sir4 N-terminus is a regulatory domain, we find it extensively phosphorylated on cyclin-dependent kinase consensus sites, some being hyperphosphorylated during mitosis. Mutation of two major phosphoacceptor sites (S63 and S84) derepresses natural subtelomeric genes when combined with a serendipitous mutation (P2A), which alone can enhance the stability of either the repressed or active state. The triple mutation confers resistance to rapamycin-induced stress and a loss of subtelomeric repression. We conclude that the Sir4 N-terminus plays two roles in SIR–mediated silencing: it contributes to epigenetic repression by stabilizing the SIR–mediated protection of linker DNA; and, as a target of phosphorylation, it can destabilize silencing in a regulated manner. Three Silent Information Regulator (SIR) proteins Sir2, Sir3, and Sir4 are involved in the epigenetic gene silencing of the homothallic mating (HM) loci and of telomere-proximal genes in budding yeast. They bind as a heterotrimeric complex to chromatin, repressing the underlying genes. Sir2 has an essential histone deacetylase activity, and Sir3 binds nucleosomes, with a high specificity for unmodified histones. We explored Sir4, whose role had largely remained a mystery. We report here that Sir4 N- and C-terminal domains have distinct functions: The Sir4 C-terminus binds all proteins essential for SIR–mediated silencing and is sufficient to repress HM loci, but surprisingly it is not sufficient to efficiently repress at telomeres. The Sir4 N-terminus binds DNA, which strengthens the SIR–chromatin interaction and helps target Sir4 to telomeric loci. In addition the Sir4 N-terminus binds sequence-specific factors that recruit Sir4 to sites of repression. We find that the Sir4 N-terminus is a target of mitotic phosphorylation. Mutation of the phosphoacceptor sites indicates that they help fine-tune subtelomeric repression. We propose therefore that phosphorylation of the Sir4 N-terminal domain modulates epigenetic repression at telomeres in response to cell cycle and/or stress situations.
Collapse
Affiliation(s)
- Stephanie Kueng
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Mariano Oppikofer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Helder C. Ferreira
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Emma Roberts
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Chinyen Tsai
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Ragna Sack
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Ruben GJ, Kirkland JG, MacDonough T, Chen M, Dubey RN, Gartenberg MR, Kamakaka RT. Nucleoporin mediated nuclear positioning and silencing of HMR. PLoS One 2011; 6:e21923. [PMID: 21818277 PMCID: PMC3139579 DOI: 10.1371/journal.pone.0021923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/09/2011] [Indexed: 02/06/2023] Open
Abstract
The organization of chromatin domains in the nucleus is an important factor in gene regulation. In eukaryotic nuclei, transcriptionally silenced chromatin clusters at the nuclear periphery while transcriptionally poised chromatin resides in the nuclear interior. Recent studies suggest that nuclear pore proteins (NUPs) recruit loci to nuclear pores to aid in insulation of genes from silencing and during gene activation. We investigated the role of NUPs at a native yeast insulator and show that while NUPs localize to the native tDNA insulator adjacent to the silenced HMR domain, loss of pore proteins does not compromise insulation. Surprisingly we find that NUPs contribute to silencing at HMR and are able to restore silencing to a silencing-defective HMR allele when tethered to the locus. We show that the perinuclear positioning of heterochromatin is important for the NUP-mediated silencing effect and find that loss of NUPs result in decreased localization of HMR to the nuclear periphery. We also show that loss of telomeric tethering pathways does not eliminate NUP localization to HMR, suggesting that NUPs may mediate an independent pathway for HMR association with the nuclear periphery. We propose that localization of NUPs to the tDNA insulator at HMR helps maintain the intranuclear position of the silent locus, which in turn contributes to the fidelity of silencing at HMR.
Collapse
Affiliation(s)
- Giulia J. Ruben
- Department of Molecular Cell Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jacob G. Kirkland
- Department of Molecular Cell Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Tracy MacDonough
- Department of Molecular Cell Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Miao Chen
- Department of Pharmacology, University of Medicine Dentistry New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Rudra N. Dubey
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Marc R. Gartenberg
- Department of Pharmacology, University of Medicine Dentistry New Jersey - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Rohinton T. Kamakaka
- Department of Molecular Cell Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Hoek M, Myers MP, Stillman B. An analysis of CAF-1-interacting proteins reveals dynamic and direct interactions with the KU complex and 14-3-3 proteins. J Biol Chem 2011; 286:10876-87. [PMID: 21209461 DOI: 10.1074/jbc.m110.217075] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CAF-1 is essential in human cells for the de novo deposition of histones H3 and H4 at the DNA replication fork. Depletion of CAF-1 from various cell lines causes replication fork arrest, activation of the intra-S phase checkpoint, and global defects in chromatin structure. CAF-1 is also involved in coordinating inheritance of states of gene expression and in chromatin assembly following DNA repair. In this study, we generated cell lines expressing RNAi-resistant versions of CAF-1 and showed that the N-terminal 296 amino acids are dispensable for essential CAF-1 function in vivo. N-terminally truncated CAF-1 p150 was deficient in proliferating cell nuclear antigen (PCNA) binding, reinforcing the existence of two PCNA binding sites in human CAF-1, but the defect in PCNA binding had no effect on the recruitment of CAF-1 to chromatin after DNA damage or to resistance to DNA-damaging agents. Tandem affinity purification of CAF-1-interacting proteins under mild conditions revealed that CAF-1 was directly associated with the KU70/80 complex, part of the DNA-dependent protein kinase, and the phosphoserine/threonine-binding protein 14-3-3 ζ. CAF-1 was a substrate for DNA-dependent protein kinase, and the 14-3-3 interaction in vitro is dependent on DNA-dependent protein kinase phosphorylation. These results highlight that CAF-1 has prominent interactions with the DNA repair machinery but that the N terminus is dispensable for the role of CAF-1 in DNA replication- and repair-coupled chromatin assembly.
Collapse
Affiliation(s)
- Maarten Hoek
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
14
|
Subtelomeric silencing of the MTL3 locus of Candida glabrata requires yKu70, yKu80, and Rif1 proteins. EUKARYOTIC CELL 2010; 9:1602-11. [PMID: 20675581 DOI: 10.1128/ec.00129-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Candida glabrata is a haploid opportunistic fungal pathogen that is phylogenetically related to Saccharomyces cerevisiae. Even though C. glabrata has no known sexual cycle, it contains, like S. cerevisiae, three mating type-like loci (MTL) called MTL1, MTL2, and MTL3, as well as most of the genes required for mating, meiosis, and sporulation. MTL1 is localized at an internal position on chromosome B and is thought to be the locus corresponding to the MAT locus in S. cerevisiae. MTL2 and MTL3 are localized close to two telomeres on different chromosomes (29.4 kb from Chr E-L and 10.5 kb from Chr B-L, respectively). By using URA3 reporter gene insertions at the three MTL loci, we found that in contrast to the case for S. cerevisiae, only MTL3 is subject to transcriptional silencing while MTL2 is transcriptionally active, and this is in agreement with previously reported data. We found that the silencing of MTL3 is nucleated primarily at the left telomere of chromosome B and spreads over 12 kb to MTL3, rather than nucleating at flanking, closely positioned cis-acting silencers, like those flanking HMR and HML of S. cerevisiae. Interestingly, the silencing of MTL3 absolutely requires the yKu70, yKu80, and Rif1 proteins, in sharp contrast to the silencing of the HM loci of S. cerevisiae. In addition, we found that several cell type-specific genes are expressed in C. glabrata regardless of the presence, or even absence, of mating type information at any of the MTL loci.
Collapse
|
15
|
Insertional mutagenesis enables cleistothecial formation in a non-mating strain of Histoplasma capsulatum. BMC Microbiol 2010; 10:49. [PMID: 20158914 PMCID: PMC2834667 DOI: 10.1186/1471-2180-10-49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 02/16/2010] [Indexed: 12/30/2022] Open
Abstract
Background Histoplasma capsulatum is a pathogenic ascomycete fungus that rapidly loses mating ability in culture. Loss of mating ability, as well as the organism's low rate of targeted gene replacement, limits techniques available for genetic studies in H. capsulatum. Understanding molecular mechanisms regulating mating in this organism may allow us to reverse or prevent loss of mating in H. capsulatum strains, introducing a variety of classical genetics techniques to the field. We generated a strain, UC1, by insertional mutagenesis of the laboratory strain G217B, and found that UC1 acquired the ability to form mating structures called cleistothecia. The aim of this study was to determine the mechanism by which UC1 gained the ability to form cleistothecia. We also present initial studies demonstrating that UC1 can be used as a tool to determine molecular correlates of mating in H. capsulatum. Results The strain UC1 was found to have increased RNA levels of the mating locus transcription factor (MAT1-1-1), and the putative alpha pheromone (PPG1) compared to G217B. Agrobacterium-mediated transformation and integration of T-DNA from the vector pCB301-GFP-HYG were found to be partially responsible for the increased RNA levels of these genes; however, the site of integration appeared to play the largest role in the strain's ability to form cleistothecia. Silencing HMK1, a putative FUS3/KSS1 homolog, had no effect on cleistothecial production by UC1. Protein kinase C (PKC1) RNA and protein levels were increased in UC1 compared to G217B, and pheromone production was found to be linked with Pkc1 activity in H. capsulatum. Conclusions The site of the T-DNA integration event appears to play the largest role in UC1's ability to form cleistothecia. We show that the UC1 strain can be used as a tool to study cleistothecia production in H. capsulatum by manipulating the strain, or by identifying differences between UC1 and G217B. Using these approaches, we were able to link Pkc1 activity with pheromone production in H. capsulatum; however, further studies are required to determine molecular mechanisms behind this. These studies may reveal regulatory mechanisms that can be manipulated to restore mating ability in H. capsulatum laboratory strains.
Collapse
|
16
|
The association of yKu with subtelomeric core X sequences prevents recombination involving telomeric sequences. Genetics 2009; 183:453-67, 1SI-13SI. [PMID: 19652176 DOI: 10.1534/genetics.109.106682] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The yKu protein of Saccharomyces cerevisiae is important for genome stability by repressing recombination involving telomeric sequences. The mechanism of this repression is not known, but silent heterochromatin such as HML, HMR, and telomeres are compartmentalized at the nuclear periphery and yKu is proposed to interact with these regions and to play a role in telomeric silencing and tethering. We have utilized ChIP on chip, quantitative PCR, and quantitative recombination assays to analyze yKu binding and its effect on genome stability in wild-type and mutant backgrounds. Our data suggest that, although yKu binds to the TG1-3 repeats and other parts of the genome when needed, such as during nonhomologous end-joining, it specifically binds to core X sequences in addition to the mating-type loci, HML and HMR. Association with core X occurred in the absence of Sir proteins, and enhanced binding was observed at silenced ends compared to nonsilenced ends. In contrast, binding to HML and HMR was totally dependent on Sir2-4p and partially dependent on Sir1p with a stronger association at HML in both MATa and MATalpha strains. Using yku80 separation-of-function mutants, we show a direct correlation between core X binding and recombination rate. We believe our findings support our hypothesis that yKu and core X play a pivotal role in maintaining genome stability through nuclear architecture by mediating a defensive fold-back structure at yeast chromosome ends.
Collapse
|
17
|
Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex. Mol Cell Biol 2008; 29:835-48. [PMID: 19047366 DOI: 10.1128/mcb.01009-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the hypothesis that the highly selective recombination of an active mating type locus (MAT) with either HMLalpha or HMRa is facilitated by the spatial positioning of relevant sequences within the budding yeast (Saccharomyces cerevisiae) nucleus. However, both position relative to the nuclear envelope (NE) and the subnuclear mobility of fluorescently tagged MAT, HML, or HMR loci are largely identical in haploid a and alpha cells. Irrespective of mating type, the expressed MAT locus is highly mobile within the nuclear lumen, while silent loci move less and are found preferentially near the NE. The perinuclear positions of HMR and HML are strongly compromised in strains lacking the Silent information regulator, Sir4. However, HMLalpha, unlike HMRa and most telomeres, shows increased NE association in a strain lacking yeast Ku70 (yKu70). Intriguingly, we find that the yKu complex is associated with HML and HMR sequences in a mating-type-specific manner. Its abundance decreases at the HMLalpha donor locus and increases transiently at MATa following DSB induction. Our data suggest that mating-type-specific binding of yKu to HMLalpha creates a local chromatin structure competent for recombination, which cooperates with the recombination enhancer to direct donor choice for gene conversion of the MATa locus.
Collapse
|
18
|
Current awareness on yeast. Yeast 1990. [DOI: 10.1002/yea.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|