1
|
Caron-Godon CA, Collington E, Wolf JL, Coletta G, Glerum DM. More than Just Bread and Wine: Using Yeast to Understand Inherited Cytochrome Oxidase Deficiencies in Humans. Int J Mol Sci 2024; 25:3814. [PMID: 38612624 PMCID: PMC11011759 DOI: 10.3390/ijms25073814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited defects in cytochrome c oxidase (COX) are associated with a substantial subset of diseases adversely affecting the structure and function of the mitochondrial respiratory chain. This multi-subunit enzyme consists of 14 subunits and numerous cofactors, and it requires the function of some 30 proteins to assemble. COX assembly was first shown to be the primary defect in the majority of COX deficiencies 36 years ago. Over the last three decades, most COX assembly genes have been identified in the yeast Saccharomyces cerevisiae, and studies in yeast have proven instrumental in testing the impact of mutations identified in patients with a specific COX deficiency. The advent of accessible genome-wide sequencing capabilities has led to more patient mutations being identified, with the subsequent identification of several new COX assembly factors. However, the lack of genotype-phenotype correlations and the large number of genes involved in generating a functional COX mean that functional studies must be undertaken to assign a genetic variant as being causal. In this review, we provide a brief overview of the use of yeast as a model system and briefly compare the COX assembly process in yeast and humans. We focus primarily on the studies in yeast that have allowed us to both identify new COX assembly factors and to demonstrate the pathogenicity of a subset of the mutations that have been identified in patients with inherited defects in COX. We conclude with an overview of the areas in which studies in yeast are likely to continue to contribute to progress in understanding disease arising from inherited COX deficiencies.
Collapse
Affiliation(s)
- Chenelle A. Caron-Godon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Emma Collington
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Jessica L. Wolf
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Genna Coletta
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - D. Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Poerschke S, Oeljeklaus S, Cruz-Zaragoza LD, Schenzielorz A, Dahal D, Hillen HS, Das H, Kremer LS, Valpadashi A, Breuer M, Sattmann J, Richter-Dennerlein R, Warscheid B, Dennerlein S, Rehling P. Identification of TMEM126A as OXA1L-interacting protein reveals cotranslational quality control in mitochondria. Mol Cell 2024; 84:345-358.e5. [PMID: 38199007 PMCID: PMC10805001 DOI: 10.1016/j.molcel.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Cellular proteostasis requires transport of polypeptides across membranes. Although defective transport processes trigger cytosolic rescue and quality control mechanisms that clear translocases and membranes from unproductive cargo, proteins that are synthesized within mitochondria are not accessible to these mechanisms. Mitochondrial-encoded proteins are inserted cotranslationally into the inner membrane by the conserved insertase OXA1L. Here, we identify TMEM126A as a OXA1L-interacting protein. TMEM126A associates with mitochondrial ribosomes and translation products. Loss of TMEM126A leads to the destabilization of mitochondrial translation products, triggering an inner membrane quality control process, in which newly synthesized proteins are degraded by the mitochondrial iAAA protease. Our data reveal that TMEM126A cooperates with OXA1L in protein insertion into the membrane. Upon loss of TMEM126A, the cargo-blocked OXA1L insertase complexes undergo proteolytic clearance by the iAAA protease machinery together with its cargo.
Collapse
Affiliation(s)
- Sabine Poerschke
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074 Wuerzburg, Germany
| | | | - Alexander Schenzielorz
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University of Freiburg, 79104 Freiburg, Germany
| | - Drishan Dahal
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Hauke Sven Hillen
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Hirak Das
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074 Wuerzburg, Germany
| | - Laura Sophie Kremer
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Anusha Valpadashi
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Mirjam Breuer
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Johannes Sattmann
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Ricarda Richter-Dennerlein
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Goettingen Center for Molecular Biosciences, University of Goettingen, 37077 Goettingen, Germany
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074 Wuerzburg, Germany; Cluster of Excellence CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany.
| | - Peter Rehling
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Goettingen Center for Molecular Biosciences, University of Goettingen, 37077 Goettingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Goettingen, Germany; Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany.
| |
Collapse
|
3
|
Homberg B, Rehling P, Cruz-Zaragoza LD. The multifaceted mitochondrial OXA insertase. Trends Cell Biol 2023; 33:765-772. [PMID: 36863885 DOI: 10.1016/j.tcb.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and transported into mitochondria by protein translocases. Yet, mitochondria contain their own genome and gene expression system, which generates proteins that are inserted in the inner membrane by the oxidase assembly (OXA) insertase. OXA contributes to targeting proteins from both genetic origins. Recent data provides insights into how OXA cooperates with the mitochondrial ribosome during synthesis of mitochondrial-encoded proteins. A picture of OXA emerges in which it coordinates insertion of OXPHOS core subunits and their assembly into protein complexes but also participates in the biogenesis of select imported proteins. These functions position the OXA as a multifunctional protein insertase that facilitates protein transport, assembly, and stability at the inner membrane.
Collapse
Affiliation(s)
- Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), 37073 University of Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Science, 37077 Göttingen, Germany.
| | | |
Collapse
|
4
|
Kan KT, Nelson MG, Grant CM, Hubbard SJ, Lu H. Understanding the Role of Yeast Yme1 in Mitochondrial Function Using Biochemical and Proteomics Analyses. Int J Mol Sci 2022; 23:ijms232213694. [PMID: 36430179 PMCID: PMC9694332 DOI: 10.3390/ijms232213694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial i-AAA proteinase Yme1 is a multifunctional protein that plays important roles in maintaining mitochondrial protein homeostasis and regulating biogenesis and function of mitochondrial proteins. However, due to the complex interplay of mitochondria and the multifunctional nature of Yme1, how Yme1 affects mitochondrial function and protein homeostasis is still poorly understood. In this study, we investigated how YME1 deletion affects yeast Saccharomyces cerevisiae growth, chronological life span, mitochondrial protein homeostasis and function, with a focus on the mitochondrial oxidative phosphorylation (OXPHOS) complexes. Our results show that whilst the YME1 deleted cells grow poorly under respiratory conditions, they grow similar to wild-type yeast under fermentative conditions. However, the chronological life span is impaired, indicating that Yme1 plays a key role in longevity. Using highly enriched mitochondrial extract and proteomic analysis, we show that the abundances of many mitochondrial proteins are altered by YME1 deletion. Several components of the respiratory chain complexes II, III, IV and V were significantly decreased, suggesting that Yme1 plays an important role in maintaining the level and function of complexes II-V. This result was confirmed using blue native-PAGE and in-solution-based enzyme activity assays. Taken together, this study shows that Yme1 plays an important role in the chronological life span and mitochondrial protein homeostasis and has deciphered its function in maintaining the activity of mitochondrial OXPHOS complexes.
Collapse
Affiliation(s)
| | | | | | | | - Hui Lu
- Correspondence: ; Tel.: +44-161-2751553; Fax: +44-161-3065201
| |
Collapse
|
5
|
Dimogkioka AR, Lees J, Lacko E, Tokatlidis K. Protein import in mitochondria biogenesis: guided by targeting signals and sustained by dedicated chaperones. RSC Adv 2021; 11:32476-32493. [PMID: 35495482 PMCID: PMC9041937 DOI: 10.1039/d1ra04497d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/25/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondria have a central role in cellular metabolism; they are responsible for the biosynthesis of amino acids, lipids, iron-sulphur clusters and regulate apoptosis. About 99% of mitochondrial proteins are encoded by nuclear genes, so the biogenesis of mitochondria heavily depends on protein import pathways into the organelle. An intricate system of well-studied import machinery facilitates the import of mitochondrial proteins. In addition, folding of the newly synthesized proteins takes place in a busy environment. A system of folding helper proteins, molecular chaperones and co-chaperones, are present to maintain proper conformation and thus avoid protein aggregation and premature damage. The components of the import machinery are well characterised, but the targeting signals and how they are recognised and decoded remains in some cases unclear. Here we provide some detail on the types of targeting signals involved in the protein import process. Furthermore, we discuss the very elaborate chaperone systems of the intermembrane space that are needed to overcome the particular challenges for the folding process in this compartment. The mechanisms that sustain productive folding in the face of aggregation and damage in mitochondria are critical components of the stress response and play an important role in cell homeostasis.
Collapse
Affiliation(s)
- Anna-Roza Dimogkioka
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Jamie Lees
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Erik Lacko
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| |
Collapse
|
6
|
Edwards R, Gerlich S, Tokatlidis K. The biogenesis of mitochondrial intermembrane space proteins. Biol Chem 2021; 401:737-747. [PMID: 32061164 DOI: 10.1515/hsz-2020-0114] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023]
Abstract
The mitochondrial intermembrane space (IMS) houses a large spectrum of proteins with distinct and critical functions. Protein import into this mitochondrial sub-compartment is underpinned by an intriguing variety of pathways, many of which are still poorly understood. The constricted volume of the IMS and the topological segregation by the inner membrane cristae into a bulk area surrounded by the boundary inner membrane and the lumen within the cristae is an important factor that adds to the complexity of the protein import, folding and assembly processes. We discuss the main import pathways into the IMS, but also how IMS proteins are degraded or even retro-translocated to the cytosol in an integrated network of interactions that is necessary to maintain a healthy balance of IMS proteins under physiological and cellular stress conditions. We conclude this review by highlighting new and exciting perspectives in this area with a view to develop a better understanding of yet unknown, likely unconventional import pathways, how presequence-less proteins can be targeted and the basis for dual localisation in the IMS and the cytosol. Such knowledge is critical to understanding the dynamic changes of the IMS proteome in response to stress, and particularly important for maintaining optimal mitochondrial fitness.
Collapse
Affiliation(s)
- Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ Scotland, UK
| | - Sarah Gerlich
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ Scotland, UK.,Department for Chemistry, Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ Scotland, UK
| |
Collapse
|
7
|
Singh AP, Salvatori R, Aftab W, Kohler A, Carlström A, Forne I, Imhof A, Ott M. Molecular Connectivity of Mitochondrial Gene Expression and OXPHOS Biogenesis. Mol Cell 2020; 79:1051-1065.e10. [PMID: 32877643 DOI: 10.1016/j.molcel.2020.07.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023]
Abstract
Mitochondria contain their own gene expression systems, including membrane-bound ribosomes dedicated to synthesizing a few hydrophobic subunits of the oxidative phosphorylation (OXPHOS) complexes. We used a proximity-dependent biotinylation technique, BioID, coupled with mass spectrometry to delineate in baker's yeast a comprehensive network of factors involved in biogenesis of mitochondrial encoded proteins. This mitochondrial gene expression network (MiGENet) encompasses proteins involved in transcription, RNA processing, translation, or protein biogenesis. Our analyses indicate the spatial organization of these processes, thereby revealing basic mechanistic principles and the proteins populating strategically important sites. For example, newly synthesized proteins are directly handed over to ribosomal tunnel exit-bound factors that mediate membrane insertion, co-factor acquisition, or their mounting into OXPHOS complexes in a special early assembly hub. Collectively, the data reveal the connectivity of mitochondrial gene expression, reflecting a unique tailoring of the mitochondrial gene expression system.
Collapse
Affiliation(s)
- Abeer Prakash Singh
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Roger Salvatori
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Wasim Aftab
- BioMedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany; Graduate School for Quantitative Biosciences (QBM), Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Andreas Kohler
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ignasi Forne
- BioMedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- BioMedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
8
|
Kovalinka T, Pánek T, Kováčová B, Horváth A. Orientation of FtsH protease homologs in Trypanosoma brucei inner mitochondrial membrane and its evolutionary implications. Mol Biochem Parasitol 2020; 238:111282. [DOI: 10.1016/j.molbiopara.2020.111282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/10/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
|
9
|
Keerthiraju E, Du C, Tucker G, Greetham D. A Role for COX20 in Tolerance to Oxidative Stress and Programmed Cell Death in Saccharomyces cerevisiae. Microorganisms 2019; 7:microorganisms7110575. [PMID: 31752220 PMCID: PMC6920987 DOI: 10.3390/microorganisms7110575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/28/2022] Open
Abstract
Industrial production of bioethanol from lignocellulosic materials (LCM′s) is reliant on a microorganism being tolerant to the stresses inherent to fermentation. Previous work has highlighted the importance of a cytochrome oxidase chaperone gene (COX20) in improving yeast tolerance to acetic acid, a common inhibitory compound produced during pre-treatment of LCM’s. The presence of acetic acid has been shown to induce oxidative stress and programmed cell death, so the role of COX20 in oxidative stress was determined. Analysis using flow cytometry revealed that COX20 expression was associated with reduced levels of reactive oxygen species (ROS) in hydrogen peroxide and metal-induced stress, and there was a reduction in apoptotic and necrotic cells when compared with a strain without COX20. Results on the functionality of COX20 have revealed that overexpression of COX20 induced respiratory growth in Δimp1 and Δcox18, two genes whose presence is essential for yeast respiratory growth. COX20 also has a role in protecting the yeast cell against programmed cell death.
Collapse
Affiliation(s)
- Ethiraju Keerthiraju
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
| | - Chenyu Du
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
| | - Gregory Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
| | - Darren Greetham
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
- Correspondence: ; Tel.: +44-1484-472378
| |
Collapse
|
10
|
Chai YL, Xing H, Chong JR, Francis PT, Ballard CG, Chen CP, Lai MKP. Mitochondrial Translocase of the Outer Membrane Alterations May Underlie Dysfunctional Oxidative Phosphorylation in Alzheimer's Disease. J Alzheimers Dis 2019; 61:793-801. [PMID: 29254089 DOI: 10.3233/jad-170613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The translocase of the outer membrane (TOM) is a vital mitochondrial transport system facilitating the importation of nuclear encoded proteins into the organelle. While mitochondrial dysfunction, including perturbation of oxidative phosphorylation (OXPHOS) complex, is evident in Alzheimer's disease (AD), it remains unclear whether the observed OXPHOS deficits may be associated with TOM alterations. OBJECTIVES To correlate TOM subunits with OXPHOS complex proteins in AD. METHODS Postmortem neocortex (BA40) from AD and age-matched controls were processed to obtain mitochondrial enriched homogenates for the measurement of Tom20, Tom22, Tom40, and Tom70 as well as components of OXPHOS complex I-V by immunoblotting. RESULTS Tom20 and Tom70 immunoreactivities were significantly reduced in AD, as were components of OXPHOS complex I and III. Both Tom20 and Tom70 positively correlated with complex III and V, while Tom20 also correlated withcomplex IV. CONCLUSION Reductions in certain TOM subunits and their correlations with specific OXPHOS complex proteins suggest that an impaired mitochondrial transportation system may contribute to previously observed oxidative phosphorylation deficits in AD. Follow-up studies are needed to corroborate the present correlative study.
Collapse
Affiliation(s)
- Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Huayang Xing
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Paul T Francis
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Clive G Ballard
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK.,University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| |
Collapse
|
11
|
Lorenzi I, Oeljeklaus S, Aich A, Ronsör C, Callegari S, Dudek J, Warscheid B, Dennerlein S, Rehling P. The mitochondrial TMEM177 associates with COX20 during COX2 biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:323-333. [PMID: 29154948 PMCID: PMC5764226 DOI: 10.1016/j.bbamcr.2017.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation.
Collapse
Affiliation(s)
- Isotta Lorenzi
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Silke Oeljeklaus
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Christin Ronsör
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Jan Dudek
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Bettina Warscheid
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany.
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
12
|
Aich A, Wang C, Chowdhury A, Ronsör C, Pacheu-Grau D, Richter-Dennerlein R, Dennerlein S, Rehling P. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis. eLife 2018; 7:32572. [PMID: 29381136 PMCID: PMC5809144 DOI: 10.7554/elife.32572] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/14/2018] [Indexed: 12/25/2022] Open
Abstract
Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines.
Collapse
Affiliation(s)
- Abhishek Aich
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | - Cong Wang
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | - Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | - Christin Ronsör
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | | | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
13
|
Jett KA, Leary SC. Building the Cu A site of cytochrome c oxidase: A complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins. J Biol Chem 2017; 293:4644-4652. [PMID: 28972150 DOI: 10.1074/jbc.r117.816132] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c oxidase (COX) was initially purified more than 70 years ago. A tremendous amount of insight into its structure and function has since been gleaned from biochemical, biophysical, genetic, and molecular studies. As a result, we now appreciate that COX relies on its redox-active metal centers (heme a and a3, CuA and CuB) to reduce oxygen and pump protons in a reaction essential for most eukaryotic life. Questions persist, however, about how individual structural subunits are assembled into a functional holoenzyme. Here, we focus on what is known and what remains to be learned about the accessory proteins that facilitate CuA site maturation.
Collapse
Affiliation(s)
- Kimberly A Jett
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Scot C Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
14
|
Levytskyy RM, Bohovych I, Khalimonchuk O. Metalloproteases of the Inner Mitochondrial Membrane. Biochemistry 2017; 56:4737-4746. [PMID: 28806058 DOI: 10.1021/acs.biochem.7b00663] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The inner mitochondrial membrane (IM) is among the most protein-rich cellular compartments. The metastable IM subproteome where the concentration of proteins is approaching oversaturation creates a challenging protein folding environment with a high probability of protein malfunction or aggregation. Failure to maintain protein homeostasis in such a setting can impair the functional integrity of the mitochondria and drive clinical manifestations. The IM is equipped with a series of highly conserved, proteolytic complexes dedicated to the maintenance of normal protein homeostasis within this mitochondrial subcompartment. Particularly important is a group of membrane-anchored metallopeptidases commonly known as m-AAA and i-AAA proteases, and the ATP-independent Oma1 protease. Herein, we will summarize the current biochemical knowledge of these proteolytic machines and discuss recent advances in our understanding of mechanistic aspects of their functioning.
Collapse
Affiliation(s)
- Roman M Levytskyy
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0664, United States
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0664, United States
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0664, United States.,Nebraska Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0662, United States.,Fred & Pamela Buffett Cancer Center , Omaha, Nebraska 68106, United States
| |
Collapse
|
15
|
Ribosome-Associated Mba1 Escorts Cox2 from Insertion Machinery to Maturing Assembly Intermediates. Mol Cell Biol 2016; 36:2782-2793. [PMID: 27550809 PMCID: PMC5086520 DOI: 10.1128/mcb.00361-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/08/2016] [Accepted: 08/17/2016] [Indexed: 01/25/2023] Open
Abstract
The three conserved core subunits of the cytochrome c oxidase are encoded by mitochondria in close to all eukaryotes. The Cox2 subunit spans the inner membrane twice, exposing the N and C termini to the intermembrane space. For this, the N terminus is exported cotranslationally by Oxa1 and subsequently undergoes proteolytic maturation in Saccharomyces cerevisiae. Little is known about the translocation of the C terminus, but Cox18 has been identified to be a critical protein in this process. Here we find that the scaffold protein Cox20, which promotes processing of Cox2, is in complex with the ribosome receptor Mba1 and translating mitochondrial ribosomes in a Cox2-dependent manner. The Mba1-Cox20 complex accumulates when export of the C terminus of Cox2 is blocked by the loss of the Cox18 protein. While Cox20 engages with Cox18, Mba1 is no longer present at this stage. Our analyses indicate that Cox20 associates with nascent Cox2 and Mba1 to promote Cox2 maturation cotranslationally. We suggest that Mba1 stabilizes the Cox20-ribosome complex and supports the handover of Cox2 to the Cox18 tail export machinery.
Collapse
|
16
|
Manganas P, MacPherson L, Tokatlidis K. Oxidative protein biogenesis and redox regulation in the mitochondrial intermembrane space. Cell Tissue Res 2016; 367:43-57. [PMID: 27632163 PMCID: PMC5203823 DOI: 10.1007/s00441-016-2488-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Mitochondria are organelles that play a central role in cellular metabolism, as they are responsible for processes such as iron/sulfur cluster biogenesis, respiration and apoptosis. Here, we describe briefly the various protein import pathways for sorting of mitochondrial proteins into the different subcompartments, with an emphasis on the targeting to the intermembrane space. The discovery of a dedicated redox-controlled pathway in the intermembrane space that links protein import to oxidative protein folding raises important questions on the redox regulation of this process. We discuss the salient features of redox regulation in the intermembrane space and how such mechanisms may be linked to the more general redox homeostasis balance that is crucial not only for normal cell physiology but also for cellular dysfunction.
Collapse
Affiliation(s)
- Phanee Manganas
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lisa MacPherson
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
17
|
Smakowska E, Skibior-Blaszczyk R, Czarna M, Kolodziejczak M, Kwasniak-Owczarek M, Parys K, Funk C, Janska H. Lack of FTSH4 Protease Affects Protein Carbonylation, Mitochondrial Morphology, and Phospholipid Content in Mitochondria of Arabidopsis: New Insights into a Complex Interplay. PLANT PHYSIOLOGY 2016; 171:2516-35. [PMID: 27297677 PMCID: PMC4972270 DOI: 10.1104/pp.16.00370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/06/2016] [Indexed: 05/04/2023]
Abstract
FTSH4 is one of the inner membrane-embedded ATP-dependent metalloproteases in mitochondria of Arabidopsis (Arabidopsis thaliana). In mutants impaired to express FTSH4, carbonylated proteins accumulated and leaf morphology was altered when grown under a short-day photoperiod, at 22°C, and a long-day photoperiod, at 30°C. To provide better insight into the function of FTSH4, we compared the mitochondrial proteomes and oxyproteomes of two ftsh4 mutants and wild-type plants grown under conditions inducing the phenotypic alterations. Numerous proteins from various submitochondrial compartments were observed to be carbonylated in the ftsh4 mutants, indicating a widespread oxidative stress. One of the reasons for the accumulation of carbonylated proteins in ftsh4 was the limited ATP-dependent proteolytic capacity of ftsh4 mitochondria, arising from insufficient ATP amount, probably as a result of an impaired oxidative phosphorylation (OXPHOS), especially complex V. In ftsh4, we further observed giant, spherical mitochondria coexisting among normal ones. Both effects, the increased number of abnormal mitochondria and the decreased stability/activity of the OXPHOS complexes, were probably caused by the lower amount of the mitochondrial membrane phospholipid cardiolipin. We postulate that the reduced cardiolipin content in ftsh4 mitochondria leads to perturbations within the OXPHOS complexes, generating more reactive oxygen species and less ATP, and to the deregulation of mitochondrial dynamics, causing in consequence the accumulation of oxidative damage.
Collapse
Affiliation(s)
- Elwira Smakowska
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland (E.S., R.S.-B, M.C., M.K., M.K.-O., K.P., H.J.); andDepartment of Chemistry, Umeå University, 901 87 Umea, Sweden (C.F.)
| | - Renata Skibior-Blaszczyk
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland (E.S., R.S.-B, M.C., M.K., M.K.-O., K.P., H.J.); andDepartment of Chemistry, Umeå University, 901 87 Umea, Sweden (C.F.)
| | - Malgorzata Czarna
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland (E.S., R.S.-B, M.C., M.K., M.K.-O., K.P., H.J.); andDepartment of Chemistry, Umeå University, 901 87 Umea, Sweden (C.F.)
| | - Marta Kolodziejczak
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland (E.S., R.S.-B, M.C., M.K., M.K.-O., K.P., H.J.); andDepartment of Chemistry, Umeå University, 901 87 Umea, Sweden (C.F.)
| | - Malgorzata Kwasniak-Owczarek
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland (E.S., R.S.-B, M.C., M.K., M.K.-O., K.P., H.J.); andDepartment of Chemistry, Umeå University, 901 87 Umea, Sweden (C.F.)
| | - Katarzyna Parys
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland (E.S., R.S.-B, M.C., M.K., M.K.-O., K.P., H.J.); andDepartment of Chemistry, Umeå University, 901 87 Umea, Sweden (C.F.)
| | - Christiane Funk
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland (E.S., R.S.-B, M.C., M.K., M.K.-O., K.P., H.J.); andDepartment of Chemistry, Umeå University, 901 87 Umea, Sweden (C.F.)
| | - Hanna Janska
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland (E.S., R.S.-B, M.C., M.K., M.K.-O., K.P., H.J.); andDepartment of Chemistry, Umeå University, 901 87 Umea, Sweden (C.F.)
| |
Collapse
|
18
|
Gaspard GJ, McMaster CR. Cardiolipin metabolism and its causal role in the etiology of the inherited cardiomyopathy Barth syndrome. Chem Phys Lipids 2015; 193:1-10. [PMID: 26415690 DOI: 10.1016/j.chemphyslip.2015.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/11/2023]
Abstract
Cardiolipin (CL) is a phospholipid with many unique characteristics. CL is synthesized in the mitochondria and resides almost exclusively within the mitochondrial inner membrane. Unlike most phospholipids that have two fatty acyl chains, CL possesses four fatty acyl chains resulting in unique biophysical characteristics that impact several biological processes including membrane fission and fusion. In addition, several proteins directly bind CL including proteins within the electron transport chain, the ADP/ATP carrier, and proteins that mediate mitophagy. Tafazzin is an enzyme that remodels saturated fatty acyl chains within CL to unsaturated fatty acyl chains, loss of function mutations in the TAZ gene encoding tafazzin are causal for the inherited cardiomyopathy Barth syndrome. Cells from Barth syndrome patients as well as several models of Barth have reduced mitochondrial functions including impaired electron transport chain function and increased reactive oxygen species (ROS) production. Mitochondria in cells from Barth syndrome patients, as well as several model organism mimics of Barth syndrome, are large and lack cristae consistent with the recently described role of CL participating in the generation of mitochondrial membrane contact sites. Cells with an inactive TAZ gene have also been shown to have a decreased capacity to undergo mitophagy when faced with stresses such as increased ROS or decreased mitochondrial quality control. This review describes CL metabolism and how defects in CL metabolism cause Barth syndrome, the etiology of Barth syndrome, and known modifiers of Barth syndrome phenotypes some of which could be explored for their amelioration of Barth syndrome in higher organisms.
Collapse
Affiliation(s)
- Gerard J Gaspard
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Christopher R McMaster
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Departments of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
19
|
Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies. Cell Metab 2015; 21:823-33. [PMID: 25959673 DOI: 10.1016/j.cmet.2015.04.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/03/2015] [Accepted: 04/04/2015] [Indexed: 11/20/2022]
Abstract
Three mitochondria-encoded subunits form the catalytic core of cytochrome c oxidase, the terminal enzyme of the respiratory chain. COX1 and COX2 contain heme and copper redox centers, which are integrated during assembly of the enzyme. Defects in this process lead to an enzyme deficiency and manifest as mitochondrial disorders in humans. Here we demonstrate that COA6 is specifically required for COX2 biogenesis. Absence of COA6 leads to fast turnover of newly synthesized COX2 and a concomitant reduction in cytochrome c oxidase levels. COA6 interacts transiently with the copper-containing catalytic domain of newly synthesized COX2. Interestingly, similar to the copper metallochaperone SCO2, loss of COA6 causes cardiomyopathy in humans. We show that COA6 and SCO2 interact and that corresponding pathogenic mutations in each protein affect complex formation. Our analyses define COA6 as a constituent of the mitochondrial copper relay system, linking defects in COX2 metallation to cardiac cytochrome c oxidase deficiency.
Collapse
|
20
|
Abstract
The YidC/Alb3/Oxa1 family functions in the insertion and folding of proteins in the bacterial cytoplasmic membrane, the chloroplast thylakoid membrane, and the mitochondrial inner membrane. All members share a conserved region composed of five transmembrane regions. These proteins mediate membrane insertion of an assorted group of proteins, ranging from respiratory subunits in the mitochondria and light-harvesting chlorophyll-binding proteins in chloroplasts to ATP synthase subunits in bacteria. This review discusses the YidC/Alb3/Oxa1 protein family as well as their function in membrane insertion and two new structures of the bacterial YidC, which suggest a mechanism for membrane insertion by this family of insertases.
Collapse
Affiliation(s)
- Seth W Hennon
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Raunak Soman
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Lu Zhu
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Ross E Dalbey
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
21
|
Ostojić J, Glatigny A, Herbert CJ, Dujardin G, Bonnefoy N. Does the study of genetic interactions help predict the function of mitochondrial proteins in Saccharomyces cerevisiae? Biochimie 2013; 100:27-37. [PMID: 24262604 DOI: 10.1016/j.biochi.2013.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Mitochondria are complex organelles of eukaryotic cells that contain their own genome, encoding key subunits of the respiratory complexes. The successive steps of mitochondrial gene expression are intimately linked, and are under the control of a large number of nuclear genes encoding factors that are imported into mitochondria. Investigating the relationships between these genes and their interaction networks, and whether they reveal direct or indirect partners, can shed light on their role in mitochondrial biogenesis, as well as identify new actors in this process. These studies, mainly developed in yeasts, are significant because mammalian equivalents of such yeast genes are candidate genes in mitochondrial pathologies. In practice, studies of physical, chemical and genetic interactions can be undertaken. The search for genetic interactions, either aggravating or alleviating the phenotype of the starting mutants, has proved to be particularly powerful in yeast since even subtle changes in respiratory phenotypes can be screened in a very efficient way. In addition, several high throughput genetic approaches have recently been developed. In this review we analyze the genetic network of three genes involved in different steps of mitochondrial gene expression, from the transcription and translation of mitochondrial RNAs to the insertion of newly synthesized proteins into the inner mitochondrial membrane, and we examine their relevance to our understanding of mitochondrial biogenesis. We find that these genetic interactions are seldom redundant with physical interactions, and thus bring a considerable amount of original and significant information as well as open new areas of research.
Collapse
Affiliation(s)
- Jelena Ostojić
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Annie Glatigny
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Christopher J Herbert
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Geneviève Dujardin
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
22
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
23
|
Benz M, Soll J, Ankele E. Arabidopsis thaliana Oxa proteins locate to mitochondria and fulfill essential roles during embryo development. PLANTA 2013; 237:573-88. [PMID: 23179441 DOI: 10.1007/s00425-012-1793-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/19/2012] [Indexed: 05/12/2023]
Abstract
Members of the Alb3/Oxa1/YidC protein family function as insertases in chloroplasts, mitochondria, and bacteria. Due to independent gene duplications, all organisms possess two isoforms, Oxa1 and Oxa2 except gram-negative bacteria, which encode only for one YidC-like protein. The genome of Arabidopsis thaliana however, encodes for eight different isoforms. The localization of three of these isoforms has been identified earlier: Alb3 and Alb4 located in thylakoid membranes of chloroplasts while AtOxa1 was found in the inner membrane of mitochondria. Here, we show that the second Oxa1 protein, Oxa1b as well as two Oxa2 proteins are also localized in mitochondria. The last two isoforms most likely encode truncated versions of Oxa-like proteins, which might be inoperable pseudogenes. Homozygous mutant lines were only obtained for Oxa1b, which did not reveal any significant phenotypes, while T-DNA insertion lines of Oxa1a, Oxa2a and Oxa2b resulted only in heterozygous plants indicating that these genes are indispensable for plant development. Phenotyping heterozygous lines showed that embryos are either retarded in growth, display an albino phenotype or embryo formation was entirely abolished suggesting that Oxa1a and both Oxa2 proteins function in embryo formation although at different developmental stages as indicated by the various phenotypes observed.
Collapse
Affiliation(s)
- Monique Benz
- Energy Biosciences Institute, University of California, 2151 Berkeley Way, Berkeley, CA 94720-5230, USA.
| | | | | |
Collapse
|
24
|
Schreiner B, Westerburg H, Forné I, Imhof A, Neupert W, Mokranjac D. Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria. Mol Biol Cell 2012; 23:4335-46. [PMID: 22993211 PMCID: PMC3496608 DOI: 10.1091/mbc.e12-05-0420] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We show here that the i-AAA protease Yme1 has a role in folding of proteins in the intermembrane space of mitochondria and identify a number of endogenous proteins that aggregate in its absence. Thus the function of Yme1 in mitochondrial proteostasis extends beyond its role in proteolytic removal of misfolded and nonassembled inner membrane proteins. The vast majority of mitochondrial proteins are synthesized in the cytosol and transported into the organelle in a largely, if not completely, unfolded state. The proper function of mitochondria thus depends on folding of several hundreds of proteins in the various subcompartments of the organelle. Whereas folding of proteins in the mitochondrial matrix is supported by members of several chaperone families, very little is known about folding of proteins in the intermembrane space (IMS). We targeted dihydrofolate reductase (DHFR) as a model substrate to the IMS of yeast mitochondria and analyzed its folding. DHFR can fold in this compartment, and its aggregation upon heat shock can be prevented in an ATP-dependent manner. Yme1, an AAA (ATPases associated with diverse cellular activities) protease of the IMS, prevented aggregation of DHFR. Analysis of protein aggregates in mitochondria lacking Yme1 revealed the presence of a number of proteins involved in the establishment of mitochondrial ultrastructure, lipid metabolism, protein import, and respiratory growth. These findings explain the pleiotropic effects of deletion of YME1 and suggest an important role for Yme1 as a folding assistant, in addition to its proteolytic function, in the protein homeostasis of mitochondria
Collapse
Affiliation(s)
- Bernadette Schreiner
- Adolf Butenandt Institute, Physiological Chemistry, University of Munich, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Stoldt S, Wenzel D, Hildenbeutel M, Wurm CA, Herrmann JM, Jakobs S. The inner-mitochondrial distribution of Oxa1 depends on the growth conditions and on the availability of substrates. Mol Biol Cell 2012; 23:2292-301. [PMID: 22513091 PMCID: PMC3374748 DOI: 10.1091/mbc.e11-06-0538] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 04/12/2012] [Accepted: 04/13/2012] [Indexed: 11/16/2022] Open
Abstract
The Oxa1 protein is a well-conserved integral protein of the inner membrane of mitochondria. It mediates the insertion of both mitochondrial- and nuclear-encoded proteins from the matrix into the inner membrane. We investigated the distribution of budding yeast Oxa1 between the two subdomains of the contiguous inner membrane--the cristae membrane (CM) and the inner boundary membrane (IBM)--under different physiological conditions. We found that under fermentable growth conditions, Oxa1 is enriched in the IBM, whereas under nonfermentable (respiratory) growth conditions, it is predominantly localized in the CM. The enrichment of Oxa1 in the CM requires mitochondrial translation; similarly, deletion of the ribosome-binding domain of Oxa1 prevents an enrichment of Oxa1 in the CM. The predominant localization in the IBM under fermentable growth conditions is prevented by inhibiting mitochondrial protein import. Furthermore, overexpression of the nuclear-encoded Oxa1 substrate Mdl1 shifts the distribution of Oxa1 toward the IBM. Apparently, the availability of nuclear- and mitochondrial-encoded substrates influences the inner-membrane distribution of Oxa1. Our findings show that the distribution of Oxa1 within the inner membrane is dynamic and adapts to different physiological needs.
Collapse
Affiliation(s)
- Stefan Stoldt
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:883-97. [PMID: 21958598 PMCID: PMC3262112 DOI: 10.1016/j.bbabio.2011.09.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Flavia Fontanesi
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
27
|
Abstract
Genetic mapping methods typically rely upon genotyping many individuals in a mapping population. In contrast, bulk segregant analysis looks for biases in genotype in phenotyped pools of segregants. For relatively strong and genetically simple traits, it can be a fast, inexpensive approach. Although it is technically possible to use many genotyping platforms, microarray-based methods are convenient for their genome-wide coverage, ease of use, and quantitative output. Also, precise knowledge of polymorphic sites is not required. I present two methods for bulk segregant analysis using microarrays, one based on hybridization differences between polymorphisms, and the other using an enzymatic method for enriching identical by descent segments of the genome. The first method requires specialized array platforms, while the second, genomic mismatch scanning (GMS), is compatible with any microarray. Although the methods presented are with yeast, most steps are equivalent for other organisms.
Collapse
|
28
|
Multiple roles of the Cox20 chaperone in assembly of Saccharomyces cerevisiae cytochrome c oxidase. Genetics 2011; 190:559-67. [PMID: 22095077 DOI: 10.1534/genetics.111.135665] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Cox2 subunit of Saccharomyces cerevisiae cytochrome c oxidase is synthesized in the mitochondrial matrix as a precursor whose leader peptide is rapidly processed by the inner membrane protease following translocation to the intermembrane space. Processing is chaperoned by Cox20, an integral inner membrane protein whose hydrophilic domains are located in the intermembrane space, and Cox20 remains associated with mature, unassembled Cox2. The Cox2 C-tail domain is exported post-translationally by the highly conserved translocase Cox18 and associated proteins. We have found that Cox20 is required for efficient export of the Cox2 C-tail. Furthermore, Cox20 interacts by co-immune precipitation with Cox18, and this interaction requires the presence of Cox2. We therefore propose that Cox20 binding to Cox2 on the trans side of the inner membrane accelerates dissociation of newly exported Cox2 from the Cox18 translocase, promoting efficient cycling of the translocase. The requirement for Cox20 in cytochrome c oxidase assembly and respiratory growth is partially bypassed by yme1, mgr1 or mgr3 mutations, each of which reduce i-AAA protease activity in the intermembrane space. Thus, Cox20 also appears to stabilize unassembled Cox2 against degradation by the i-AAA protease. Pre-Cox2 leader peptide processing by Imp1 occurs in the absence of Cox20 and i-AAA protease activity, but is greatly reduced in efficiency. Under these conditions some mature Cox2 is assembled into cytochrome c oxidase allowing weak respiratory growth. Thus, the Cox20 chaperone has important roles in leader peptide processing, C-tail export, and stabilization of Cox2.
Collapse
|
29
|
Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. EUKARYOTIC CELL 2011; 10:1376-83. [PMID: 21926328 DOI: 10.1128/ec.05184-11] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, mitochondria have been identified as important contributors to the virulence and drug tolerance of human fungal pathogens. In different scenarios, either hypo- or hypervirulence can result from changes in mitochondrial function. Similarly, specific mitochondrial mutations lead to either sensitivity or resistance to antifungal drugs. Here, we provide a synthesis of this emerging field, proposing that mitochondrial function in membrane lipid homeostasis is the common denominator underlying the observed effects of mitochondria in drug tolerance (both sensitivity and resistance). We discuss how the contrasting effects of mitochondrial dysfunction on fungal drug tolerance and virulence could be explained and the potential for targeting mitochondrial factors for future antifungal drug development.
Collapse
|
30
|
Funes S, Kauff F, van der Sluis EO, Ott M, Herrmann JM. Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts. Biol Chem 2011; 392:13-9. [PMID: 21194367 DOI: 10.1515/bc.2011.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Members of the YidC/Oxa1/Alb3 protein family facilitate the insertion, folding and assembly of proteins of the inner membranes of bacteria and mitochondria and the thylakoid membrane of plastids. All homologs share a conserved hydrophobic core region comprising five transmembrane domains. On the basis of phylogenetic analyses, six subgroups of the family can be distinguished which presumably arose from three independent gene duplications followed by functional specialization. During evolution of bacteria, mitochondria and chloroplasts, subgroup-specific regions were added to the core domain to facilitate the association with ribosomes or other components contributing to the substrate spectrum of YidC/Oxa1/Alb3 proteins.
Collapse
Affiliation(s)
- Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico D.F. 04510, Mexico
| | | | | | | | | |
Collapse
|
31
|
Stiburek L, Zeman J. Assembly factors and ATP-dependent proteases in cytochrome c oxidase biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1149-58. [PMID: 20398622 DOI: 10.1016/j.bbabio.2010.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 03/14/2010] [Accepted: 04/07/2010] [Indexed: 12/29/2022]
Abstract
Eukaryotic cytochrome c oxidase (CcO), the terminal enzyme of the energy-transducing mitochondrial electron transport chain is a hetero-oligomeric, heme-copper oxidase complex composed of both mitochondrially and nuclear-encoded subunits. It is embedded in the inner mitochondrial membrane where it couples the transfer of electrons from reduced cytochrome c to molecular oxygen with vectorial proton translocation across the membrane. The biogenesis of CcO is a complicated sequential process that requires numerous specific accessory proteins, so-called assembly factors, which include translational activators, translocases, molecular chaperones, copper metallochaperones and heme a biosynthetic enzymes. Besides these CcO-specific protein factors, the correct biogenesis of CcO requires an even greater number of proteins with much broader substrate specificities. Indeed, growing evidence indicates that mitochondrial ATP-dependent proteases might play an important role in CcO biogenesis. Out of the four identified energy-dependent mitochondrial proteases, three were shown to be directly involved in proteolysis of CcO subunits. In addition to their well-established protein-quality control function these oligomeric proteolytic complexes with chaperone-like activities may function as molecular chaperones promoting productive folding and assembly of subunit proteins. In this review, we summarize the current knowledge of the functional involvement of eukaryotic CcO-specific assembly factors and highlight the possible significance for CcO biogenesis of mitochondrial ATP-dependent proteases.
Collapse
Affiliation(s)
- Lukas Stiburek
- Charles University in Prague, First Faculty of Medicine, Department of Pediatrics, Prague, Czech Republic.
| | | |
Collapse
|
32
|
Janska H, Piechota J, Kwasniak M. ATP-dependent proteases in biogenesis and maintenance of plant mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1071-5. [PMID: 20193658 DOI: 10.1016/j.bbabio.2010.02.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 01/02/2023]
Abstract
ATP-dependent proteases from three families have been identified experimentally in Arabidopsis mitochondria: four FtsH proteases (AtFtsH3, AtFtsH4, AtFtsH10, and AtFtsH11), two Lon proteases (AtLon1 and AtLon4), and one Clp protease (AtClpP2 with regulatory subunit AtClpX). In this review we discuss their submitochondrial localization, expression profiles and proposed functions, with special emphasis on their impact on plant growth and development. The best characterized plant mitochondrial ATP-dependent proteases are AtLon1 and AtFtsH4. It has been proposed that AtLon1 is necessary for proper mitochondrial biogenesis during seedling establishment, whereas AtFtsH4 is involved in maintaining mitochondrial homeostasis late in rosette development under short-day photoperiod.
Collapse
Affiliation(s)
- Hanna Janska
- Department of Biotechnology, University of Wroclaw, 51-148 Wroclaw, Poland.
| | | | | |
Collapse
|
33
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Mathieu L, Bourens M, Marsy S, Hlavacek O, Panozzo C, Dujardin G. A mutational analysis reveals new functional interactions between domains of the Oxa1 protein in Saccharomyces cerevisiae. Mol Microbiol 2009; 75:474-88. [PMID: 20025673 DOI: 10.1111/j.1365-2958.2009.07001.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Oxa1/YidC/Alb3 family plays a key role in the biogenesis of the respiratory and photosynthetic complexes in bacteria and organelles. In Saccharomyces cerevisiae, Oxa1 mediates the co-translational insertion of mitochondrially encoded subunits of the three respiratory complexes III, IV and V within the inner membrane and also controls a late step in complex V assembly. No crystal structure of YidC or Oxa1 is available and little is known about the respective role of each transmembrane segment (TM) and hydrophilic loop of this polytopic protein on the biogenesis of the three complexes. Here, we have generated a collection of random point mutations located in the hydrophobic and hydrophilic domains of the protein and characterized their effects on the assembly of the three respiratory complexes. Our results show mutant-dependent differential effects, particularly on complex V. In order to identify tertiary interactions within Oxa1, we have also isolated revertants carrying second-site compensatory mutations able to restore respiration. This analysis reveals the existence of functional interactions between TM2 and TM5, TM4 and TM5 as well as between TM4 and loop 2, highlighting the key position of TM4 and TM5 in the Oxa1 protein.
Collapse
Affiliation(s)
- Lise Mathieu
- Centre de Génétique Moléculaire du CNRS, FRE3144, FRC3115, Gif sur Yvette cedex, France
| | | | | | | | | | | |
Collapse
|
35
|
Ott M, Herrmann JM. Co-translational membrane insertion of mitochondrially encoded proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:767-75. [PMID: 19962410 DOI: 10.1016/j.bbamcr.2009.11.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/18/2009] [Accepted: 11/25/2009] [Indexed: 11/29/2022]
Abstract
The components of the mitochondrial proteome represent a mosaic of dual genetic origin: while most mitochondrial proteins are encoded by nuclear genes and imported into the organelle following synthesis in the cytosol, a small number of proteins is encoded by the mitochondrial genome. Though small in number, mitochondrial translation products are vital for cellular functionality as these proteins represent the core subunits of the respiratory chain and the ATPase which produce the vast majority of the cellular ATP. Mitochondrial translation products are almost exclusively highly hydrophobic polypeptides which are inserted into the inner membrane in the course of their synthesis. The machinery that mediates membrane insertion in mitochondria is deduced from that of their bacterial ancestors and hence shows profound similarities to the insertion machinery of prokaryotes. However, the specialization on the production of a very small set of translation products drove a severe reduction in the complexity of this system. The insertase Oxa1 forms the central component of the insertion machinery. Oxa1 directly binds to mitochondrial ribosomes and, together with the inner membrane protein Mba1, aligns the polypeptide exit tunnel of the ribosome with the insertion site at the inner membrane. The specific hallmarks and the critical components of this machinery are discussed in this review article.
Collapse
Affiliation(s)
- Martin Ott
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | |
Collapse
|