1
|
Playing to the crowd: Using Drosophila to dissect mechanisms underlying plastic male strategies in sperm competition games. ADVANCES IN THE STUDY OF BEHAVIOR 2023. [DOI: 10.1016/bs.asb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
Coughlan JM, Dagilis AJ, Serrato-Capuchina A, Elias H, Peede D, Isbell K, Castillo DM, Cooper BS, Matute DR. Patterns of Population Structure and Introgression Among Recently Differentiated Drosophila melanogaster Populations. Mol Biol Evol 2022; 39:msac223. [PMID: 36251862 PMCID: PMC9641974 DOI: 10.1093/molbev/msac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite a century of genetic analysis, the evolutionary processes that have generated the patterns of exceptional genetic and phenotypic variation in the model organism Drosophila melanogaster remains poorly understood. In particular, how genetic variation is partitioned within its putative ancestral range in Southern Africa remains unresolved. Here, we study patterns of population genetic structure, admixture, and the spatial structuring of candidate incompatibility alleles across a global sample, including 223 new accessions, predominantly from remote regions in Southern Africa. We identify nine major ancestries, six that primarily occur in Africa and one that has not been previously described. We find evidence for both contemporary and historical admixture between ancestries, with admixture rates varying both within and between continents. For example, while previous work has highlighted an admixture zone between broadly defined African and European ancestries in the Caribbean and southeastern USA, we identify West African ancestry as the most likely African contributor. Moreover, loci showing the strongest signal of introgression between West Africa and the Caribbean/southeastern USA include several genes relating to neurological development and male courtship behavior, in line with previous work showing shared mating behaviors between these regions. Finally, while we hypothesized that potential incompatibility loci may contribute to population genetic structure across the range of D. melanogaster; these loci are, on average, not highly differentiated between ancestries. This work contributes to our understanding of the evolutionary history of a key model system, and provides insight into the partitioning of diversity across its range.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Andrius J Dagilis
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | | | - Hope Elias
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - David Peede
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Kristin Isbell
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Dean M Castillo
- Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Drosophila melanogaster as an emerging model host for entomopathogenic fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Scott AM, Yan JL, Baxter CM, Dworkin I, Dukas R. The genetic basis of variation in sexual aggression: evolution versus social plasticity. Mol Ecol 2022; 31:2865-2881. [DOI: 10.1111/mec.16437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Andrew M. Scott
- Animal Behaviour Group Department of Psychology, Neuroscience & Behaviour McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Janice L. Yan
- Animal Behaviour Group Department of Psychology, Neuroscience & Behaviour McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Carling M. Baxter
- Animal Behaviour Group Department of Psychology, Neuroscience & Behaviour McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Ian Dworkin
- Department of Biology McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Reuven Dukas
- Animal Behaviour Group Department of Psychology, Neuroscience & Behaviour McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| |
Collapse
|
5
|
Pasquier C, Robichon A. Temporal and sequential order of nonoverlapping gene networks unraveled in mated female Drosophila. Life Sci Alliance 2021; 5:5/2/e202101119. [PMID: 34844981 PMCID: PMC8645335 DOI: 10.26508/lsa.202101119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
Mating triggers successive waves of temporal transcriptomic changes within independent gene networks in female Drosophila, suggesting a recruitment of interconnected modules that vanish in late life. In this study, we reanalyzed available datasets of gene expression changes in female Drosophila head induced by mating. Mated females present metabolic phenotypic changes and display behavioral characteristics that are not observed in virgin females, such as repulsion to male sexual aggressiveness, fidelity to food spots selected for oviposition, and restriction to the colonization of new niches. We characterize gene networks that play a role in female brain plasticity after mating using AMINE, a novel algorithm to find dysregulated modules of interacting genes. The uncovered networks of altered genes revealed a strong specificity for each successive period of life span after mating in the female head, with little conservation between them. This finding highlights a temporal order of recruitment of waves of interconnected genes which are apparently transiently modified: the first wave disappears before the emergence of the second wave in a reversible manner and ends with few consolidated gene expression changes at day 20. This analysis might document an extended field of a programmatic control of female phenotypic traits by male seminal fluid.
Collapse
|
6
|
Moulin TC, Ferro F, Hoyer A, Cheung P, Williams MJ, Schiöth HB. The Drosophila melanogaster Levodopa-Induced Depression Model Exhibits Negative Geotaxis Deficits and Differential Gene Expression in Males and Females. Front Neurosci 2021; 15:653470. [PMID: 34079435 PMCID: PMC8165388 DOI: 10.3389/fnins.2021.653470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
More than 320 million people live with depression in the world, a disorder that severely limits psychosocial functioning and diminishes quality of life. The prevalence of major depression is almost two times higher in women than in men. However, the molecular mechanisms of its sex-specific pathophysiology are still poorly understood. Drosophila melanogaster is an established model for neurobiological research of depression-like states, as well as for the study of molecular and genetic sex differences in the brain. Here, we investigated sex-specific effects on forced-climbing locomotion (negative geotaxis) and gene expression of a fly model of depression-like phenotypes induced by levodopa administration, which was previously shown to impair normal food intake, mating frequency, and serotonin concentration. We observed that both males and females show deficits in the forced-climbing paradigm; however, modulated by distinct gene expression patterns after levodopa administration. Our results suggest that Drosophila models can be a valuable tool for identifying the molecular mechanisms underlying the difference of depressive disorder prevalence between men and women.
Collapse
Affiliation(s)
- Thiago C Moulin
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Federico Ferro
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Angela Hoyer
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Pierre Cheung
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Michael J Williams
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Yost RT, Robinson JW, Baxter CM, Scott AM, Brown LP, Aletta MS, Hakimjavadi R, Lone A, Cumming RC, Dukas R, Mozer B, Simon AF. Abnormal Social Interactions in a Drosophila Mutant of an Autism Candidate Gene: Neuroligin 3. Int J Mol Sci 2020; 21:E4601. [PMID: 32610435 PMCID: PMC7370170 DOI: 10.3390/ijms21134601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Social interactions are typically impaired in neuropsychiatric disorders such as autism, for which the genetic underpinnings are very complex. Social interactions can be modeled by analysis of behaviors, including social spacing, sociability, and aggression, in simpler organisms such as Drosophila melanogaster. Here, we examined the effects of mutants of the autism-related gene neuroligin 3 (nlg3) on fly social and non-social behaviors. Startled-induced negative geotaxis is affected by a loss of function nlg3 mutation. Social space and aggression are also altered in a sex- and social-experience-specific manner in nlg3 mutant flies. In light of the conserved roles that neuroligins play in social behavior, our results offer insight into the regulation of social behavior in other organisms, including humans.
Collapse
Affiliation(s)
- Ryley T. Yost
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - J. Wesley Robinson
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - Carling M. Baxter
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour (PNB) McMaster University, Hamilton, ON L8S 4K1, Canada; (C.M.B.); (A.M.S.); (R.D.)
| | - Andrew M. Scott
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour (PNB) McMaster University, Hamilton, ON L8S 4K1, Canada; (C.M.B.); (A.M.S.); (R.D.)
| | - Liam P. Brown
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - M. Sol Aletta
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - Ramtin Hakimjavadi
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - Asad Lone
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - Robert C. Cumming
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour (PNB) McMaster University, Hamilton, ON L8S 4K1, Canada; (C.M.B.); (A.M.S.); (R.D.)
| | - Brian Mozer
- Office of Research Integrity, Office of the Assistant Secretary for Health, Rockville, MD 20889, USA;
| | - Anne F. Simon
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| |
Collapse
|
8
|
Parker GA, Kohn N, Spirina A, McMillen A, Huang W, Mackay TFC. Genetic Basis of Increased Lifespan and Postponed Senescence in Drosophila melanogaster. G3 (BETHESDA, MD.) 2020; 10:1087-1098. [PMID: 31969430 PMCID: PMC7056975 DOI: 10.1534/g3.120.401041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023]
Abstract
Limited lifespan and senescence are near-universal phenomena. These quantitative traits exhibit variation in natural populations due to the segregation of many interacting loci and from environmental effects. Due to the complexity of the genetic control of lifespan and senescence, our understanding of the genetic basis of variation in these traits is incomplete. Here, we analyzed the pattern of genetic divergence between long-lived (O) Drosophila melanogaster lines selected for postponed reproductive senescence and unselected control (B) lines. We quantified the productivity of the O and B lines and found that reproductive senescence is maternally controlled. We therefore chose 57 candidate genes that are expressed in ovaries, 49 of which have human orthologs, and assessed the effects of RNA interference in ovaries and accessary glands on lifespan and reproduction. All but one candidate gene affected at least one life history trait in one sex or productivity week. In addition, 23 genes had antagonistic pleiotropic effects on lifespan and productivity. Identifying evolutionarily conserved genes affecting increased lifespan and delayed reproductive senescence is the first step toward understanding the evolutionary forces that maintain segregating variation at these loci in nature and may provide potential targets for therapeutic intervention to delay senescence while increasing lifespan.
Collapse
Affiliation(s)
- Grace A Parker
- Department of Biological Sciences
- Program in Genetics
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695 and
| | | | | | | | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, Michigan, 48824
| | - Trudy F C Mackay
- Department of Biological Sciences,
- Program in Genetics
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695 and
| |
Collapse
|
9
|
Agrawal P, Kao D, Chung P, Looger LL. The neuropeptide Drosulfakinin regulates social isolation-induced aggression in Drosophila. J Exp Biol 2020; 223:jeb207407. [PMID: 31900346 PMCID: PMC7033730 DOI: 10.1242/jeb.207407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023]
Abstract
Social isolation strongly modulates behavior across the animal kingdom. We utilized the fruit fly Drosophila melanogaster to study social isolation-driven changes in animal behavior and gene expression in the brain. RNA-seq identified several head-expressed genes strongly responding to social isolation or enrichment. Of particular interest, social isolation downregulated expression of the gene encoding the neuropeptide Drosulfakinin (Dsk), the homologue of vertebrate cholecystokinin (CCK), which is critical for many mammalian social behaviors. Dsk knockdown significantly increased social isolation-induced aggression. Genetic activation or silencing of Dsk neurons each similarly increased isolation-driven aggression. Our results suggest a U-shaped dependence of social isolation-induced aggressive behavior on Dsk signaling, similar to the actions of many neuromodulators in other contexts.
Collapse
Affiliation(s)
- Pavan Agrawal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Damian Kao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Phuong Chung
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
10
|
Leech T, Evison SEF, Armitage SAO, Sait SM, Bretman A. Interactive effects of social environment, age and sex on immune responses in Drosophila melanogaster. J Evol Biol 2019; 32:1082-1092. [PMID: 31313398 DOI: 10.1111/jeb.13509] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
Social environments have been shown to have multiple effects on individual immune responses. For example, increased social contact might signal greater infection risk and prompt a prophylactic upregulation of immunity. This differential investment of resources may in part explain why social environments affect ageing and lifespan. Our previous work using Drosophila melanogaster showed that single-sex social contact reduced lifespan for both sexes. Here, we assess how social interactions (isolation or contact) affect susceptibility to infection, phagocytotic activity and expression of a subset of immune- and stress-related genes in young and old flies of both sexes. Social contact had a neutral, or even improved, effect on post-infection lifespan in older flies and reduced the expression of stress response genes in females; however, it reduced phagocytotic activity. Overall, the effects of social environment were complex and largely subtle and do not indicate a consistent effect. Together, these findings indicate that social contact in D. melanogaster does not have a predictable impact on immune responses and does not simply trade-off immune investment with lifespan.
Collapse
Affiliation(s)
- Thomas Leech
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sophie E F Evison
- Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | | | - Steven M Sait
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Brenman-Suttner DB, Yost RT, Frame AK, Robinson JW, Moehring AJ, Simon AF. Social behavior and aging: A fly model. GENES BRAIN AND BEHAVIOR 2019; 19:e12598. [PMID: 31286644 DOI: 10.1111/gbb.12598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.
Collapse
Affiliation(s)
- Dova B Brenman-Suttner
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Ryley T Yost
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Ariel K Frame
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - J Wesley Robinson
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Amanda J Moehring
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Anne F Simon
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| |
Collapse
|
12
|
The Role of miRNAs in Drosophila melanogaster Male Courtship Behavior. Genetics 2019; 211:925-942. [PMID: 30683757 DOI: 10.1534/genetics.118.301901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/19/2019] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster courtship, although stereotypical, continually changes based on cues received from the courtship subject. Such adaptive responses are mediated via rapid and widespread transcriptomic reprogramming, a characteristic now widely attributed to microRNAs (miRNAs), along with other players. Here, we conducted a large-scale miRNA knockout screen to identify miRNAs that affect various parameters of male courtship behavior. Apart from identifying miRNAs that impact male-female courtship, we observed that miR-957 mutants performed significantly increased male-male courtship and "chaining" behavior, whereby groups of males court one another. We tested the effect of miR-957 reduction in specific neuronal cell clusters, identifying miR-957 activity in Doublesex (DSX)-expressing and mushroom body clusters as an important regulator of male-male courtship interactions. We further characterized the behavior of miR-957 mutants and found that these males court male subjects vigorously, but do not elicit courtship. Moreover, they fail to lower courtship efforts toward females with higher levels of antiaphrodisiac pheromones. At the level of individual pheromones, miR-957 males show a reduced inhibitory response to both 7-Tricosene (7-T) and cis-vaccenyl acetate, with the effect being more pronounced in the case of 7-T. Overall, our results indicate that a single miRNA can contribute to the regulation of complex behaviors, including detection or processing of chemicals that control important survival strategies such as chemical mate-guarding, and the maintenance of sex- and species-specific courtship barriers.
Collapse
|
13
|
Mushroom Body Specific Transcriptome Analysis Reveals Dynamic Regulation of Learning and Memory Genes After Acquisition of Long-Term Courtship Memory in Drosophila. G3-GENES GENOMES GENETICS 2018; 8:3433-3446. [PMID: 30158319 PMCID: PMC6222587 DOI: 10.1534/g3.118.200560] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The formation and recall of long-term memory (LTM) requires neuron activity-induced gene expression. Transcriptome analysis has been used to identify genes that have altered expression after memory acquisition, however, we still have an incomplete picture of the transcriptional changes that are required for LTM formation. The complex spatial and temporal dynamics of memory formation creates significant challenges in defining memory-relevant gene expression changes. The Drosophila mushroom body (MB) is a signaling hub in the insect brain that integrates sensory information to form memories across several different experimental memory paradigms. Here, we performed transcriptome analysis in the MB at two time points after the acquisition of LTM: 1 hr and 24 hr. The MB transcriptome was compared to biologically paired whole head (WH) transcriptomes. In both, we identified more transcript level changes at 1 hr after memory acquisition (WH = 322, MB = 302) than at 24 hr (WH = 23, MB = 20). WH samples showed downregulation of developmental genes and upregulation of sensory response genes. In contrast, MB samples showed vastly different changes in transcripts involved in biological processes that are specifically related to LTM. MB-downregulated genes were highly enriched for metabolic function. MB-upregulated genes were highly enriched for known learning and memory processes, including calcium-mediated neurotransmitter release and cAMP signaling. The neuron activity inducible genes Hr38 and sr were also specifically induced in the MB. These results highlight the importance of sampling time and cell type in capturing biologically relevant transcript level changes involved in learning and memory. Our data suggests that MB cells transiently upregulate known memory-related pathways after memory acquisition and provides a critical frame of reference for further investigation into the role of MB-specific gene regulation in memory.
Collapse
|
14
|
Shultzaberger RK, Johnson SJ, Wagner J, Ha K, Markow TA, Greenspan RJ. Conservation of the behavioral and transcriptional response to social experience among Drosophilids. GENES BRAIN AND BEHAVIOR 2018; 18:e12487. [PMID: 29797548 PMCID: PMC7379240 DOI: 10.1111/gbb.12487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 12/02/2022]
Abstract
While social experience has been shown to significantly alter behaviors in a wide range of species, comparative studies that uniformly measure the impact of a single experience across multiple species have been lacking, limiting our understanding of how plastic traits evolve. To address this, we quantified variations in social feeding behaviors across 10 species of Drosophilids, tested the effect of altering rearing context on these behaviors (reared in groups or in isolation) and correlated observed behavioral shifts to accompanying transcriptional changes in the heads of these flies. We observed significant variability in the extent of aggressiveness, the utilization of social cues during food search, and social space preferences across species. The sensitivity of these behaviors to rearing experience also varied: socially naive flies were more aggressive than their socialized conspecifics in some species, and more reserved or identical in others. Despite these differences, the mechanism of socialization appeared to be conserved within the melanogaster subgroup as species could cross‐socialize each other, and the transcriptional response to social exposure was significantly conserved. The expression levels of chemosensory‐perception genes often varied between species and rearing conditions, supporting a growing body of evidence that behavioral evolution is driven by the differential regulation of this class of genes. The clear differences in behavioral responses to socialization observed in Drosophilids make this an ideal system for continued studies on the genetic basis and evolution of socialization and behavioral plasticity.
Collapse
Affiliation(s)
- R K Shultzaberger
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - S J Johnson
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - J Wagner
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - K Ha
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - T A Markow
- Laboratorio Nacional de Genomica de la Biodiversidad, Centro de Investigacion y de Estudios Avanzados-Irapuato, Guanajuato, Mexico.,Department of Cell and Developmental Biology, University of California San Diego, San Diego, California
| | - R J Greenspan
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| |
Collapse
|
15
|
Simmons LW, Lovegrove M. Socially cued seminal fluid gene expression mediates responses in ejaculate quality to sperm competition risk. Proc Biol Sci 2018; 284:rspb.2017.1486. [PMID: 28855372 DOI: 10.1098/rspb.2017.1486] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/20/2017] [Indexed: 01/29/2023] Open
Abstract
There is considerable evidence that males will increase the number of sperm ejaculated in response to sperm competition risk. However, whether they have the capacity to adjust seminal fluid components of the ejaculate has received less attention. Male crickets (Teleogryllus oceanicus) have been shown to adjust the viability of sperm in their ejaculate in response to sperm competition risk. Here we show that socially mediated plasticity in sperm viability is probably due, at least in part, to male adjustments in the protein composition of the seminal fluid. Seven seminal fluid protein genes were found to have an increased expression in males exposed to rival calls. Increased expression of these genes was correlated with increased sperm viability in whole ejaculates, and gene knockdown confirmed that at least one of these proteins promotes sperm viability. Our results lend support for recent theoretical models that predict complex responses in male allocation to seminal fluid composition in response to sperm competition risk.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley 6009, Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
16
|
Veltsos P, Fang Y, Cossins AR, Snook RR, Ritchie MG. Mating system manipulation and the evolution of sex-biased gene expression in Drosophila. Nat Commun 2017; 8:2072. [PMID: 29233985 PMCID: PMC5727229 DOI: 10.1038/s41467-017-02232-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Sex differences in dioecious animals are pervasive and result from gene expression differences. Elevated sexual selection has been predicted to increase the number and expression of male-biased genes, and experimentally imposing monogamy on Drosophila melanogaster has led to a relative feminisation of the transcriptome. Here, we test this hypothesis further by subjecting another polyandrous species, D. pseudoobscura, to 150 generations of experimental monogamy or elevated polyandry. We find that sex-biased genes do change in expression but, contrary to predictions, there is usually masculinisation of the transcriptome under monogamy, although this depends on tissue and sex. We also identify and describe gene expression changes following courtship experience. Courtship often influences gene expression, including patterns in sex-biased gene expression. Our results confirm that mating system manipulation disproportionately influences sex-biased gene expression but show that the direction of change is dynamic and unpredictable.
Collapse
Affiliation(s)
- Paris Veltsos
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, St Andrews, KY16 9TH, UK.,Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yongxiang Fang
- Centre for Genomic Researc, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7BX, UK
| | - Andrew R Cossins
- Centre for Genomic Researc, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7BX, UK
| | - Rhonda R Snook
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK. .,Zoologiska Institutionen (Ekologi), Stockholm University, 106 91, Stockholm, Sweden.
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, St Andrews, KY16 9TH, UK.
| |
Collapse
|
17
|
Mohorianu I, Bretman A, Smith DT, Fowler EK, Dalmay T, Chapman T. Genomic responses to the socio-sexual environment in male Drosophila melanogaster exposed to conspecific rivals. RNA (NEW YORK, N.Y.) 2017; 23:1048-1059. [PMID: 28428330 PMCID: PMC5473139 DOI: 10.1261/rna.059246.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Socio-sexual environments have profound effects on fitness. Local sex ratios can alter the threat of sexual competition, to which males respond via plasticity in reproductive behaviors and ejaculate composition. In Drosophila melanogaster, males detect the presence of conspecific, same-sex mating rivals prior to mating using multiple, redundant sensory cues. Males that respond to rivals gain significant fitness benefits by altering mating duration and ejaculate composition. Here we investigated the underlying genome-wide changes involved. We used RNA-seq to analyze male transcriptomic responses 2, 26, and 50 h after exposure to rivals, a time period that was previously identified as encompassing the major facets of male responses to rivals. The results showed a strong early activation of multiple sensory genes in the head-thorax (HT), prior to the expression of any phenotypic differences. This gene expression response was reduced by 26 h, at the time of maximum phenotypic change, and shut off by 50 h. In the abdomen (A), fewer genes changed in expression and gene expression responses appeared to increase over time. The results also suggested that different sets of functionally equivalent genes might be activated in different replicates. This could represent a mechanism by which robustness is conferred upon highly plastic traits. Overall, our study reveals that mRNA-seq can identify subtle genomic signatures characteristic of flexible behavioral phenotypes.
Collapse
Affiliation(s)
- Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Amanda Bretman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- School of Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Damian T Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Emily K Fowler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
18
|
Jiang MD, Zheng Y, Wang JL, Wang YF. Drug induces depression-like phenotypes and alters gene expression profiles in Drosophila. Brain Res Bull 2017. [PMID: 28625786 DOI: 10.1016/j.brainresbull.2017.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental illness that affects more than 350 million people worldwide. However, the molecular mechanisms of depression are currently unclear. Studies suggest that Drosophila and humans have similar depression-like symptoms under pressure. In this research, we choose Drosophila melanogaster as the animal model to explore the molecular mechanisms that trigger depression. RESULTS We found that feeding D. melanogaster with the medium containing Levodopa or Chlorpromazine could induce depression-like phenotypes in both behavioral and biochemical biomarkers, including significantly decreased food intake, mating frequency, serotonin (5-HT) concentration, and increased malondialdehyde (MDA) concentration as well as reduced activity of superoxide dismutase (SOD). Moreover, the progeny of Chlorpromazine-treated flies also showed these depression-like features. By RNA-seq technology, we identified 467 genes that were differentially expressed between Chlorpromazine treated (CPZ) and control male flies [fold-change of ≥2 (q-value<5%)]. When comparing CPZ with control flies, 312 genes were upregulated and 155 genes downregulated. Differential expression of genes related to metabolic pathway, Parkinson's disease, Huntington's disease, Alzheimer's disease and lysozyme pathways were observed. Quantitative reverse transcriptase PCR (qRT-PCR) confirmed that 19 genes are differentially expressed in CPZ and control male flies. CONCLUSIONS Levodopa, or Chlorpromazine can induce depression-like phenotypes in D. melanogaster regarding changes of appetite and sexual activity, and some key biochemical markers. A total of 467 genes were identified by RNA-seq analysis to have at least a 2-fold-change in expression between CPZ and control flies, including genes involved in metabolism, neurological diseases and lysozyme pathways. Our data provide additional insight into molecular mechanisms underlying depressive disorders in humans and may also contribute to clinical treatment.
Collapse
Affiliation(s)
- Ming-Di Jiang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| | - Jia-Lin Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
19
|
Zajitschek F, Zajitschek S, Manier M. Paternal diet affects differential gene expression, but not sperm competition, in sons. Biol Lett 2017; 13:rsbl.2016.0914. [PMID: 28202685 PMCID: PMC5326516 DOI: 10.1098/rsbl.2016.0914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
Parental environment can widely influence offspring phenotype, but paternal effects in the absence of parental care remain poorly understood. We asked if protein content in the larval diet of fathers affected paternity success and gene expression in their sons. We found that males reared on high-protein diet had sons that fared better during sperm competition, suggesting that postcopulatory sexual selection is subject to transgenerational paternal effects. Moreover, immune response genes were downregulated in sons of low-protein fathers, while genes involved in metabolic and reproductive processes were upregulated.
Collapse
Affiliation(s)
- Felix Zajitschek
- Department of Biological Sciences, George Washington University, Washington, DC, USA.,School of Biological Sciences, Monash University, Melbourne, Australia
| | - Susanne Zajitschek
- Department of Biological Sciences, George Washington University, Washington, DC, USA.,School of Biological Sciences, Monash University, Melbourne, Australia.,Doñana Biological Station, EBD-CSIC, Seville, Spain
| | - Mollie Manier
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
20
|
Wangler MF, Hu Y, Shulman JM. Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits. Dis Model Mech 2017; 10:77-88. [PMID: 28151408 PMCID: PMC5312009 DOI: 10.1242/dmm.027680] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human genome-wide association studies (GWAS) have successfully identified thousands of susceptibility loci for common diseases with complex genetic etiologies. Although the susceptibility variants identified by GWAS usually have only modest effects on individual disease risk, they contribute to a substantial burden of trait variation in the overall population. GWAS also offer valuable clues to disease mechanisms that have long proven to be elusive. These insights could lead the way to breakthrough treatments; however, several challenges hinder progress, making innovative approaches to accelerate the follow-up of results from GWAS an urgent priority. Here, we discuss the largely untapped potential of the fruit fly, Drosophila melanogaster, for functional investigation of findings from human GWAS. We highlight selected examples where strong genomic conservation with humans along with the rapid and powerful genetic tools available for flies have already facilitated fine mapping of association signals, elucidated gene mechanisms, and revealed novel disease-relevant biology. We emphasize current research opportunities in this rapidly advancing field, and present bioinformatic analyses that systematically explore the applicability of Drosophila for interrogation of susceptibility signals implicated in more than 1000 human traits, based on all GWAS completed to date. Thus, our discussion is targeted at both human geneticists seeking innovative strategies for experimental validation of findings from GWAS, as well as the Drosophila research community, by whom ongoing investigations of the implicated genes will powerfully inform our understanding of human disease.
Collapse
Affiliation(s)
- Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Corbett-Detig R, Nielsen R. A Hidden Markov Model Approach for Simultaneously Estimating Local Ancestry and Admixture Time Using Next Generation Sequence Data in Samples of Arbitrary Ploidy. PLoS Genet 2017; 13:e1006529. [PMID: 28045893 PMCID: PMC5242547 DOI: 10.1371/journal.pgen.1006529] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/18/2017] [Accepted: 12/08/2016] [Indexed: 12/19/2022] Open
Abstract
Admixture-the mixing of genomes from divergent populations-is increasingly appreciated as a central process in evolution. To characterize and quantify patterns of admixture across the genome, a number of methods have been developed for local ancestry inference. However, existing approaches have a number of shortcomings. First, all local ancestry inference methods require some prior assumption about the expected ancestry tract lengths. Second, existing methods generally require genotypes, which is not feasible to obtain for many next-generation sequencing projects. Third, many methods assume samples are diploid, however a wide variety of sequencing applications will fail to meet this assumption. To address these issues, we introduce a novel hidden Markov model for estimating local ancestry that models the read pileup data, rather than genotypes, is generalized to arbitrary ploidy, and can estimate the time since admixture during local ancestry inference. We demonstrate that our method can simultaneously estimate the time since admixture and local ancestry with good accuracy, and that it performs well on samples of high ploidy-i.e. 100 or more chromosomes. As this method is very general, we expect it will be useful for local ancestry inference in a wider variety of populations than what previously has been possible. We then applied our method to pooled sequencing data derived from populations of Drosophila melanogaster on an ancestry cline on the east coast of North America. We find that regions of local recombination rates are negatively correlated with the proportion of African ancestry, suggesting that selection against foreign ancestry is the least efficient in low recombination regions. Finally we show that clinal outlier loci are enriched for genes associated with gene regulatory functions, consistent with a role of regulatory evolution in ecological adaptation of admixed D. melanogaster populations. Our results illustrate the potential of local ancestry inference for elucidating fundamental evolutionary processes.
Collapse
Affiliation(s)
- Russell Corbett-Detig
- Genomics Institute and Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA, United States of America
- Department of Integrative Biology, UC Berkeley, Berkeley, CA, United States of America
| | - Rasmus Nielsen
- Department of Integrative Biology, UC Berkeley, Berkeley, CA, United States of America
- The Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Chandrasekaran S, Rittschof CC, Djukovic D, Gu H, Raftery D, Price ND, Robinson GE. Aggression is associated with aerobic glycolysis in the honey bee brain(1). GENES BRAIN AND BEHAVIOR 2015; 14:158-66. [PMID: 25640316 DOI: 10.1111/gbb.12201] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 12/22/2022]
Abstract
Aerobic glycolysis involves increased glycolysis and decreased oxidative catabolism of glucose even in the presence of an ample oxygen supply. Aerobic glycolysis, a common metabolic pattern in cancer cells, was recently discovered in both the healthy and diseased human brain, but its functional significance is not understood. This metabolic pattern in the brain is surprising because it results in decreased efficiency of adenosine triphosphate (ATP) production in a tissue with high energetic demands. We report that highly aggressive honey bees (Apis mellifera) show a brain transcriptomic and metabolic state consistent with aerobic glycolysis, i.e. increased glycolysis in combination with decreased oxidative phosphorylation. Furthermore, exposure to alarm pheromone, which provokes aggression, causes a metabolic shift to aerobic glycolysis in the bee brain. We hypothesize that this metabolic state, which is associated with altered neurotransmitter levels, increased glycolytically derived ATP and a reduced cellular redox state, may lead to increased neuronal excitability and oxidative stress in the brain. Our analysis provides evidence for a robust, distinct and persistent brain metabolic response to aggression-inducing social cues. This finding for the first time associates aerobic glycolysis with naturally occurring behavioral plasticity, which has important implications for understanding both healthy and diseased brain function.
Collapse
Affiliation(s)
- S Chandrasekaran
- Institute for Systems Biology, Seattle, WA; Center for Biophysics and Computational Biology
| | | | | | | | | | | | | |
Collapse
|
23
|
Lin YC, Balakrishnan CN, Clayton DF. Functional genomic analysis and neuroanatomical localization of miR-2954, a song-responsive sex-linked microRNA in the zebra finch. Front Neurosci 2014; 8:409. [PMID: 25565940 PMCID: PMC4267206 DOI: 10.3389/fnins.2014.00409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/23/2014] [Indexed: 01/12/2023] Open
Abstract
Natural experience can cause complex changes in gene expression in brain centers for cognition and perception, but the mechanisms that link perceptual experience and neurogenomic regulation are not understood. MicroRNAs (miRNAs or miRs) have the potential to regulate large gene expression networks, and a previous study showed that a natural perceptual stimulus (hearing the sound of birdsong in zebra finches) triggers rapid changes in expression of several miRs in the auditory forebrain. Here we evaluate the functional potential of one of these, miR-2954, which has been found so far only in birds and is encoded on the Z sex chromosome. Using fluorescence in situ hybridization and immunohistochemistry, we show that miR-2954 is present in subsets of cells in the sexually dimorphic brain regions involved in song production and perception, with notable enrichment in cell nuclei. We then probe its regulatory function by inhibiting its expression in a zebra finch cell line (G266) and measuring effects on endogenous gene expression using Illumina RNA sequencing (RNA-seq). Approximately 1000 different mRNAs change in expression by 1.5-fold or more (adjusted p < 0.01), with increases in some but not all of the targets that had been predicted by Targetscan. The population of RNAs that increase after miR-2954 inhibition is notably enriched for ones involved in the MAP Kinase (MAPK) pathway, whereas the decreasing population is dominated by genes involved in ribosomes and mitochondrial function. Since song stimulation itself triggers a decrease in miR-2954 expression followed by a delayed decrease in genes encoding ribosomal and mitochondrial functions, we suggest that miR-2954 may mediate some of the neurogenomic effects of song habituation.
Collapse
Affiliation(s)
- Ya-Chi Lin
- Genomics of Neural and Behavioral Plasticity Theme, Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA ; Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, IL, USA
| | | | - David F Clayton
- Genomics of Neural and Behavioral Plasticity Theme, Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA ; Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, IL, USA ; Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
24
|
Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. Proc Natl Acad Sci U S A 2014; 111:17929-34. [PMID: 25453090 DOI: 10.1073/pnas.1420369111] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.
Collapse
|
25
|
Boes KE, Ribeiro JMC, Wong A, Harrington LC, Wolfner MF, Sirot LK. Identification and characterization of seminal fluid proteins in the Asian tiger mosquito, Aedes albopictus. PLoS Negl Trop Dis 2014; 8:e2946. [PMID: 24945155 PMCID: PMC4063707 DOI: 10.1371/journal.pntd.0002946] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/02/2014] [Indexed: 12/20/2022] Open
Abstract
The Asian tiger mosquito (Aedes albopictus) is an important vector for pathogens that affect human health, including the viruses that cause dengue and Chikungunya fevers. It is also one of the world's fastest-spreading invasive species. For these reasons, it is crucial to identify strategies for controlling the reproduction and spread of this mosquito. During mating, seminal fluid proteins (Sfps) are transferred from male mosquitoes to females, and these Sfps modulate female behavior and physiology in ways that influence reproduction. Despite the importance of Sfps on female reproductive behavior in mosquitoes and other insects, the identity of Sfps in Ae. albopictus has not previously been reported. We used transcriptomics and proteomics to identify 198 Sfps in Ae. albopictus. We discuss possible functions of these Sfps in relation to Ae. albopictus reproduction-related biology. We additionally compare the sequences of these Sfps with proteins (including reported Sfps) in several other species, including Ae. aegypti. While only 72 (36.4%) of Ae. albopictus Sfps have putative orthologs in Ae. aegypti, suggesting low conservation of the complement of Sfps in these species, we find no evidence for an elevated rate of evolution or positive selection in the Sfps that are shared between the two Aedes species, suggesting high sequence conservation of those shared Sfps. Our results provide a foundation for future studies to investigate the roles of individual Sfps on feeding and reproduction in this mosquito. Functional analysis of these Sfps could inform strategies for managing the rate of pathogen transmission by Ae. albopictus.
Collapse
Affiliation(s)
- Kathryn E. Boes
- Department of Biology, College of Wooster, Wooster, Ohio, United States of America
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Laura C. Harrington
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Laura K. Sirot
- Department of Biology, College of Wooster, Wooster, Ohio, United States of America
| |
Collapse
|
26
|
Moore D, Paquette C, Shropshire JD, Seier E, Joplin KH. Extensive reorganization of behavior accompanies ontogeny of aggression in male flesh flies. PLoS One 2014; 9:e93196. [PMID: 24714439 PMCID: PMC3979670 DOI: 10.1371/journal.pone.0093196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
Aggression, costly in both time and energy, is often expressed by male animals in defense of valuable resources such as food or potential mates. Here we present a new insect model system for the study of aggression, the male flesh fly Sarcophaga crassipalpis, and ask whether there is an ontogeny of aggression that coincides with reproductive maturity. After establishing that reproductive maturity occurs by day 3 of age (post-eclosion), we examined the behavior of socially isolated males from different age cohorts (days 1, 2, 3, 4, and 6) upon introduction, in a test arena, with another male of the same age. The results show a pronounced development of aggression with age. The change from relative indifference to heightened aggression involves a profound increase in the frequency of high-intensity aggressive behaviors between days 1 and 3. Also noteworthy is an abrupt increase in the number of statistically significant transitions involving these full-contact agonistic behaviors on day 2. This elevated activity is trimmed back somewhat by day 3 and appears to maintain a stable plateau thereafter. No convincing evidence was found for escalation of aggression nor the establishment of a dominance relationship over the duration of the encounters. Despite the fact that aggressive interactions are brief, lasting only a few seconds, a major reorganization in the relative proportions of four major non-aggressive behaviors (accounting for at least 96% of the total observation time for each age cohort) accompanies the switch from low to high aggression. A series of control experiments, with single flies in the test arenas, indicates that these changes occur in the absence of the performance of aggressive behaviors. This parallel ontogeny of aggressive and non-aggressive behaviors has implications for understanding how the entire behavioral repertoire may be organized and reorganized to accommodate the needs of the organism.
Collapse
Affiliation(s)
- Darrell Moore
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| | - Caleb Paquette
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - J. Dylan Shropshire
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Edith Seier
- Department of Mathematics and Statistics, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Karl H. Joplin
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, United States of America
| |
Collapse
|
27
|
Hoxha V, Lama C, Chang PL, Saurabh S, Patel N, Olate N, Dauwalder B. Sex-specific signaling in the blood-brain barrier is required for male courtship in Drosophila. PLoS Genet 2013; 9:e1003217. [PMID: 23359644 PMCID: PMC3554526 DOI: 10.1371/journal.pgen.1003217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/20/2012] [Indexed: 01/12/2023] Open
Abstract
Soluble circulating proteins play an important role in the regulation of mating behavior in Drosophila melanogaster. However, how these factors signal through the blood–brain barrier (bbb) to interact with the sex-specific brain circuits that control courtship is unknown. Here we show that male identity of the blood–brain barrier is necessary and that male-specific factors in the bbb are physiologically required for normal male courtship behavior. Feminization of the bbb of adult males significantly reduces male courtship. We show that the bbb–specific G-protein coupled receptor moody and bbb–specific Go signaling in adult males are necessary for normal courtship. These data identify sex-specific factors and signaling processes in the bbb as important regulators of male mating behavior. Complex behaviors such as mating behavior are controlled by the brain. Ensembles of brain cells work in networks to ensure proper behavior at the right time. While the state of these cells plays an important role in whether and how the behavior is displayed, information from outside the brain is also required. Often, this information is provided by hormones that are present in the circulating fluid (such as the blood). However, the brain is protected by a layer of very tight cells, the so-called blood–brain barrier, that keeps unwanted molecules out. So how then do hormones and other regulatory factors “talk” to the brain? We are studying this question by examining the mating behavior of males of a model organism, the fruit fly Drosophila melanogaster. We have found that the blood–brain barrier cells themselves contain male-specific molecules that play an important role. When they are absent, courtship behavior is compromised. We have also identified how outside factors talk to the brain: by using a cellular signaling protein and a particular signaling pathway. Together they are well suited to pass on outside information to the brain network that regulates mating behavior.
Collapse
Affiliation(s)
- Valbona Hoxha
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Chamala Lama
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Peter L. Chang
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Sumit Saurabh
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Naiya Patel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Nicole Olate
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Identification of gene expression changes associated with long-term memory of courtship rejection in Drosophila males. G3-GENES GENOMES GENETICS 2012; 2:1437-45. [PMID: 23173095 PMCID: PMC3484674 DOI: 10.1534/g3.112.004119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/16/2012] [Indexed: 11/18/2022]
Abstract
Long-term memory formation in Drosophila melanogaster is an important neuronal function shaping the insect’s behavioral repertoire by allowing an individual to modify behaviors on the basis of previous experiences. In conditioned courtship or courtship suppression, male flies that have been repeatedly rejected by mated females during courtship advances are less likely than naïve males to subsequently court another mated female. This long-term courtship suppression can last for several days after the initial rejection period. Although genes with known functions in many associative learning paradigms, including those that function in cyclic AMP signaling and RNA translocation, have been identified as playing critical roles in long-term conditioned courtship, it is clear that additional mechanisms also contribute. We have used RNA sequencing to identify differentially expressed genes and transcript isoforms between naïve males and males subjected to courtship-conditioning regimens that are sufficient for inducing long-term courtship suppression. Transcriptome analyses 24 hours after the training regimens revealed differentially expressed genes and transcript isoforms with predicted and known functions in nervous system development, chromatin biology, translation, cytoskeletal dynamics, and transcriptional regulation. A much larger number of differentially expressed transcript isoforms were identified, including genes previously implicated in associative memory and neuronal development, including fruitless, that may play functional roles in learning during courtship conditioning. Our results shed light on the complexity of the genetics that underlies this behavioral plasticity and reveal several new potential areas of inquiry for future studies.
Collapse
|
29
|
Sanogo YO, Band M, Blatti C, Sinha S, Bell AM. Transcriptional regulation of brain gene expression in response to a territorial intrusion. Proc Biol Sci 2012; 279:4929-38. [PMID: 23097509 DOI: 10.1098/rspb.2012.2087] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aggressive behaviour associated with territorial defence is widespread and has fitness consequences. However, excess aggression can interfere with other important biological functions such as immunity and energy homeostasis. How the expression of complex behaviours such as aggression is regulated in the brain has long intrigued ethologists, but has only recently become amenable for molecular dissection in non-model organisms. We investigated the transcriptomic response to territorial intrusion in four brain regions in breeding male threespined sticklebacks using expression microarrays and quantitative polymerase chain reaction (qPCR). Each region of the brain had a distinct genomic response to a territorial challenge. We identified a set of genes that were upregulated in the diencephalon and downregulated in the cerebellum and the brain stem. Cis-regulatory network analysis suggested transcription factors that regulated or co-regulated genes that were consistently regulated in all brain regions and others that regulated gene expression in opposing directions across brain regions. Our results support the hypothesis that territorial animals respond to social challenges via transcriptional regulation of genes in different brain regions. Finally, we found a remarkably close association between gene expression and aggressive behaviour at the individual level. This study sheds light on the molecular mechanisms in the brain that underlie the response to social challenges.
Collapse
Affiliation(s)
- Yibayiri O Sanogo
- Integrative Biology, University of Illinois, Urbana-Champaign, IL, USA
| | | | | | | | | |
Collapse
|
30
|
Neville M, Goodwin SF. Genome-wide approaches to understanding behaviour in Drosophila melanogaster. Brief Funct Genomics 2012; 11:395-404. [PMID: 22843979 DOI: 10.1093/bfgp/els031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Understanding how an organism exhibits specific behaviours remains a major and important biological question. Studying behaviour in a simple model organism like the fruit fly Drosophila melanogaster has the advantages of advanced molecular genetics approaches along with well-defined anatomy and physiology. With advancements in functional genomic technologies, researchers are now attempting to uncover genes and pathways involved in complex behaviours on a genome-wide scale. A systems-level network approach, which will include genomic approaches, to study behaviour will be key to understanding the regulation and modulation of behaviours and the importance of context in regulating them.
Collapse
Affiliation(s)
- Megan Neville
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
31
|
Immonen E, Ritchie MG. The genomic response to courtship song stimulation in female Drosophila melanogaster. Proc Biol Sci 2012; 279:1359-65. [PMID: 21976688 PMCID: PMC3282362 DOI: 10.1098/rspb.2011.1644] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/12/2011] [Indexed: 11/12/2022] Open
Abstract
Courtship behaviour involves a complex exchange of signals and responses. These are usually studied at the phenotypic level, and genetic or transcriptional responses to courtship are still poorly understood. Here, we examine the gene-expression changes in Drosophila melanogaster females in response to one of the key male courtship signals in mate recognition, song produced by male wing vibration. Using long oligonucleotide microarrays, we identified several genes that responded differentially to the presence or absence of acoustic courtship stimulus. These changes were modest in both the number of genes involved and fold-changes, but notably dominated by antennal signalling genes involved in olfaction as well as neuropeptides and immune response genes. Second, we compared the expression patterns of females stimulated with synthetic song typical of either conspecific or heterospecific (Drosophila simulans) males. In this case, antennal olfactory signalling and innate immunity genes were also enriched among the differentially expressed genes. We confirmed and investigated the time course of expression differences of two identified immunity genes using real-time quantitative PCR. Our results provide novel insight into specific molecular changes in females in response to courtship song stimulation. These may be involved in both signal perception and interpretation and some may anticipate molecular interactions that occur between the sexes after mating.
Collapse
Affiliation(s)
| | - Michael G. Ritchie
- Centre for Evolution, Genes and Genomics, School of Biology, Dyers Brae House, University of St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
32
|
Schwedes CC, Carney GE. Ecdysone signaling in adult Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:293-302. [PMID: 22310011 DOI: 10.1016/j.jinsphys.2012.01.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 05/31/2023]
Abstract
The steroid hormone 20-hydroxyecdysone and its EcR/USP receptor are vital during arthropod development for coordinating molting and metamorphosis. Traditionally, little attention has been given to potential post-developmental functions for this hormone signaling system. However, recent studies in Drosophila melanogaster indicate that the hormone and receptor are present and active in adults and that mutations decreasing hormone or receptor levels affect diverse processes such as reproduction, behavior, stress resistance, and lifespan. We review the current state of knowledge regarding adult hormone production and titers and discuss receptor expression and activity in order to identify potential mechanisms which explain the observed mutant phenotypes. Finally, we describe future research directions focused on identifying isoform-specific functions of EcR, distinguishing effects from EcR/USP gene activation and repression, and determining how ecdysone signaling impacts different tissue types.
Collapse
Affiliation(s)
- Christoph C Schwedes
- Department of Biology, Texas A&M University, TAMU College Station, TX 77843, USA.
| | | |
Collapse
|
33
|
Lynch KS, Ramsey ME, Cummings ME. The mate choice brain: comparing gene profiles between female choice and male coercive poeciliids. GENES, BRAIN, AND BEHAVIOR 2012; 11:222-9. [PMID: 22008245 DOI: 10.1111/j.1601-183x.2011.00742.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genes that mediate mate preferences potentially play a key role in promoting and maintaining biological diversity. In this study, we compare mate preference behavior in two related poeciliid fishes with contrasting behavioral phenotypes and relate these behavioral differences to gene profiles in the brain. Results reveal that one poeciliid fish, the Northern swordtail, exhibits robust mate preference as compared to the Western mosquitofish, which utilizes a coercive mating system. Female swordtails display no significant difference in association time between male- and female-exposure trials, whereas female mosquitofish spend significantly less time associating with males relative to females. Furthermore, the preference strength for large males is significantly lower in female mosquitofish relative to swordtails. We then examine expression of three candidate genes previously shown to be associated with mate preference behavior in female swordtails and linked to neural plasticity in other vertebrates: neuroserpin (NS), neuroligin-3 (NLG-3) and N-methyl-d-aspartate receptor (NMDA-R). Whole brain gene expression patterns reveal that two genes (NS and NLG-3) are positively associated with mate preference behavior in female swordtails, a pattern opposing that of the mosquitofish. In mosquitofish females, these genes are downregulated when females express biases toward males yet are elevated in association with total motor activity patterns under asocial conditions, suggesting that the presence of males in mosquitofish species may inhibit expression of these genes. Both gene expression and female behavioral responses to males exhibit opposing patterns between these species, suggesting that this genetic pathway may potentially act as a substrate for the evolution of mate preference behavior.
Collapse
Affiliation(s)
- K S Lynch
- Integrative Biology Department, University of Texas at Austin, 1 University Place, Austin, TX 78712, USA.
| | | | | |
Collapse
|
34
|
Pontier SM, Schweisguth F. Glycosphingolipids in signaling and development: From liposomes to model organisms. Dev Dyn 2011; 241:92-106. [DOI: 10.1002/dvdy.22766] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2011] [Indexed: 01/05/2023] Open
|
35
|
Dauwalder B. The roles of fruitless and doublesex in the control of male courtship. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:87-105. [PMID: 21906537 DOI: 10.1016/b978-0-12-387003-2.00004-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Male courtship in Drosophila melanogaster is a robust innate behavior that is shaped by sensory input and experience. It is regulated by the general sex-determination pathway through the sex-specific forms of fruitless and doublesex. Recent findings have shown that both fruitless and doublesex are required for courtship. This chapter reviews the role of these proteins and the neurons that express them in the regulation of courtship behavior. In particular it discusses how doublesex and fruitless contribute to the generation of sexually dimorphic neurons, the role of cell death, and the emerging information about circuits that underlie the behavior.
Collapse
Affiliation(s)
- Brigitte Dauwalder
- University of Houston, Department of Biology and Biochemistry, 369 SR2, Houston, TX 77204-5001, USA
| |
Collapse
|