1
|
Ferrando-Marco M, Barkoulas M. EFL-3/E2F7 modulates Wnt signalling by repressing the Nemo-like kinase LIT-1 during asymmetric epidermal cell division in Caenorhabditis elegans. Development 2025; 152:DEV204546. [PMID: 40026193 PMCID: PMC11925398 DOI: 10.1242/dev.204546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025]
Abstract
The E2F family of transcription factors is conserved in higher eukaryotes and plays pivotal roles in controlling gene expression during the cell cycle. Most canonical E2Fs associate with members of the Dimerisation Partner (DP) family to activate or repress target genes. However, atypical repressors, such as E2F7 and E2F8, lack DP interaction domains and their functions are less understood. We report here that EFL-3, the E2F7 homologue of Caenorhabditis elegans, regulates epidermal stem cell differentiation. We show that phenotypic defects in efl-3 mutants depend on the Nemo-like kinase LIT-1. EFL-3 represses lit-1 expression through direct binding to a lit-1 intronic element. Increased LIT-1 expression in efl-3 mutants reduces POP-1/TCF nuclear distribution, and consequently alters Wnt pathway activation. Our findings provide a mechanistic link between an atypical E2F family member and NLK during C. elegans asymmetric cell division, which may be conserved in other animals.
Collapse
|
2
|
Lu X, Wang X, Liu X, Liu X. The multifaceted interactions between Newcastle disease virus proteins and host proteins: a systematic review. Virulence 2024; 15:2299182. [PMID: 38193514 PMCID: PMC10793697 DOI: 10.1080/21505594.2023.2299182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Newcastle disease virus (NDV) typically induces severe illness in poultry and results in significant economic losses for the worldwide poultry sector. NDV, an RNA virus with a single-stranded negative-sense genome, is susceptible to mutation and immune evasion during viral transmission, thus imposing enormous challenges to avian health and poultry production. NDV is composed of six structural proteins and two nonstructural proteins that exert pivotal roles in viral infection and antiviral responses by interacting with host proteins. Nowadays, there is a particular focus on the mechanisms of virus-host protein interactions in NDV research, yet a comprehensive overview of such research is still lacking. Herein, we briefly summarize the mechanisms regarding the effects of virus-host protein interaction on viral infection, pathogenesis, and host immune responses. This review can not only enhance the present comprehension of the mechanism underlying NDV and host interplay, but also furnish a point of reference for the advancement of antiviral measures.
Collapse
Affiliation(s)
- Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Soukup EM, Bettinger JC, Mathies LD. Transcription factors regulating the fate and developmental potential of a multipotent progenitor in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac232. [PMID: 36063055 PMCID: PMC9635636 DOI: 10.1093/g3journal/jkac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Multipotent stem and progenitor cells have the capacity to generate a limited array of related cell types. The Caenorhabditis elegans somatic gonadal precursors are multipotent progenitors that generate all 143 cells of the somatic gonad, including complex tissues and specialized signaling cells. To screen for candidate regulators of cell fate and multipotency, we identified transcription factor genes with higher expression in somatic gonadal precursors than in their differentiated sister, the head mesodermal cell. We used RNA interference or genetic mutants to reduce the function of 183 of these genes and examined the worms for defects in the somatic gonadal precursor cell fate or the ability to generate gonadal tissue types. We identify 8 genes that regulate somatic gonadal precursor fate, including the SWI/SNF chromatin remodeling complex gene swsn-3 and the Ci/GLI homolog tra-1, which is the terminal regulator of sex determination. Four genes are necessary for somatic gonadal precursors to generate the correct number and type of descendant cells. We show that the E2F homolog, efl-3, regulates the cell fate decision between distal tip cells and the sheath/spermathecal precursor. We find that the FACT complex gene hmg-4 is required for the generation of the correct number of somatic gonadal precursor descendants, and we define an earlier role for the nhr-25 nuclear hormone receptor-encoding gene, in addition to its previously described role in regulating the asymmetric division of somatic gonadal precursors. Overall, our data show that genes regulating cell fate are largely different from genes regulating developmental potential, demonstrating that these processes are genetically separable.
Collapse
Affiliation(s)
- Evan M Soukup
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Laura D Mathies
- Corresponding author: Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA 23298-0613, USA.
| |
Collapse
|
4
|
Katsanos D, Ferrando-Marco M, Razzaq I, Aughey G, Southall TD, Barkoulas M. Gene expression profiling of epidermal cell types in C. elegans using Targeted DamID. Development 2021; 148:dev199452. [PMID: 34397094 PMCID: PMC7613258 DOI: 10.1242/dev.199452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
The epidermis of Caenorhabditis elegans is an essential tissue for survival because it contributes to the formation of the cuticle barrier as well as facilitating developmental progression and animal growth. Most of the epidermis consists of the hyp7 hypodermal syncytium, the nuclei of which are largely generated by the seam cells, which exhibit stem cell-like behaviour during development. How seam cell progenitors differ transcriptionally from the differentiated hypodermis is poorly understood. Here, we introduce Targeted DamID (TaDa) in C. elegans as a method for identifying genes expressed within a tissue of interest without cell isolation. We show that TaDa signal enrichment profiles can be used to identify genes transcribed in the epidermis and use this method to resolve differences in gene expression between the seam cells and the hypodermis. Finally, we predict and functionally validate new transcription and chromatin factors acting in seam cell development. These findings provide insights into cell type-specific gene expression profiles likely associated with epidermal cell fate patterning.
Collapse
Affiliation(s)
- Dimitris Katsanos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mar Ferrando-Marco
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Iqrah Razzaq
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Gabriel Aughey
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tony D. Southall
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Michalis Barkoulas
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
5
|
Wang C, Chen H, Li H, Zhang Y, Ren L, Chen C, Wang X, Yu J, Li Z, Liu Y. Tris(1,3-dichloro-2-propyl)phosphate Reduces the Lifespan via Activation of an Unconventional Insulin/Insulin-Like Growth Factor-1 Signaling Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10783-10796. [PMID: 32786597 DOI: 10.1021/acs.est.0c03630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) is an environmental contaminant that has attracted increasing concern due to its presence in environmental media and biological samples. Our previous study demonstrated that exposure to TDCPP reduced the lifespan of Caenorhabditis elegans, but the mechanisms, including the relevant signaling pathways, are unclear. The current study found that TDCPP exposure triggers an unconventional insulin/insulin-like growth factor signaling (IIS) pathway, not by disrupting the insulin-like growth factor-1 receptor DAF-2/IGF1R but by inhibiting the downstream tumor-suppressor factor DAF-18/PTEN. This inhibition reduces PI(3,4,5)P3 (PIP3) dephosphorylation, causing buildup that increases the activation of the Akt/Protein Kinase B (PKB) family of serine/threonine kinases. This activation induces DAF-16/FoxO phosphorylation and promotes the sequestration of DAF-16/FoxO in the cytoplasm, reducing the lifespan of nematodes. Our results have important diagnostic and therapeutic implications for controlling TDCPP-related diseases, especially those originating with IIS pathway components.
Collapse
Affiliation(s)
- Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P. R. China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yunchao Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Luyao Ren
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoli Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P. R. China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
6
|
Activity-Dependent Regulation of the Proapoptotic BH3-Only Gene egl-1 in a Living Neuron Pair in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2019; 9:3703-3714. [PMID: 31519744 PMCID: PMC6829140 DOI: 10.1534/g3.119.400654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The BH3-only family of proteins is key for initiating apoptosis in a variety of contexts, and may also contribute to non-apoptotic cellular processes. Historically, the nematode Caenorhabditis elegans has provided a powerful system for studying and identifying conserved regulators of BH3-only proteins. In C. elegans, the BH3-only protein egl-1 is expressed during development to cell-autonomously trigger most developmental cell deaths. Here we provide evidence that egl-1 is also transcribed after development in the sensory neuron pair URX without inducing apoptosis. We used genetic screening and epistasis analysis to determine that its transcription is regulated in URX by neuronal activity and/or in parallel by orthologs of Protein Kinase G and the Salt-Inducible Kinase family. Because several BH3-only family proteins are also expressed in the adult nervous system of mammals, we suggest that studying egl-1 expression in URX may shed light on mechanisms that regulate conserved family members in higher organisms.
Collapse
|
7
|
Mathies LD, Ray S, Lopez-Alvillar K, Arbeitman MN, Davies AG, Bettinger JC. mRNA profiling reveals significant transcriptional differences between a multipotent progenitor and its differentiated sister. BMC Genomics 2019; 20:427. [PMID: 31138122 PMCID: PMC6540470 DOI: 10.1186/s12864-019-5821-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The two Caenorhabditis elegans somatic gonadal precursors (SGPs) are multipotent progenitors that generate all somatic tissues of the adult reproductive system. The sister cells of the SGPs are two head mesodermal cells (hmcs); one hmc dies by programmed cell death and the other terminally differentiates. Thus, a single cell division gives rise to one multipotent progenitor and one differentiated cell with identical lineage histories. We compared the transcriptomes of SGPs and hmcs in order to learn the determinants of multipotency and differentiation in this lineage. RESULTS We generated a strain that expressed fluorescent markers specifically in SGPs (ehn-3A::tdTomato) and hmcs (bgal-1::GFP). We dissociated cells from animals after the SGP/hmc cell division, but before the SGPs had further divided, and subjected the dissociated cells to fluorescence-activated cell sorting to collect isolated SGPs and hmcs. We analyzed the transcriptomes of these cells and found that 5912 transcripts were significantly differentially expressed, with at least two-fold change in expression, between the two cell types. The hmc-biased genes were enriched with those that are characteristic of neurons. The SGP-biased genes were enriched with those indicative of cell proliferation and development. We assessed the validity of our differentially expressed genes by examining existing reporters for five of the 10 genes with the most significantly biased expression in SGPs and found that two showed expression in SGPs. For one reporter that did not show expression in SGPs, we generated a GFP knock-in using CRISPR/Cas9. This reporter, in the native genomic context, was expressed in SGPs. CONCLUSIONS We found that the transcriptional profiles of SGPs and hmcs are strikingly different. The hmc-biased genes are enriched with those that encode synaptic transmission machinery, which strongly suggests that it has neuron-like signaling properties. In contrast, the SGP-biased genes are enriched with genes that encode factors involved in transcription and translation, as would be expected from a cell preparing to undergo proliferative divisions. Mediators of multipotency are likely to be among the genes differentially expressed in SGPs.
Collapse
Affiliation(s)
- Laura D. Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| | - Surjyendu Ray
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306 USA
| | - Kayla Lopez-Alvillar
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| | - Michelle N. Arbeitman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306 USA
| | - Andrew G. Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| | - Jill C. Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298 USA
| |
Collapse
|
8
|
Programmed Cell Death During Caenorhabditis elegans Development. Genetics 2017; 203:1533-62. [PMID: 27516615 DOI: 10.1534/genetics.115.186247] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general.
Collapse
|
9
|
Sherrard R, Luehr S, Holzkamp H, McJunkin K, Memar N, Conradt B. miRNAs cooperate in apoptosis regulation during C. elegans development. Genes Dev 2017; 31:209-222. [PMID: 28167500 PMCID: PMC5322734 DOI: 10.1101/gad.288555.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022]
Abstract
Sherrard et al. demonstrate that, during embryogenesis, miR-35 and miR-58 bantam family miRNAs cooperate to prevent the precocious death of mothers of cells programmed to die by repressing the gene egl-1, which encodes a proapoptotic BH3-only protein. Programmed cell death occurs in a highly reproducible manner during Caenorhabditis elegans development. We demonstrate that, during embryogenesis, miR-35 and miR-58 bantam family microRNAs (miRNAs) cooperate to prevent the precocious death of mothers of cells programmed to die by repressing the gene egl-1, which encodes a proapoptotic BH3-only protein. In addition, we present evidence that repression of egl-1 is dependent on binding sites for miR-35 and miR-58 family miRNAs within the egl-1 3′ untranslated region (UTR), which affect both mRNA copy number and translation. Furthermore, using single-molecule RNA fluorescent in situ hybridization (smRNA FISH), we show that egl-1 is transcribed in the mother of a cell programmed to die and that miR-35 and miR-58 family miRNAs prevent this mother from dying by keeping the copy number of egl-1 mRNA below a critical threshold. Finally, miR-35 and miR-58 family miRNAs can also dampen the transcriptional boost of egl-1 that occurs specifically in a daughter cell that is programmed to die. We propose that miRNAs compensate for lineage-specific differences in egl-1 transcriptional activation, thus ensuring that EGL-1 activity reaches the threshold necessary to trigger death only in daughter cells that are programmed to die.
Collapse
Affiliation(s)
- Ryan Sherrard
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Sebastian Luehr
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Heinke Holzkamp
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Katherine McJunkin
- Program in Molecular Medicine, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01606, USA
| | - Nadin Memar
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Barbara Conradt
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| |
Collapse
|
10
|
Thurlings I, de Bruin A. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression. Methods Mol Biol 2016; 1342:71-88. [PMID: 26254918 DOI: 10.1007/978-1-4939-2957-3_4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed.
Collapse
Affiliation(s)
- Ingrid Thurlings
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | | |
Collapse
|
11
|
Abstract
Apoptosis is a cellular suicide program, which is on the one hand used to remove superfluous cells thereby promoting tissue or organ morphogenesis. On the other hand, the programmed killing of cells is also critical when potentially harmful cells emerge in a developing or adult organism thereby endangering survival. Due to its critical role apoptosis is tightly controlled, however so far, its regulation on the transcriptional level is less studied and understood. Hox genes, a highly conserved gene family encoding homeodomain transcription factors, have crucial roles in development. One of their prominent functions is to shape animal body plans by eliciting different developmental programs along the anterior-posterior axis. To this end, Hox proteins transcriptionally regulate numerous processes in a coordinated manner, including cell-type specification, differentiation, motility, proliferation as well as apoptosis. In this review, we will focus on how Hox proteins control organismal morphology and function by regulating the apoptotic machinery. We will first focus on well-established paradigms of Hox-apoptosis interactions and summarize how Hox transcription factors control morphological outputs and differentially shape tissues along the anterior-posterior axis by fine-tuning apoptosis in a healthy organism. We will then discuss the consequences when this interaction is disturbed and will conclude with some ideas and concepts emerging from these studies.
Collapse
|
12
|
The translational regulators GCN-1 and ABCF-3 act together to promote apoptosis in C. elegans. PLoS Genet 2014; 10:e1004512. [PMID: 25101958 PMCID: PMC4125083 DOI: 10.1371/journal.pgen.1004512] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 05/31/2014] [Indexed: 12/04/2022] Open
Abstract
The proper regulation of apoptosis requires precise spatial and temporal control of gene expression. While the transcriptional and translational activation of pro-apoptotic genes is known to be crucial to triggering apoptosis, how different mechanisms cooperate to drive apoptosis is largely unexplored. Here we report that pro-apoptotic transcriptional and translational regulators act in distinct pathways to promote programmed cell death. We show that the evolutionarily conserved C. elegans translational regulators GCN-1 and ABCF-3 contribute to promoting the deaths of most somatic cells during development. GCN-1 and ABCF-3 are not obviously involved in the physiological germ-cell deaths that occur during oocyte maturation. By striking contrast, these proteins play an essential role in the deaths of germ cells in response to ionizing irradiation. GCN-1 and ABCF-3 are similarly co-expressed in many somatic and germ cells and physically interact in vivo, suggesting that GCN-1 and ABCF-3 function as members of a protein complex. GCN-1 and ABCF-3 are required for the basal level of phosphorylation of eukaryotic initiation factor 2α (eIF2α), an evolutionarily conserved regulator of mRNA translation. The S. cerevisiae homologs of GCN-1 and ABCF-3, which are known to control eIF2α phosphorylation, can substitute for the worm proteins in promoting somatic cell deaths in C. elegans. We conclude that GCN-1 and ABCF-3 likely control translational initiation in C. elegans. GCN-1 and ABCF-3 act independently of the anti-apoptotic BCL-2 homolog CED-9 and of transcriptional regulators that upregulate the pro-apoptotic BH3-only gene egl-1. Our results suggest that GCN-1 and ABCF-3 function in a pathway distinct from the canonical CED-9-regulated cell-death execution pathway. We propose that the translational regulators GCN-1 and ABCF-3 maternally contribute to general apoptosis in C. elegans via a novel pathway and that the function of GCN-1 and ABCF-3 in apoptosis might be evolutionarily conserved. Apoptosis, also referred to as programmed cell death, is a crucial cellular process that eliminates unwanted cells during animal development and tissue homeostasis. Abnormal regulation of apoptosis can cause developmental defects and a variety of other human disorders, including cancer, neurodegenerative diseases and autoimmune diseases. Therefore, it is important to identify regulatory mechanisms that control apoptosis. Previous studies have demonstrated that the transcriptional induction of apoptotic genes can be crucial to initiating an apoptotic program. Less is known about translational controls of apoptosis. Here we report that the evolutionarily conserved C. elegans translational regulators GCN-1 and ABCF-3 promote apoptosis generally and act independently of the anti-apoptotic BCL-2 homolog CED-9. GCN-1 and ABCF-3 physically interact and maintain the phosphorylation level of eukaryotic initiation factor 2α, suggesting that GCN-1 and ABCF-3 act together to regulate the initiation of translation. We propose that the translational regulators GCN-1 and ABCF-3 maternally contribute to the proper execution of the apoptotic program.
Collapse
|
13
|
Reinke V, Krause M, Okkema P. Transcriptional regulation of gene expression in C. elegans. ACTA ACUST UNITED AC 2013:1-34. [PMID: 23801596 DOI: 10.1895/wormbook.1.45.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
14
|
Carvajal LA, Hamard PJ, Tonnessen C, Manfredi JJ. E2F7, a novel target, is up-regulated by p53 and mediates DNA damage-dependent transcriptional repression. Genes Dev 2012; 26:1533-45. [PMID: 22802528 DOI: 10.1101/gad.184911.111] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The p53 tumor suppressor protein is a transcription factor that exerts its effects on the cell cycle via regulation of gene expression. Although the mechanism of p53-dependent transcriptional activation has been well-studied, the molecular basis for p53-mediated repression has been elusive. The E2F family of transcription factors has been implicated in regulation of cell cycle-related genes, with E2F6, E2F7, and E2F8 playing key roles in repression. In response to cellular DNA damage, E2F7, but not E2F6 or E2F8, is up-regulated in a p53-dependent manner, with p53 being sufficient to increase expression of E2F7. Indeed, p53 occupies the promoter of the E2F7 gene after genotoxic stress, consistent with E2F7 being a novel p53 target. Ablation of E2F7 expression abrogates p53-dependent repression of a subset of its targets, including E2F1 and DHFR, in response to DNA damage. Furthermore, E2F7 occupancy of the E2F1 and DHFR promoters is detected, and expression of E2F7 is sufficient to inhibit cell proliferation. Taken together, these results show that p53-dependent transcriptional up-regulation of its target, E2F7, leads to repression of relevant gene expression. In turn, this E2F7-dependent mechanism contributes to p53-dependent cell cycle arrest in response to DNA damage.
Collapse
Affiliation(s)
- Luis A Carvajal
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
15
|
Ouseph MM, Li J, Chen HZ, Pécot T, Wenzel P, Thompson JC, Comstock G, Chokshi V, Byrne M, Forde B, Chong JL, Huang K, Machiraju R, de Bruin A, Leone G. Atypical E2F repressors and activators coordinate placental development. Dev Cell 2012; 22:849-62. [PMID: 22516201 DOI: 10.1016/j.devcel.2012.01.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 11/23/2011] [Accepted: 01/18/2012] [Indexed: 02/06/2023]
Abstract
The evolutionarily ancient arm of the E2f family of transcription factors consisting of the two atypical members E2f7 and E2f8 is essential for murine embryonic development. However, the critical tissues, cellular processes, and molecular pathways regulated by these two factors remain unknown. Using a series of fetal and placental lineage-specific cre mice, we show that E2F7/E2F8 functions in extraembryonic trophoblast lineages are both necessary and sufficient to carry fetuses to term. Expression profiling and biochemical approaches exposed the canonical E2F3a activator as a key family member that antagonizes E2F7/E2F8 functions. Remarkably, the concomitant loss of E2f3a normalized placental gene expression programs, corrected placental defects, and fostered the survival of E2f7/E2f8-deficient embryos to birth. In summary, we identified a placental transcriptional network tightly coordinated by activation and repression through two distinct arms of the E2F family that is essential for extraembryonic cell proliferation, placental development, and fetal viability.
Collapse
Affiliation(s)
- Madhu M Ouseph
- Solid Tumor Biology Program, Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics Program, Comprehensive Cancer Center, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yeo HC, Beh TT, Quek JJL, Koh G, Chan KKK, Lee DY. Integrated transcriptome and binding sites analysis implicates E2F in the regulation of self-renewal in human pluripotent stem cells. PLoS One 2011; 6:e27231. [PMID: 22076139 PMCID: PMC3208628 DOI: 10.1371/journal.pone.0027231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022] Open
Abstract
Rapid cellular growth and multiplication, limited replicative senescence, calibrated sensitivity to apoptosis, and a capacity to differentiate into almost any cell type are major properties that underline the self-renewal capabilities of human pluripotent stem cells (hPSCs). We developed an integrated bioinformatics pipeline to understand the gene regulation and functions involved in maintaining such self-renewal properties of hPSCs compared to matched fibroblasts. An initial genome-wide screening of transcription factor activity using in silico binding-site and gene expression microarray data newly identified E2F as one of major candidate factors, revealing their significant regulation of the transcriptome. This is underscored by an elevated level of its transcription factor activity and expression in all tested pluripotent stem cell lines. Subsequent analysis of functional gene groups demonstrated the importance of the TFs to self-renewal in the pluripotency-coupled context; E2F directly targets the global signaling (e.g. self-renewal associated WNT and FGF pathways) and metabolic network (e.g. energy generation pathways, molecular transports and fatty acid metabolism) to promote its canonical functions that are driving the self-renewal of hPSCs. In addition, we proposed a core self-renewal module of regulatory interplay between E2F and, WNT and FGF pathways in these cells. Thus, we conclude that E2F plays a significant role in influencing the self-renewal capabilities of hPSCs.
Collapse
Affiliation(s)
- Hock Chuan Yeo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Thian Thian Beh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jovina Jia Ling Quek
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Geoffrey Koh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ken Kwok Keung Chan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (KKKC); (DYL)
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- * E-mail: (KKKC); (DYL)
| |
Collapse
|