1
|
Cui J, Zhang H, Gao X, Zhang X, Luo M, Ren L, Liu S. Correlations of expression of nuclear and mitochondrial genes in triploid fish. G3 GENES|GENOMES|GENETICS 2022; 12:6655693. [PMID: 35924985 PMCID: PMC9434317 DOI: 10.1093/g3journal/jkac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022]
Abstract
Abstract
The expression of nuclear and mitochondrial genes, as well as their coordinated control, regulates cell proliferation, individual development, and disease in animals. However, the potential coregulation between nuclear and mitochondrial genes is unclear in triploid fishes. The two triploids (R2C and RC2) with distinct mitochondrial genomes but similar nuclear genomes exhibit different embryonic development times and growth rates. They are an excellent model for studying how nuclear and mitochondrial genes coordinate. Here, we performed the mRNA-seq of four stages of embryonic development (blastula, gastrula, segmentation, and hatching periods) in the two triploids (R2C and RC2) and their diploid inbred parents (red crucian carp and common carp). After establishing the four patterns of mitochondrial and nuclear gene expression, 270 nuclear genes regulated by mitochondrial genes were predicted. The expression levels of APC16 and Trim33 were higher in RC2 than in R2C, suggesting their potential effects on regulating embryonic development time. In addition, 308 differentially expressed genes filtered from the list of nuclear-encoded mitochondrial genes described by Mercer et al. in 2011 were considered potential genes for which nuclear genes regulate mitochondrial function. The findings might aid in our understanding of the correlation between mitochondrial and nuclear genomes as well as their synergistic effects on embryonic development.
Collapse
Affiliation(s)
- Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University , Changsha 410081, Hunan, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University , Guangzhou 510642, Guangdong, P.R. China
| | - Hong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University , Changsha 410081, Hunan, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University , Guangzhou 510642, Guangdong, P.R. China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University , Changsha 410081, Hunan, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University , Guangzhou 510642, Guangdong, P.R. China
| | - Xueyin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University , Changsha 410081, Hunan, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University , Guangzhou 510642, Guangdong, P.R. China
| | - Mengxue Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University , Changsha 410081, Hunan, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University , Guangzhou 510642, Guangdong, P.R. China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University , Changsha 410081, Hunan, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University , Guangzhou 510642, Guangdong, P.R. China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University , Changsha 410081, Hunan, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University , Guangzhou 510642, Guangdong, P.R. China
| |
Collapse
|
2
|
Wild T, Budzowska M, Hellmuth S, Eibes S, Karemore G, Barisic M, Stemmann O, Choudhary C. Deletion of APC7 or APC16 Allows Proliferation of Human Cells without the Spindle Assembly Checkpoint. Cell Rep 2019; 25:2317-2328.e5. [PMID: 30485802 PMCID: PMC6289045 DOI: 10.1016/j.celrep.2018.10.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/07/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
The multisubunit ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) is essential for mitosis by promoting timely degradation of cyclin B1. APC/C is tightly regulated by the spindle assembly checkpoint (SAC), which involves MPS1 and MAD2-dependent temporal inhibition of APC/C. We analyzed the contribution of the APC/C subunits APC7 and APC16 to APC/C composition and function in human cells. APC16 is required for APC7 assembly into APC/C, whereas APC16 assembles independently of APC7. APC7 and APC16 knockout cells display no major defects in mitotic progression, cyclin B1 degradation, or SAC response, but APC/C lacking these two subunits shows reduced ubiquitylation activity in vitro. Strikingly, deletion of APC7 or APC16 is sufficient to provide synthetic viability to MAD2 deletion. ΔAPC7ΔMAD2 cells display accelerated mitosis and require SAC-independent MPS1 function for genome stability. These findings reveal that the composition of APC/C critically influences the importance of the SAC in humans. APC16 is required for in vivo assembly of APC7 into APC/C APC7 or APC16 deletion has no major effect on mitosis Deletion of APC7 or APC16 provides synthetic viability to MAD2 deletion
Collapse
Affiliation(s)
- Thomas Wild
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Magda Budzowska
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Chromosome Stability (CCS), Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Susanne Hellmuth
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Susana Eibes
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Gopal Karemore
- Protein Imaging Platform, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Marin Barisic
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Chunaram Choudhary
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
APC/C FZR-1 Controls SAS-5 Levels To Regulate Centrosome Duplication in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2017; 7:3937-3946. [PMID: 29030390 PMCID: PMC5714490 DOI: 10.1534/g3.117.300260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As the primary microtubule-organizing center, centrosomes play a key role in establishing mitotic bipolar spindles that secure correct transmission of genomic content. For the fidelity of cell division, centrosome number must be strictly controlled by duplicating only once per cell cycle. Proper levels of centrosome proteins are shown to be critical for normal centrosome number and function. Overexpressing core centrosome factors leads to extra centrosomes, while depleting these factors results in centrosome duplication failure. In this regard, protein turnover by the ubiquitin-proteasome system provides a vital mechanism for the regulation of centrosome protein levels. Here, we report that FZR-1, the Caenorhabditis elegans homolog of Cdh1/Hct1/Fzr, a coactivator of the anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase, functions as a negative regulator of centrosome duplication in the C. elegans embryo. During mitotic cell division in the early embryo, FZR-1 is associated with centrosomes and enriched at nuclei. Loss of fzr-1 function restores centrosome duplication and embryonic viability to the hypomorphic zyg-1(it25) mutant, in part, through elevated levels of SAS-5 at centrosomes. Our data suggest that the APC/CFZR-1 regulates SAS-5 levels by directly recognizing the conserved KEN-box motif, contributing to proper centrosome duplication. Together, our work shows that FZR-1 plays a conserved role in regulating centrosome duplication in C. elegans.
Collapse
|
4
|
Yamaguchi M, Yu S, Qiao R, Weissmann F, Miller DJ, VanderLinden R, Brown NG, Frye JJ, Peters JM, Schulman BA. Structure of an APC3-APC16 complex: insights into assembly of the anaphase-promoting complex/cyclosome. J Mol Biol 2014; 427:1748-64. [PMID: 25490258 DOI: 10.1016/j.jmb.2014.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 01/05/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a massive E3 ligase that controls mitosis by catalyzing ubiquitination of key cell cycle regulatory proteins. The APC/C assembly contains two subcomplexes: the "Platform" centers around a cullin-RING-like E3 ligase catalytic core; the "Arc Lamp" is a hub that mediates transient association with regulators and ubiquitination substrates. The Arc Lamp contains the small subunits APC16, CDC26, and APC13, and tetratricopeptide repeat (TPR) proteins (APC7, APC3, APC6, and APC8) that homodimerize and stack with quasi-2-fold symmetry. Within the APC/C complex, APC3 serves as center for regulation. APC3's TPR motifs recruit substrate-binding coactivators, CDC20 and CDH1, via their C-terminal conserved Ile-Arg (IR) tail sequences. Human APC3 also binds APC16 and APC7 and contains a >200-residue loop that is heavily phosphorylated during mitosis, although the basis for APC3 interactions and whether loop phosphorylation is required for ubiquitination are unclear. Here, we map the basis for human APC3 assembly with APC16 and APC7, report crystal structures of APC3Δloop alone and in complex with the C-terminal domain of APC16, and test roles of APC3's loop and IR tail binding surfaces in APC/C-catalyzed ubiquitination. The structures show how one APC16 binds asymmetrically to the symmetric APC3 dimer and, together with biochemistry and prior data, explain how APC16 recruits APC7 to APC3, show how APC3's C-terminal domain is rearranged in the full APC/C assembly, and visualize residues in the IR tail binding cleft important for coactivator-dependent ubiquitination. Overall, the results provide insights into assembly, regulation, and interactions of TPR proteins and the APC/C.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shanshan Yu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Renping Qiao
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Florian Weissmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ryan VanderLinden
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105 USA
| | - Nicholas G Brown
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremiah J Frye
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105 USA.
| |
Collapse
|
5
|
Abstract
Egg activation is the series of events that transition a mature oocyte to an egg capable of supporting embryogenesis. Increasing evidence points toward phosphorylation as a critical regulator of these events. We used Drosophila melanogaster to investigate the relationship between known egg activation genes and phosphorylation changes that occur upon egg activation. Using the phosphorylation states of four proteins-Giant Nuclei, Young Arrest, Spindly, and Vap-33-1-as molecular markers, we showed that the egg activation genes sarah, CanB2, and cortex are required for the phospho-regulation of multiple proteins. We show that an additional egg activation gene, prage, regulates the phosphorylation state of a subset of these proteins. Finally, we show that Sarah and calcineurin are required for the Anaphase Promoting Complex/Cyclosome (APC/C)-dependent degradation of Cortex following egg activation. From these data, we present a model in which Sarah, through the activation of calcineurin, positively regulates the APC/C at the time of egg activation, which leads to a change in phosphorylation state of numerous downstream proteins.
Collapse
|
6
|
Wang R, Kaul Z, Ambardekar C, Yamamoto TG, Kavdia K, Kodali K, High AA, Kitagawa R. HECT-E3 ligase ETC-1 regulates securin and cyclin B1 cytoplasmic abundance to promote timely anaphase during meiosis in C. elegans. Development 2013; 140:2149-59. [PMID: 23578927 DOI: 10.1242/dev.090688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The anaphase inhibitor securin plays a crucial role in regulating the timing of sister chromatid separation during mitosis. When sister chromatid pairs become bioriented, the E3 ligase anaphase promoting complex/cyclosome (APC/C) ubiquitylates securin for proteolysis, triggering sister chromatid separation. Securin is also implicated in regulating meiotic progression. Securin protein levels change sharply during cell cycle progression, enabling its timely action. To understand the mechanism underlying the tightly regulated dynamics of securin, we analyzed the subcellular localization of the securin IFY-1 during C. elegans development. IFY-1 was highly expressed in the cytoplasm of germ cells. The cytoplasmic level of IFY-1 declined immediately following meiosis I division and remained low during meiosis II and following mitoses. We identified a C. elegans homolog of another type of E3 ligase, UBE3C, designated ETC-1, as a regulator of the cytoplasmic IFY-1 level. RNAi-mediated depletion of ETC-1 stabilized IFY-1 and CYB-1 (cyclin B1) in post-meiosis I embryos. ETC-1 knockdown in a reduced APC function background caused an embryonic lethal phenotype. In vitro, ETC-1 ubiquitylates IFY-1 and CYB-1 in the presence of the E2 enzyme UBC-18, which functions in pharyngeal development. Genetic analysis revealed that UBC-18 plays a distinct role together with ETC-1 in regulating the cytoplasmic level of IFY-1 during meiosis. Our study reports a novel mechanism, mediated by ETC-1, that co-operates with APC/C to maintain the meiotic arrest required for proper cell cycle timing during reproduction.
Collapse
Affiliation(s)
- Ruishan Wang
- Department of Molecular Pharmacology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang Z, Yang J, Kong EH, Chao WCH, Morris EP, da Fonseca PCA, Barford D. Recombinant expression, reconstitution and structure of human anaphase-promoting complex (APC/C). Biochem J 2013; 449:365-71. [PMID: 23078409 DOI: 10.1042/bj20121374] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mechanistic and structural studies of large multi-subunit assemblies are greatly facilitated by their reconstitution in heterologous recombinant systems. In the present paper, we describe the generation of recombinant human APC/C (anaphase-promoting complex/cyclosome), an E3 ubiquitin ligase that regulates cell-cycle progression. Human APC/C is composed of 14 distinct proteins that assemble into a complex of at least 19 subunits with a combined molecular mass of ~1.2 MDa. We show that recombinant human APC/C is correctly assembled, as judged by its capacity to ubiquitinate the budding yeast APC/C substrate Hsl1 (histone synthetic lethal 1) dependent on the APC/C co-activator Cdh1 [Cdc (cell division cycle) 20 homologue 1], and its three-dimensional reconstruction by electron microscopy and single-particle analysis. Successful reconstitution validates the subunit composition of human APC/C. The structure of human APC/C is compatible with the Saccharomyces cerevisiae APC/C homology model, and in contrast with endogenous human APC/C, no evidence for conformational flexibility of the TPR (tetratricopeptide repeat) lobe is observed. Additional density present in the human APC/C structure, proximal to Apc3/Cdc27 of the TPR lobe, is assigned to the TPR subunit Apc7, a subunit specific to vertebrate APC/C.
Collapse
Affiliation(s)
- Ziguo Zhang
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
10
|
SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proc Natl Acad Sci U S A 2012; 109:13853-8. [PMID: 22869741 DOI: 10.1073/pnas.1211418109] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multiprotein E3 ubiquitin ligase involved in ubiquitin-dependent proteolysis of key cell cycle regulatory proteins, including the destruction of mitotic cyclins at the metaphase-to-anaphase transition. Despite its importance, the role of the APC/C in plant cells and the regulation of its activity during cell division remain poorly understood. Here, we describe the identification of a plant-specific negative regulator of the APC/C complex, designated SAMBA. In Arabidopsis thaliana, SAMBA is expressed during embryogenesis and early plant development and plays a key role in organ size control. Samba mutants produced larger seeds, leaves, and roots, which resulted from enlarged root and shoot apical meristems, and, additionally, they had a reduced fertility attributable to a hampered male gametogenesis. Inactivation of SAMBA stabilized A2-type cyclins during early development. Our data suggest that SAMBA regulates cell proliferation during early development by targeting CYCLIN A2 for APC/C-mediated proteolysis.
Collapse
|