1
|
Chen J, Gao G, Liu X. The characteristics of PtHSP40 gene family in Phaeodactylum tricornutum and its response to environmental stresses. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106625. [PMID: 38959781 DOI: 10.1016/j.marenvres.2024.106625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Diatom has evolved response mechanisms to cope with multiple environmental stresses. Heat shock protein 40 (HSP40) plays a key role in these response mechanisms. HSP40 gene family in higher plants has been well-studied. However, the HSP40 gene family has not been systematically investigated in marine diatom. In this study, the bioinformatic characteristics, phylogenetic relationship, conserved motifs, gene structure, chromosome distribution and the transcriptional response of PtHSP40 to different environmental stresses were analyzed in the diatom Phaeodactylum tricornutum, and quantitative real-time PCR was conducted. Totally, 55 putative PtHSP40 genes are distributed to 21 chromosomes. All PtHSP40 proteins can be divided into four groups based on their evolutionary relationship, and 54 of them contain a conserved HPD (histidine-proline-aspartic acid tripeptide) motif. Additionally, six, eleven, ten and four PtHSP40 genes were significantly upregulated under the treatments of nitrogen starvation, phosphorus deprivation, 2,2',4,4'-tetrabrominated biphenyl ether (BDE-47) and ocean acidification, respectively. More interestingly, the expression level of 9 PtHSP40 genes was obviously upregulated in response to nickel stress, suggesting the sensitive to metal stress. The different expression models of PtHSP40 genes to environmental stresses imply the specificity of PtHSP40 proteins under different stresses. This study provides a systematic understanding of the PtHSP40 gene family in P. tricornutum and a comprehensive cognition in its functions and response mechanisms to environmental stresses.
Collapse
Affiliation(s)
- Jichen Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Sciences, Shantou University, Shantou, 515063, Guangdong, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Guang Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Sciences, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
2
|
Yu X, Mo Z, Tang X, Gao T, Mao Y. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress. BMC PLANT BIOLOGY 2021; 21:435. [PMID: 34560838 PMCID: PMC8464122 DOI: 10.1186/s12870-021-03213-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/14/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Individual family members have been analyzed in previous studies, but there has not yet been a comprehensive analysis of the HSP70 gene family in Pyropia yezoensis. RESULTS We investigated 15 putative HSP70 genes in Py. yezoensis. These genes were classified into two sub-families, denoted as DnaK and Hsp110. In each sub-family, there was relative conservation of the gene structure and motif. Synteny-based analysis indicated that seven and three PyyHSP70 genes were orthologous to HSP70 genes in Pyropia haitanensis and Porphyra umbilicalis, respectively. Most PyyHSP70s showed up-regulated expression under different degrees of dehydration stress. PyyHSP70-1 and PyyHSP70-3 were expressed in higher degrees compared with other PyyHSP70s in dehydration treatments, and then expression degrees somewhat decreased in rehydration treatment. Subcellular localization showed PyyHSP70-1-GFP and PyyHSP70-3-GFP were in the cytoplasm and nucleus/cytoplasm, respectively. Similar expression patterns of paired orthologs in Py. yezoensis and Py. haitanensis suggest important roles for HSP70s in intertidal environmental adaptation during evolution. CONCLUSIONS These findings provide insight into the evolution and modification of the PyyHSP70 gene family and will help to determine the functions of the HSP70 genes in Py. yezoensis growth and development.
Collapse
Affiliation(s)
- Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tian Gao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences , Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Hainan Tropical Ocean University), Ministry of Education, Sanya, 572022, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
3
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
4
|
Chlamydomonas reinhardtii tubulin-gene disruptants for efficient isolation of strains bearing tubulin mutations. PLoS One 2020; 15:e0242694. [PMID: 33227038 PMCID: PMC7682851 DOI: 10.1371/journal.pone.0242694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/08/2020] [Indexed: 11/24/2022] Open
Abstract
The single-cell green alga Chlamydomonas reinhardtii possesses two α-tubulin genes (tua1 and tua2) and two β-tubulin genes (tub1 and tub2), with the two genes in each pair encoding identical amino acid sequences. Here, we screened an insertional library to establish eight disruptants with defective tua2, tub1, or tub2 expression. Most of the disruptants did not exhibit major defects in cell growth, flagellar length, or flagellar regeneration after amputation. Because few tubulin mutants of C. reinhardtii have been reported to date, we then used our disruptants, together with a tua1 disruptant obtained from the Chlamydomonas Library Project (CLiP), to isolate tubulin-mutants resistant to the anti-tubulin agents propyzamide (pronamide) or oryzalin. As a result of several trials, we obtained 8 strains bearing 7 different α-tubulin mutations and 12 strains bearing 7 different β-tubulin mutations. One of the mutations is at a residue similar to that of a mutation site known to confer drug resistance in human cancer cells. Some strains had the same amino acid substitutions as those reported previously in C. reinhardtii; however, the mutants with single tubulin genes showed slightly stronger drug-resistance than the previous mutants that express the mutated tubulin in addition to the wild-type tubulin. Such increased drug-resistance may have facilitated sensitive detection of tubulin mutation. Single-tubulin-gene disruptants are thus an efficient background of generating tubulin mutants for the study of the structure–function relationship of tubulin.
Collapse
|
5
|
Verma AK, Tamadaddi C, Tak Y, Lal SS, Cole SJ, Hines JK, Sahi C. The expanding world of plant J-domain proteins. CRITICAL REVIEWS IN PLANT SCIENCES 2019; 38:382-400. [PMID: 33223602 PMCID: PMC7678915 DOI: 10.1080/07352689.2019.1693716] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants maintain cellular proteostasis during different phases of growth and development despite a barrage of biotic and abiotic stressors in an ever-changing environment. This requires a collaborative effort of a cadre of molecular chaperones. Hsp70s and their obligate co-chaperones, J-domain proteins (JDPs), are arguably the most ubiquitous and formidable components of the cellular chaperone network, facilitating numerous and diverse cellular processes and allowing survival under a plethora of stressful conditions. JDPs are also among the most versatile chaperones. Compared to Hsp70s, the number of JDP-encoding genes has proliferated, suggesting the emergence of highly complex Hsp70-JDP networks, particularly in plants. Recent studies indicate that besides the increase in the number of JDP encoding genes; regulatory differences, neo- and sub-functionalization, and inter- and intra-class combinatorial interactions, is rapidly expanding the repertoire of Hsp70-JDP systems. This results in highly robust and functionally diverse chaperone networks in plants. Here, we review the current status of plant JDP research and discuss how the paradigm shift in the field can be exploited toward a better understanding of JDP function and evolution.
Collapse
Affiliation(s)
- Amit K. Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Chetana Tamadaddi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Yogesh Tak
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Silviya S. Lal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sierra J. Cole
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
6
|
Zhu X, Poghosyan E, Rezabkova L, Mehall B, Sakakibara H, Hirono M, Kamiya R, Ishikawa T, Yang P. The roles of a flagellar HSP40 ensuring rhythmic beating. Mol Biol Cell 2018; 30:228-241. [PMID: 30427757 PMCID: PMC6589562 DOI: 10.1091/mbc.e18-01-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HSP40s are regarded as cochaperones, perpetually shuttling client polypeptides to HSP70s for refolding. However, many HSP40s that are central for disparate processes diverge from this paradigm. To elucidate the noncanonical mechanisms, we investigated HSP40 in the radial spoke (RS) complex in flagella. Disruption of the gene by the MRC1 transposon in Chlamydomonas resulted in jerky flagella. Traditional electron microscopy, cryo-electron tomography, and sub-tomogram analysis revealed RSs of various altered morphologies that, unexpectedly, differed between the two RS species. This indicates that HSP40 locks the RS into a functionally rigid conformation, facilitating its interactions with the adjacent central pair apparatus for transducing locally varied mechanical feedback, which permits rhythmic beating. Missing HSP40, like missing RSs, could be restored in a tip-to-base direction when HSP40 mutants fused with a HSP40 donor cell. However, without concomitant de novo RS assembly, the repair was exceedingly slow, suggesting HSP40/RS-coupled intraflagellar trafficking and assembly. Biochemical analysis and modeling uncovered spoke HSP40’s cochaperone traits. On the basis of our data, we propose that HSP40 accompanies its client RS precursor when traveling to the flagellar tip. Upon arrival, both refold in concert to assemble into the mature configuration. HSP40’s roles in chaperoning and structural maintenance shed new light on its versatility and flagellar biology.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bridget Mehall
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Hitoshi Sakakibara
- National Institute of Information and Communications Technology (NICT), Advanced ICT Research Institute, Hyogo 651-2492, Japan
| | - Masafumi Hirono
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
| | - Ritsu Kamiya
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Takashi Ishikawa
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
7
|
Macrander JC, Dimond JL, Bingham BL, Reitzel AM. Transcriptome sequencing and characterization of Symbiodinium muscatinei and Elliptochloris marina, symbionts found within the aggregating sea anemone Anthopleura elegantissima. Mar Genomics 2017; 37:82-91. [PMID: 28888836 DOI: 10.1016/j.margen.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/26/2017] [Accepted: 08/27/2017] [Indexed: 12/20/2022]
Abstract
There is a growing body of literature using transcriptomic data to study how tropical cnidarians and their photosynthetic endosymbionts respond to environmental stressors and participate in metabolic exchange. Despite these efforts, our understanding of how essential genes function to facilitate symbiosis establishment and maintenance remains limited. The inclusion of taxonomically and ecologically diverse endosymbionts will enhance our understanding of these interactions. Here we characterize the transcriptomes of two very different symbionts found within the temperate sea anemone Anthopleura elegantissima: the chlorophyte Elliptochloris marina and the dinoflagellate Symbiodinium muscatinei. We use a multi-level approach to assess the diversity of genes found across S. muscatinei and E. marina transcriptomes, and compare their overall protein domains with other dinoflagellates and chlorophytes. Our analysis identified several genes that are potentially involved in mitigating stress response (e.g., heat shock proteins pathways for mediating reactive oxygen species) and metabolic exchange (e.g., ion transporters). Finally, we show that S. muscatinei and other Symbiodinium strains are equipped with a high salt peridinin-chl-protein (HSPCP) gene previously identified only in free-living dinoflagellates. The addition of these transcriptomes to the cnidarian-symbiont molecular toolkit will aid in understanding how these vitally important symbiotic relationships are established and maintained across a variety of environmental conditions.
Collapse
Affiliation(s)
- Jason C Macrander
- Department of Biological Sciences, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA.
| | - James L Dimond
- Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes, WA 98221, USA
| | - Brian L Bingham
- Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes, WA 98221, USA; Department of Environmental Sciences, Western Washington University, 516 High Street, Bellingham, WA 98225, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| |
Collapse
|
8
|
Dutcher SK, O'Toole ET. The basal bodies of Chlamydomonas reinhardtii. Cilia 2016; 5:18. [PMID: 27252853 PMCID: PMC4888484 DOI: 10.1186/s13630-016-0039-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/09/2016] [Indexed: 12/13/2022] Open
Abstract
The unicellular green alga, Chlamydomonas reinhardtii, is a biflagellated cell that can swim or glide. C. reinhardtii cells are amenable to genetic, biochemical, proteomic, and microscopic analysis of its basal bodies. The basal bodies contain triplet microtubules and a well-ordered transition zone. Both the mother and daughter basal bodies assemble flagella. Many of the proteins found in other basal body-containing organisms are present in the Chlamydomonas genome, and mutants in these genes affect the assembly of basal bodies. Electron microscopic analysis shows that basal body duplication is site-specific and this may be important for the proper duplication and spatial organization of these organelles. Chlamydomonas is an excellent model for the study of basal bodies as well as the transition zone.
Collapse
|
9
|
Krtková J, Benáková M, Schwarzerová K. Multifunctional Microtubule-Associated Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:474. [PMID: 27148302 PMCID: PMC4838777 DOI: 10.3389/fpls.2016.00474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of WashingtonSeattle, WA, USA
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martina Benáková
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- Department of Biology, Faculty of Science, University of Hradec KrálovéRokitanského, Czech Republic
| | - Kateřina Schwarzerová
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
10
|
Parrotta L, Faleri C, Cresti M, Cai G. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. PLANTA 2016; 243:43-63. [PMID: 26335855 DOI: 10.1007/s00425-015-2394-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/25/2015] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION Heat stress changes isoform content and distribution of cytoskeletal subunits in pollen tubes affecting accumulation of secretory vesicles and distribution of sucrose synthase, an enzyme involved in cell wall synthesis. Plants are sessile organisms and are therefore exposed to damages caused by the predictable increase in temperature. We have analyzed the effects of temperatures on the development of pollen tubes by focusing on the cytoskeleton and related processes, such as vesicular transport and cell wall synthesis. First, we show that heat stress affects pollen germination and, to a lesser extent, pollen tube growth. Both, microtubules and actin filaments, are damaged by heat treatment and changes of actin and tubulin isoforms were observed in both cases. Damages to actin filaments mainly concern the actin array present in the subapex, a region critical for determining organelle and vesicle content in the pollen tube apex. In support of this, green fluorescent protein-labeled vesicles are arranged differently between heat-stressed and control samples. In addition, newly secreted cell wall material (labeled by propidium iodide) shows an altered distribution. Damage induced by heat stress also extends to proteins that bind actin and participate in cell wall synthesis, such as sucrose synthase. Ultimately, heat stress affects the cytoskeleton thereby causing alterations in the process of vesicular transport and cell wall deposition.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Claudia Faleri
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Mauro Cresti
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy.
| |
Collapse
|
11
|
Lin H, Dutcher SK. Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii. Methods Cell Biol 2015; 127:349-86. [PMID: 25837400 DOI: 10.1016/bs.mcb.2014.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Flagellar assembly requires intraflagellar transport of components from the cell body to the flagellar tip for assembly. The understanding of flagellar assembly has been aided by the ease of biochemistry and the availability of mutants in the unicellular green alga, Chlamydomonas reinhardtii. In this chapter, we discuss means to identify genes involved in these processes using forward and reverse genetics. In particular, the ease and low cost of whole genome sequencing (WGS) will help to make gene identification easier and promote the understanding of this important process.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University, St. Louis, MO, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University, St. Louis, MO, USA.
| |
Collapse
|
12
|
Fukuda Y, Akematsu T, Attiq R, Tada C, Nakai Y, Pearlman RE. Role of the Cytosolic Heat Shock Protein 70 Ssa5 in the Ciliate Protozoan Tetrahymena thermophila. J Eukaryot Microbiol 2015; 62:481-93. [DOI: 10.1111/jeu.12203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Yasuhiro Fukuda
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | | | - Rizwan Attiq
- Department of Biology; York University; Toronto Ontario Canada
| | - Chika Tada
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | - Yutaka Nakai
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University; Osaki Japan
| | | |
Collapse
|
13
|
Parrotta L, Cresti M, Cai G. Heat-shock protein 70 binds microtubules and interacts with kinesin in tobacco pollen tubes. Cytoskeleton (Hoboken) 2013; 70:522-37. [PMID: 24039249 DOI: 10.1002/cm.21134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 11/11/2022]
Abstract
The heat-shock proteins of 70 kDa are a family of ubiquitously expressed proteins important for protein folding. Heat-shock protein 70 assists other nascent proteins to achieve the spatial structure and ultimately helps the cell to protect against stress factors, such as heat. These proteins are localized in different cellular compartments and are associated with the cytoskeleton. We identified a heat-shock protein 70 isoform in the pollen tube of tobacco that binds to microtubules in an ATP-dependent manner. The heat-shock protein 70 was identified as part of the so-called ATP-MAP (ATP-dependent microtubule-associated protein) fraction, which also includes the 90-kDa kinesin, a mitochondria-associated motor protein. The identity of heat-shock protein 70 was validated by immunological assays and mass spectrometry. Sequence analysis showed that this heat-shock protein 70 is more similar to specific heat-shock proteins of Arabidopsis than to corresponding proteins of tobacco. Two-dimensional electrophoresis indicated that this heat-shock protein 70 isoform only is part of the ATP-MAP fraction and that is associated with the mitochondria of pollen tubes. Sedimentation assays showed that the binding of heat-shock protein 70 to microtubules is not affected by AMPPNP but it increases in the presence of the 90-kDa kinesin. Binding of heat-shock protein 70 to microtubules occurs only partially in the presence of ATP but it does not occur if, in addition to ATP, the 90-kDa kinesin is also present. Data suggest that the binding (but not the release) of heat-shock protein 70 to microtubules is facilitated by the 90-kDa kinesin.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento di Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | | | | |
Collapse
|
14
|
Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Funct Integr Genomics 2013; 13:391-402. [DOI: 10.1007/s10142-013-0331-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 06/16/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
|
15
|
Widlund PO, Podolski M, Reber S, Alper J, Storch M, Hyman AA, Howard J, Drechsel DN. One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Mol Biol Cell 2012; 23:4393-401. [PMID: 22993214 PMCID: PMC3496613 DOI: 10.1091/mbc.e12-06-0444] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A method is presented that allows rapid and efficient purification of native, active tubulin from a variety of species and tissue sources by affinity chromatography. It eliminates the need to use heterologous systems for the study of microtubule-associated proteins and motor proteins, which has been a major issue in microtubule-related research. We have developed a protocol that allows rapid and efficient purification of native, active tubulin from a variety of species and tissue sources by affinity chromatography. The affinity matrix comprises a bacterially expressed, recombinant protein, the TOG1/2 domains from Saccharomyces cerevisiae Stu2, covalently coupled to a Sepharose support. The resin has a high capacity to specifically bind tubulin from clarified crude cell extracts, and, after washing, highly purified tubulin can be eluted under mild conditions. The eluted tubulin is fully functional and can be efficiently assembled into microtubules. The method eliminates the need to use heterologous systems for the study of microtubule-associated proteins and motor proteins, which has been a major issue in microtubule-related research.
Collapse
Affiliation(s)
- Per O Widlund
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|