1
|
Oda H, Nakamura T, Toki W, Niimi T. Morphological Study of Left-Right Head Asymmetry in Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae). Zoolog Sci 2024; 41:448-455. [PMID: 39436006 DOI: 10.2108/zs240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 10/23/2024]
Abstract
Left-right asymmetry in paired organs is well documented across various species, including the claws of fiddler crabs and snail-eating snakes' dentition. However, the mechanisms underlying these asymmetries remain largely elusive. This study investigates Doubledaya bucculenta (Coleoptera: Erotylidae), a lizard beetle species known for pronounced left-sided asymmetry in adult female mandible and gena. Given that insect mouthparts comprise multiple functionally significant appendages, we aimed to clarify the degree of asymmetry extending beyond the mandibles and genae. Phenotypic morphology was assessed through trait measurement and asymmetry index calculations. Our detailed morphometric analyses revealed left-longer asymmetry not only in mandibles and genae but also in maxillae and labium. Notably, the degree of asymmetry in other mouthparts was generally less pronounced compared to that in outer mandibles, suggesting a potential influence of left mandible development on other mouthparts. Additionally, male mandibles exhibited region-specific asymmetry, potentially indicative of constrained evolutionary adaptations. This study enhances a comprehensive understanding of adult phenotype morphology and offers insights into the developmental basis of asymmetrical mouthparts.
Collapse
Affiliation(s)
- Hiroki Oda
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan,
- Basic Biology Program, Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Wataru Toki
- Laboratory of Forest Protection, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan,
- Basic Biology Program, Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
2
|
Ye ZF, Zhang P, Gai TT, Lou JH, Dai FY, Tong XL. Sob gene is critical to wing development in Bombyx mori and Tribolium castaneum. INSECT SCIENCE 2022; 29:65-77. [PMID: 33822467 DOI: 10.1111/1744-7917.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The development of insect appendages requires the expression of multiple genes in a strict spatial and temporal order. The odd-skipped family genes are vital transcriptional factors involved in embryonic development. The development and morphogenesis of the insect wing requires multiple transcription factors to regulate the expression of wing patterning genes at the transcriptional level. However, the function of odd-related genes in insect wing morphogenesis and development during postembryonic stages is unclear. We focused on the roles of the sister of odd and bowl (sob) gene, a member of odd-skipped family genes, during the wing morphopoiesis in Bombyx mori using the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 system and in Tribolium castaneum by RNA interference. The results showed that the wings were significantly smaller and degenerated, and wing veins were indistinct in the sob gene loss-of-function group in both B. mori and T. castaneum. Quantitative real-time polymerase chain reaction revealed that the Tcsob gene regulated the expression of wing development genes, such as the cht 7 and the vg gene. The findings suggest the importance of sob gene in insect wing morphology formation during postembryonic stages.
Collapse
Affiliation(s)
- Zhan-Feng Ye
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Pan Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Ting-Ting Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Jing-Hou Lou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Chafino S, Martín D, Franch-Marro X. Activation of EGFR signaling by Tc-Vein and Tc-Spitz regulates the metamorphic transition in the red flour beetle Tribolium castaneum. Sci Rep 2021; 11:18807. [PMID: 34552169 PMCID: PMC8458297 DOI: 10.1038/s41598-021-98334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Animal development relies on a sequence of specific stages that allow the formation of adult structures with a determined size. In general, juvenile stages are dedicated mainly to growth, whereas last stages are devoted predominantly to the maturation of adult structures. In holometabolous insects, metamorphosis marks the end of the growth period as the animals stops feeding and initiate the final differentiation of the tissues. This transition is controlled by the steroid hormone ecdysone produced in the prothoracic gland. In Drosophila melanogaster different signals have been shown to regulate the production of ecdysone, such as PTTH/Torso, TGFß and Egfr signaling. However, to which extent the roles of these signals are conserved remains unknown. Here, we study the role of Egfr signaling in post-embryonic development of the basal holometabolous beetle Tribolium castaneum. We show that Tc-Egfr and Tc-pointed are required to induced a proper larval-pupal transition through the control of the expression of ecdysone biosynthetic genes. Furthermore, we identified an additional Tc-Egfr ligand in the Tribolium genome, the neuregulin-like protein Tc-Vein (Tc-Vn), which contributes to induce larval-pupal transition together with Tc-Spitz (Tc-Spi). Interestingly, we found that in addition to the redundant role in the control of pupa formation, each ligand possesses different functions in organ morphogenesis. Whereas Tc-Spi acts as the main ligand in urogomphi and gin traps, Tc-Vn is required in wings and elytra. Altogether, our findings show that in Tribolium, post-embryonic Tc-Egfr signaling activation depends on the presence of two ligands and that its role in metamorphic transition is conserved in holometabolous insects.
Collapse
Affiliation(s)
- Sílvia Chafino
- grid.507636.10000 0004 0424 5398Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta 37, 08003 Barcelona, Catalonia Spain
| | - David Martín
- grid.507636.10000 0004 0424 5398Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta 37, 08003 Barcelona, Catalonia Spain
| | - Xavier Franch-Marro
- grid.507636.10000 0004 0424 5398Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta 37, 08003 Barcelona, Catalonia Spain
| |
Collapse
|
4
|
Thümecke S, Schröder R. The odd-skipped related gene drumstick is required for leg development in the beetle Tribolium castaneum. Dev Dyn 2021; 251:1456-1471. [PMID: 33871128 DOI: 10.1002/dvdy.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The evolutionarily conserved odd-skipped related genes odd-skipped (odd), drumstick (drm), sister of odd and bowel (sob), and brother-of-odd-with-entrails-limited (bwl) act downstream of the Notch pathway in various insect tissues including the appendages and the gut. While the function of some of these genes have been analyzed in the adult Tribolium beetle, the expression during and their requirement for embryonic development is not known. RESULTS We describe here the embryonic expression patterns of drm, sob, and bwl and analyze the RNAi knockdown phenotypes with emphasize on the appendages and the hindgut. We show that in Tribolium, drm acts independently of other odd-family members in the formation of legs, hindgut, and the dorsal epidermis. Moreover, we establish drm and sob as further markers for segment borders in the appendages that include the gnathobasic mandibles. CONCLUSIONS We conclude that the regulatory interrelationship among the odd genes differs between Tribolium and Drosophila, where odd and drm seem to act redundantly. In Tribolium, the genes drm and sob uncover the relict of a precoxal joint incorporated in the lateral body wall.
Collapse
Affiliation(s)
- Susanne Thümecke
- Institut für Insektenbiotechnologie, Universität Gießen, Gießen, Germany.,Institut für Biowissenschaften, Universität Rostock, Rostock, Germany
| | - Reinhard Schröder
- Institut für Biowissenschaften, Universität Rostock, Rostock, Germany
| |
Collapse
|
5
|
Martín D, Chafino S, Franch-Marro X. How stage identity is established in insects: the role of the Metamorphic Gene Network. CURRENT OPINION IN INSECT SCIENCE 2021; 43:29-38. [PMID: 33075581 DOI: 10.1016/j.cois.2020.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Proper formation of adult insects requires the integration of spatial and temporal regulatory axes. Whereas spatial information confers identity to each tissue, organ and appendage, temporal information specifies at which stage of development the animal is. Regardless of the type of post-embryonic development, either hemimetabolous or holometabolous, temporal specificity is achieved through interactions between the temporal identity genes Kr-h1, E93 and Br-C, whose sequential expression is controlled by the two major developmental hormones, 20-hydroxyecdysone and Juvenile hormone. Given the intimate regulatory connection between these three factors to specify life stage identity, we dubbed the regulatory axis that comprises these genes as the Metamorphic Gene Network (MGN). In this review, we survey the molecular mechanisms underlying the control by the MGN of stage identity and progression in hemimetabolous and holometabolous insects.
Collapse
Affiliation(s)
- David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvia Chafino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
6
|
Game M, Smith FW. Loss of intermediate regions of perpendicular body axes contributed to miniaturization of tardigrades. Proc Biol Sci 2020; 287:20201135. [PMID: 33043863 DOI: 10.1098/rspb.2020.1135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tardigrades have a miniaturized body plan. Miniaturization in tardigrades is associated with the loss of several organ systems and an intermediate region of their anteroposterior (AP) axis. However, how miniaturization has affected tardigrade legs is unclear. In arthropods and in onychophorans, the leg gap genes are expressed in regionalized proximodistal (PD) patterns in the legs. Functional studies indicate that these genes regulate growth in their respective expression domains and establish PD identities, partly through mutually antagonistic regulatory interactions. Here, we investigated the expression patterns of tardigrade orthologs of the leg gap genes. Rather than being restricted to a proximal leg region, as in arthropods and onychophorans, we detected coexpression of orthologues of homothorax and extradenticle broadly across the legs of the first three trunk segments in the tardigrade Hypsibius exemplaris. We could not identify a dachshund orthologue in tardigrade genomes, a gene that is expressed in an intermediate region of developing legs in arthropods and onychophorans, suggesting that this gene was lost in the tardigrade lineage. We detected Distal-less expression broadly across all developing leg buds in H. exemplaris embryos, unlike in arthropods and onychophorans, in which it exhibits a distally restricted expression domain. The broad expression patterns of the remaining leg gap genes in H. exemplaris legs may reflect the loss of dachshund and the accompanying loss of an intermediate region of the legs in the tardigrade lineage. We propose that the loss of intermediate regions of both the AP and PD body axes contributed to miniaturization of Tardigrada.
Collapse
Affiliation(s)
- Mandy Game
- Biology Department, University of North Florida, USA
| | - Frank W Smith
- Biology Department, University of North Florida, USA
| |
Collapse
|
7
|
Morphology and Material Composition of the Mouthparts of Stromatium unicolor Olivier 1795 (Coleoptera: Cerambycidae) for Bionic Application. FORESTS 2020. [DOI: 10.3390/f11070715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: The novelty of this study is the deep analysis of the morphologic, geometric and mechanical performance of longhorn beetle larvae mouthparts. Furthermore, a metal nano identification of jaw reinforced parts was made. Background and Objectives: Analysis of insect mechanical properties has shown an important application in the develop of bionic technologies such as new materials, industrial machines and structural concepts. This study aims to determine the mechanical and geometric properties of longhorn beetle (Stromatium unicolor Olivier 1795) larvae mouthparts to improve the development of innovative cutting tools. In addition, this study obtains a nano identification of metals in the cuticle of the mouthparts, which will enable the development of new nontoxic and sustainable preservation agents against xylophagous insects based on nanoparticles. Materials and Methods: five third-larval-stage samples of Stromatium unicolor were used to study its mandible morphologic, geometric and mechanical properties. To this end, mouthparts were analyzed by several microscopic techniques using a scanning electron microscope, a stereomicroscope and an optical microscope. Composition analysis was performed using with two Analytical-Inca X-ray detectors, dispersive energy spectroscopy and dispersive wavelength spectroscopy. Results: The main geometric parameters of the insect jaw are the edge angle (β = 77.3°), maximum path depth of the insect (120 μm), length (800 µm) and mouthpart movement, which were identified and measured. The chemical analysis results of the jaw tissues shows the presence of zinc and manganese. Conclusions: The geometry and angles of the mouthparts can be applied in the fabrication of bionic self-sharpening cutting tools. Molecular compounds that form the reinforcing elements in the jaws can be used to develop wood preservatives based on nanometals and metal absorption and metabolism inhibitors.
Collapse
|
8
|
Fujisawa T, Sasabe M, Nagata N, Takami Y, Sota T. Genetic basis of species-specific genitalia reveals role in species diversification. SCIENCE ADVANCES 2019; 5:eaav9939. [PMID: 31249868 PMCID: PMC6594765 DOI: 10.1126/sciadv.aav9939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
The diversity of genital morphology among closely related animals with internal fertilization is well known, but the genetic backgrounds are unclear. Here, we show that, in Carabus (Ohomopterus) beetles showing correlated evolution of male and female genital parts, only a few major quantitative trait loci (QTLs) determine differences in genital dimensions between sister species, and sequence divergence is pronounced in the genomic regions containing genital QTLs. The major QTLs for male and female genital dimensions reside in different locations within the same linkage group, implying that coevolution between the sexes is only loosely constrained and can respond to sexually antagonistic selection. The same genomic regions containing the major QTLs show elevated divergence between three pairs of parapatric species with marked differences in genital parts. Our study demonstrates that species diversification can follow coevolution of genitalia between the sexes, even without tight linkage of loci affecting male and female genital dimensions.
Collapse
Affiliation(s)
- Tomochika Fujisawa
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Masataka Sasabe
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Nobuaki Nagata
- Division of Collections Conservation, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Yasuoki Takami
- Graduate School of Human Development and Environment, Kobe University, Kobe 657-8501, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Sugime Y, Oguchi K, Gotoh H, Hayashi Y, Matsunami M, Shigenobu S, Koshikawa S, Miura T. Termite soldier mandibles are elongated by dachshund under hormonal and Hox gene controls. Development 2019; 146:dev.171942. [PMID: 30833380 DOI: 10.1242/dev.171942] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/12/2019] [Indexed: 11/20/2022]
Abstract
In social insects, interactions among colony members trigger caste differentiation with morphological modifications. In termite soldier differentiation, the mandible size considerably increases through two moltings (via the presoldier stage) under the control of juvenile hormone (JH). Regulatory genes are predicted to provide patterning information that induces the mandible-specific cell proliferation. To identify factors responsible for the mandibular enlargement, expression analyses of 18 candidate genes were carried out in the termite Hodotermopsis sjostedti Among those, dachshund (dac), which identifies the intermediate domain along the proximodistal appendage axis, showed mandible-specific upregulation prior to the molt into presoldiers, which can explain the pattern of cell proliferation for the mandibular elongation. Knockdown of dac by RNAi reduced the mandibular length and distorted its morphology. Furthermore, the epistatic relationships among Methoprene tolerant, Insulin receptor, Deformed (Dfd) and dac were revealed by combined RNAi and qRT-PCR analyses, suggesting that dac is regulated by Dfd, downstream of the JH and insulin signaling pathways. Thus, caste-specific morphogenesis is controlled by interactions between the factors that provide spatial information and physiological status.
Collapse
Affiliation(s)
- Yasuhiro Sugime
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Kohei Oguchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Miura, Kanagawa, 238-0225, Japan
| | - Hiroki Gotoh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshinobu Hayashi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Department of Biology, Keio University, Yokohama, Kanagawa, 223-8521, Japan
| | - Masatoshi Matsunami
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Shigeyuki Koshikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan .,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
10
|
Jockusch EL. Developmental and Evolutionary Perspectives on the Origin and Diversification of Arthropod Appendages. Integr Comp Biol 2017; 57:533-545. [DOI: 10.1093/icb/icx063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
11
|
Strobl F, Klees S, Stelzer EHK. Light Sheet-based Fluorescence Microscopy of Living or Fixed and Stained Tribolium castaneum Embryos. J Vis Exp 2017. [PMID: 28518097 DOI: 10.3791/55629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The red flour beetle Tribolium castaneum has become an important insect model organism in developmental genetics and evolutionary developmental biology. The observation of Tribolium embryos with light sheet-based fluorescence microscopy has multiple advantages over conventional widefield and confocal fluorescence microscopy. Due to the unique properties of a light sheet-based microscope, three dimensional images of living specimens can be recorded with high signal-to-noise ratios and significantly reduced photo-bleaching as well as photo-toxicity along multiple directions over periods that last several days. With more than four years of methodological development and a continuous increase of data, the time seems appropriate to establish standard operating procedures for the usage of light sheet technology in the Tribolium community as well as in the insect community at large. This protocol describes three mounting techniques suitable for different purposes, presents two novel custom-made transgenic Tribolium lines appropriate for long-term live imaging, suggests five fluorescent dyes to label intracellular structures of fixed embryos and provides information on data post-processing for the timely evaluation of the recorded data. Representative results concentrate on long-term live imaging, optical sectioning and the observation of the same embryo along multiple directions. The respective datasets are provided as a downloadable resource. Finally, the protocol discusses quality controls for live imaging assays, current limitations and the applicability of the outlined procedures to other insect species. This protocol is primarily intended for developmental biologists who seek imaging solutions that outperform standard laboratory equipment. It promotes the continuous attempt to close the gap between the technically orientated laboratories/communities, which develop and refine microscopy methodologically, and the life science laboratories/communities, which require 'plug-and-play' solutions to technical challenges. Furthermore, it supports an axiomatic approach that moves the biological questions into the center of attention.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg
| | - Selina Klees
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg
| | - Ernst H K Stelzer
- Physical Biology, Buchmann Institute for Molecular Life Sciences (BMLS); Cluster of Excellence Frankfurt, Macromolecular Complexes; Goethe-Universität Frankfurt am Main - Campus Riedberg;
| |
Collapse
|
12
|
The Noncell Autonomous Requirement of Proboscipedia for Growth and Differentiation of the Distal Maxillary Palp during Metamorphosis of Drosophila melanogaster. GENETICS RESEARCH INTERNATIONAL 2017; 2017:2624170. [PMID: 28357140 PMCID: PMC5357526 DOI: 10.1155/2017/2624170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
The Drosophila maxillary palpus that develops during metamorphosis is composed of two elements: the proximal maxillary socket and distal maxillary palp. The HOX protein, Proboscipedia (PB), was required for development of the proximal maxillary socket and distal maxillary palp. For growth and differentiation of the distal maxillary palp, PB was required in the cells of, or close to, the maxillary socket, as well as the cells of the distal maxillary palp. Therefore, PB is required in cells outside the distal maxillary palp for the expression, by some mechanism, of a growth factor or factors that promote the growth of the distal maxillary palp. Both wingless (wg) and hedgehog (hh) genes were expressed in cells outside the distal maxillary palp in the lancinia and maxillary socket, respectively. Both wg and hh were required for distal maxillary palp growth, and hh was required noncell autonomously for distal maxillary palp growth. However, expression of wg-GAL4 and hh-GAL4 during maxillary palp differentiation did not require PB, ruling out a direct role for PB in the regulation of transcription of these growth factors.
Collapse
|
13
|
Gotoh H, Zinna RA, Ishikawa Y, Miyakawa H, Ishikawa A, Sugime Y, Emlen DJ, Lavine LC, Miura T. The function of appendage patterning genes in mandible development of the sexually dimorphic stag beetle. Dev Biol 2016; 422:24-32. [PMID: 27989519 DOI: 10.1016/j.ydbio.2016.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/30/2022]
Abstract
One of the defining features of the evolutionary success of insects is the morphological diversification of their appendages, especially mouthparts. Although most insects share a common mouthpart ground plan, there is remarkable diversity in the relative size and shapes of these appendages among different insect lineages. One of the most prominent examples of mouthpart modification can be found in the enlargement of mandibles in stag beetles (Coleoptera, Insecta). In order to understand the proximate mechanisms of mouthpart modification, we investigated the function of appendage-patterning genes in mandibular enlargement during extreme growth of the sexually dimorphic mandibles of the stag beetle Cyclommatus metallifer. Based on knowledge from Drosophila and Tribolium studies, we focused on seven appendage patterning genes (Distal-less (Dll), aristaless (al), dachshund (dac), homothorax (hth), Epidermal growth factor receptor (Egfr), escargot (esg), and Keren (Krn). In order to characterize the developmental function of these genes, we performed functional analyses by using RNA interference (RNAi). Importantly, we found that RNAi knockdown of dac resulted in a significant mandible size reduction in males but not in female mandibles. In addition to reducing the size of mandibles, dac knockdown also resulted in a loss of the serrate teeth structures on the mandibles of males and females. We found that al and hth play a significant role during morphogenesis of the large male-specific inner mandibular tooth. On the other hand, knockdown of the distal selector gene Dll did not affect mandible development, supporting the hypothesis that mandibles likely do not contain the distal-most region of the ancestral appendage and therefore co-option of Dll expression is unlikely to be involved in mandible enlargement in stag beetles. In addition to mandible development, we explored possible roles of these genes in controlling the divergent antennal morphology of Coleoptera.
Collapse
Affiliation(s)
- Hiroki Gotoh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Department of Entomology, Washington State University, Pullman, WA 99164, USA; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Robert A Zinna
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Yuki Ishikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Graduate School of Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hitoshi Miyakawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Asano Ishikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yasuhiro Sugime
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Douglas J Emlen
- Division of Biological Sciences, University of Montana-Missoula, MT 59812, USA
| | - Laura C Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
14
|
Chipman AD. An embryological perspective on the early arthropod fossil record. BMC Evol Biol 2015; 15:285. [PMID: 26678148 PMCID: PMC4683962 DOI: 10.1186/s12862-015-0566-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our understanding of the early evolution of the arthropod body plan has recently improved significantly through advances in phylogeny and developmental biology and through new interpretations of the fossil record. However, there has been limited effort to synthesize data from these different sources. Bringing an embryological perspective into the fossil record is a useful way to integrate knowledge from different disciplines into a single coherent view of arthropod evolution. RESULTS I have used current knowledge on the development of extant arthropods, together with published descriptions of fossils, to reconstruct the germband stages of a series of key taxa leading from the arthropod lower stem group to crown group taxa. These reconstruction highlight the main evolutionary transitions that have occurred during early arthropod evolution, provide new insights into the types of mechanisms that could have been active and suggest new questions and research directions. CONCLUSIONS The reconstructions suggest several novel homology hypotheses - e.g. the lower stem group head shield and head capsules in the crown group are all hypothesized to derive from the embryonic head lobes. The homology of anterior segments in different groups is resolved consistently. The transition between "lower-stem" and "upper-stem" arthropods is highlighted as a major transition with a concentration of novelties and innovations, suggesting a gap in the fossil record. A close relationship between chelicerates and megacheirans is supported by the embryonic reconstructions, and I suggest that the depth of the mandibulate-chelicerate split should be reexamined.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel. .,The Department of Paleobiology, The Smithsonian Museum of Natural History, Washington, DC, USA.
| |
Collapse
|
15
|
Notch signaling induces cell proliferation in the labrum in a regulatory network different from the thoracic legs. Dev Biol 2015; 408:164-77. [DOI: 10.1016/j.ydbio.2015.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 11/18/2022]
|
16
|
Molecular developmental evidence for a subcoxal origin of pleurites in insects and identity of the subcoxa in the gnathal appendages. Sci Rep 2015; 5:15757. [PMID: 26507752 PMCID: PMC4623811 DOI: 10.1038/srep15757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/29/2015] [Indexed: 11/11/2022] Open
Abstract
Pleurites are chitinous plates in the body wall of insects and myriapods. They are believed to be an adaptation to locomotion on land but their developmental and evolutionary origins are unclear. A widely endorsed explanation for their origin is through toughening pre-existing parts of the body wall; in contrast, the subcoxal theory suggests pleurites derive from a redeployment of the proximal-most section of the leg, the subcoxa. Here, by studying expression of appendage patterning genes in embryos and larvae of the beetle Tribolium castaneum, we provide the first molecular evidence for the existence of a cryptic subcoxal segment in developing legs. We follow this structure during development and show that the embryonic subcoxa later forms the pleurites of the larva as predicted by the subcoxal theory. Our data also demonstrate that subcoxal segments are present in all post-antennal appendages, including the first molecular evidence of a two-segmented mandible with a subcoxal segment in insects.
Collapse
|
17
|
Hochberg R, Wallace RL, Walsh EJ. Soft Bodies, Hard Jaws: An Introduction to the Symposium, with Rotifers as Models of Jaw Diversity. Integr Comp Biol 2015; 55:179-92. [PMID: 25796591 PMCID: PMC6296403 DOI: 10.1093/icb/icv002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Jaws have evolved numerous times in the animal kingdom and they display a wide variety of structural, compositional, and functional characteristics that reflect their polyphyletic origins. Among soft-bodied invertebrates, jaws are known from annelids, chaetognaths, flatworms, gnathostomulids, micrognathozoans, mollusks, rotifers, and several ecdysozoans. Depending on the taxon, jaws may function in the capture of prey (e.g., chaetognaths and flatworms), processing of prey (e.g., gnathostomulids and onychophorans), or both (e.g., rotifers). Although structural diversity among invertebrates’ jaws is becoming better characterized with the use of electron microscopy, many details remain poorly described, including neuromuscular control, elemental composition, and physical characteristics, such as hardness and resistance to wear. Unfortunately, absence of relevant data has impeded understanding of their functional diversity and evolutionary origins. With this symposium, we bring together researchers of disparately jawed taxa to draw structural and mechanistic comparisons among species to determine their commonalities. Additionally, we show that rotifers’ jaws, which are perhaps the best-characterized jaws among invertebrates, are still enigmatic with regard to their origins and mechanics. Nevertheless, technologies such as energy dispersive X-ray spectroscopy (EDX) and 3D modeling are being used to characterize their chemical composition and to develop physical models that allow exploration of their mechanical properties, respectively. We predict that these methods can also be used to develop biomimetic and bioinspired constructs based on the full range of the complexity of jaws, and that such constructs also can be developed from other invertebrate taxa. These approaches may also shed light on common developmental and physiological processes that facilitate the evolution of invertebrates’ jaws.
Collapse
Affiliation(s)
- Rick Hochberg
- *Department of Biology, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | - Robert L. Wallace
- Biology Department, Ripon College, 300 Seward Street, Ripon, WI 54971, USA
| | - Elizabeth J. Walsh
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
18
|
Smith FW, Angelini DR, Gaudio MS, Jockusch EL. Metamorphic labral axis patterning in the beetle Tribolium castaneum requires multiple upstream, but few downstream, genes in the appendage patterning network. Evol Dev 2014; 16:78-91. [PMID: 24617987 DOI: 10.1111/ede.12066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The arthropod labrum is an anterior appendage-like structure that forms the dorsal side of the preoral cavity. Conflicting interpretations of fossil, nervous system, and developmental data have led to a proliferation of scenarios for labral evolution. The best supported hypothesis is that the labrum is a novel structure that shares development with appendages as a result of co-option. Here, we use RNA interference in the red flour beetle Tribolium castaneum to compare metamorphic patterning of the labrum to previously published data on ventral appendage patterning. As expected under the co-option hypothesis, depletion of several genes resulted in similar defects in the labrum and ventral appendages. These include proximal deletions and proximal-to-distal transformations resulting from depletion of the leg gap genes homothorax and extradenticle, large-scale deletions resulting from depletion of the leg gap gene Distal-less, and smaller distal deletions resulting from knockdown of the EGF ligand Keren. However, depletion of dachshund and many of the genes that function downstream of the leg gap genes in the ventral appendages had either subtle or no effects on labral axis patterning. This pattern of partial similarity suggests that upstream genes act through different downstream targets in the labrum. We also discovered that many appendage axis patterning genes have roles in patterning the epipharyngeal sensillum array, suggesting that they have become integrated into a novel regulatory network. These genes include Notch, Delta, and decapentaplegic, and the transcription factors abrupt, bric à brac, homothorax, extradenticle and the paralogs apterous a and apterous b.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT, 06269-3043, USA
| | | | | | | |
Collapse
|
19
|
Smith FW, Jockusch EL. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum. Dev Biol 2014; 395:182-97. [DOI: 10.1016/j.ydbio.2014.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022]
|
20
|
Smith FW, Angelini DR, Jockusch EL. A functional genetic analysis in flour beetles (Tenebrionidae) reveals an antennal identity specification mechanism active during metamorphosis in Holometabola. Mech Dev 2014; 132:13-27. [PMID: 24534744 DOI: 10.1016/j.mod.2014.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 01/13/2014] [Accepted: 02/06/2014] [Indexed: 11/27/2022]
Abstract
The antenna was the first arthropod ventral appendage to evolve non-leg identity. Models of antennal evolution have been based on comparisons of antennal and leg identity specification mechanisms in Drosophila melanogaster, a species in which appendages develop from highly derived imaginal discs during the larval period. We test for conservation of the Drosophila antennal identity specification mechanism at metamorphosis in Tribolium castaneum and three other flour beetle species (Tribolium confusum, Tribolium brevicornis and Latheticus oryzae) in the family Tenebrionidae. In Drosophila, loss of function of four transcription factors-homothorax, extradenticle, Distal-less, and spineless-causes large-scale transformations of the antenna to leg identity. Distal-less and spineless function similarly during metamorphosis in T. castaneum. RNA interference (RNAi) targeting homothorax (hth) or extradenticle (exd) caused transformation of the proximal antenna to distal leg identity in flour beetles, but did not affect the identity of the distal antenna. This differs from the functional domain of these genes in early instar Drosophila, where they are required for identity specification throughout the antenna, but matches their functional domain in late instar Drosophila. The similarities between antennal identity specification at metamorphosis in flour beetles and in late larval Drosophila likely reflect the conservation of an ancestral metamorphic developmental mechanism. There were two notable differences in hth/exd loss of function phenotypes between flies and beetles. Flour beetles retained all of their primary segments in both the antenna and legs, whereas flies undergo reduction and fusion of primary segments. This difference in ground state appendage morphology casts doubt on interpretations of developmental ground states as evolutionary atavisms. Additionally, adult Tribolium eyes were transformed to elytron-like structures; we provide a developmental hypothesis for this evolutionarily surprising transformation.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT 06269-3043, USA.
| | - David R Angelini
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT 06269-3043, USA; Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME 04901, USA
| | - Elizabeth L Jockusch
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT 06269-3043, USA
| |
Collapse
|
21
|
Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG. Distal-lessanddachshundpattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestmanPhalangium opilio(Opiliones). Evol Dev 2013; 15:228-42. [DOI: 10.1111/ede.12029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Evelyn E. Schwager
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street, Cambridge, MA 02138; USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology; University of Connecticut; 75 N. Eagleville Road, Storrs, CT 06269; USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street, Cambridge, MA 02138; USA
| |
Collapse
|
22
|
Coulcher JF, Telford MJ. Comparative gene expression supports the origin of the incisor and molar process from a single endite in the mandible of the red flour beetle Tribolium castaneum. EvoDevo 2013; 4:1. [PMID: 23280103 PMCID: PMC3564707 DOI: 10.1186/2041-9139-4-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/26/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND The biting edge of the primitive arthropod mandible consists of a biting incisor process and a crushing molar process. These structures are thought to be derived from a structure known as an endite but the precise details of this are not understood. Various hypotheses concerning the number of endites present in the arthropod mandible have been proposed.In the developing embryo, the mandible has an inner and outer lobe that are likely to develop into the incisor and molar processes of the larval mandible; these two lobes are commonly held to be derived from separate endites and to be serially homologous to the galea and lacinia endites of the maxillary appendage respectively (Machida). RESULTS We undertook a study of the development of the embryonic mandible of the beetle Tribolium castaneum using the expression of developmental genes as markers of the developing endites in the mandible and maxilla.The Tribolium ortholog of paired (Tc-prd) has expression domains in the developing maxillary and labial endites as well as the inner and outer lobes of the mandible. Following the expression of Tc-prd in the developing mandible through to late stage embryos shows that the molar and incisor process develop from the inner and outer lobes respectively.In addition to Tc-prd, we compared the expression of genes in the endites of the maxilla to the mandible to draw conclusions about the number of endites in the mandible. Homologs of dachshund are typically expressed in the endites of mandibulate gnathal appendages. Comparison of the expression of Tc-prd, Tribolium dachshund (Tc-dac) and Tribolium wingless (Tc-wg) between the endites of the maxilla and the mandible suggest that, while there are two endites in the maxilla only a single endite is present in the mandible. CONCLUSIONS Comparative gene expression suggests that the Tribolium mandible has a single endite from which both mandible lobes are derived. Our results do not support Machida's hypothesis homologising the incisor and molar processes of the mandible to the galea and lacinia endites of the maxilla. We propose, instead, that both incisor and molar processes are derived from a single endite serially homologous to the lacinia of the maxilla.
Collapse
Affiliation(s)
- Joshua F Coulcher
- Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
23
|
Extent With Modification: Leg Patterning in the Beetle Tribolium castaneum and the Evolution of Serial Homologs. G3-GENES GENOMES GENETICS 2012; 2:235-48. [PMID: 22384402 PMCID: PMC3284331 DOI: 10.1534/g3.111.001537] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/01/2011] [Indexed: 01/17/2023]
Abstract
Serial homologs are similar structures that develop at different positions within a body plan. These structures share some, but not all, aspects of developmental patterning, and their evolution is thought to be constrained by shared, pleiotropic gene functions. Here we describe the functions of 17 developmental genes during metamorphic development of the legs in the red flour beetle, Tribolium castaneum. This study provides informative comparisons between appendage development in Drosophila melanogaster and T. castaneum, between embryonic and adult development in T. castaneum, and between the development of serially homologous appendages. The leg gap genes Distal-less and dachshund are conserved in function. Notch signaling, the zinc-finger transcription factors related to odd-skipped, and bric-à-brac have conserved functions in promoting joint development. homothorax knockdown alters the identity of proximal leg segments but does not reduce growth. Lim1 is required for intermediate leg development but not distal tarsus and pretarsus development as in D. melanogaster. Development of the tarsus requires decapentaplegic, rotund, spineless, abrupt, and bric-à-brac and the EGF ligand encoded by Keren. Metathoracic legs of T. castaneum have four tarsomeres, whereas other legs have five. Patterns of gene activity in the tarsus suggest that patterning in the middle of the tarsal region, not the proximal- or distal-most areas, is responsible for this difference in segment number. Through comparisons with other recent studies of T. castaneum appendage development, we test hypotheses for the modularity or interdependence of development during evolution of serial homologs.
Collapse
|