1
|
Mavillard F, Guerra-Castellano A, Guerrero-Gómez D, Rivas E, Cantero G, Servian-Morilla E, Folland C, Ravenscroft G, Martín MA, Miranda-Vizuete A, Cabrera-Serrano M, Diaz-Moreno I, Paradas C. A splice-altering homozygous variant in COX18 causes severe sensory-motor neuropathy with oculofacial apraxia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167330. [PMID: 38960055 DOI: 10.1016/j.bbadis.2024.167330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Affiliation(s)
- Fabiola Mavillard
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | | | - David Guerrero-Gómez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Eloy Rivas
- Department of Neuropathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Gloria Cantero
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | - Emilia Servian-Morilla
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Miguel A Martín
- Mitochondrial & Neuromuscular Disorders Group, Genetics Department, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Macarena Cabrera-Serrano
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas, Universidad de Sevilla-CSIC, Sevilla, Spain.
| | - Carmen Paradas
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain.
| |
Collapse
|
2
|
Nieto-Panqueva F, Vázquez-Acevedo M, Hamel PP, González-Halphen D. Identification of factors limiting the allotopic production of the Cox2 subunit of yeast cytochrome c oxidase. Genetics 2024; 227:iyae058. [PMID: 38626319 PMCID: PMC11492495 DOI: 10.1093/genetics/iyae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Mitochondrial genes can be artificially relocalized in the nuclear genome in a process known as allotopic expression, such is the case of the mitochondrial cox2 gene, encoding subunit II of cytochrome c oxidase (CcO). In yeast, cox2 can be allotopically expressed and is able to restore respiratory growth of a cox2-null mutant if the Cox2 subunit carries the W56R substitution within the first transmembrane stretch. However, the COX2W56R strain exhibits reduced growth rates and lower steady-state CcO levels when compared to wild-type yeast. Here, we investigated the impact of overexpressing selected candidate genes predicted to enhance internalization of the allotopic Cox2W56R precursor into mitochondria. The overproduction of Cox20, Oxa1, and Pse1 facilitated Cox2W56R precursor internalization, improving the respiratory growth of the COX2W56R strain. Overproducing TIM22 components had a limited effect on Cox2W56R import, while overproducing TIM23-related components showed a negative effect. We further explored the role of the Mgr2 subunit within the TIM23 translocator in the import process by deleting and overexpressing the MGR2 gene. Our findings indicate that Mgr2 is instrumental in modulating the TIM23 translocon to correctly sort Cox2W56R. We propose a biogenesis pathway followed by the allotopically produced Cox2 subunit based on the participation of the 2 different structural/functional forms of the TIM23 translocon, TIM23MOTOR and TIM23SORT, that must follow a concerted and sequential mode of action to insert Cox2W56R into the inner mitochondrial membrane in the correct Nout-Cout topology.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, 582 Aronoff laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
- School of BioScience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| |
Collapse
|
3
|
Caron-Godon CA, Collington E, Wolf JL, Coletta G, Glerum DM. More than Just Bread and Wine: Using Yeast to Understand Inherited Cytochrome Oxidase Deficiencies in Humans. Int J Mol Sci 2024; 25:3814. [PMID: 38612624 PMCID: PMC11011759 DOI: 10.3390/ijms25073814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited defects in cytochrome c oxidase (COX) are associated with a substantial subset of diseases adversely affecting the structure and function of the mitochondrial respiratory chain. This multi-subunit enzyme consists of 14 subunits and numerous cofactors, and it requires the function of some 30 proteins to assemble. COX assembly was first shown to be the primary defect in the majority of COX deficiencies 36 years ago. Over the last three decades, most COX assembly genes have been identified in the yeast Saccharomyces cerevisiae, and studies in yeast have proven instrumental in testing the impact of mutations identified in patients with a specific COX deficiency. The advent of accessible genome-wide sequencing capabilities has led to more patient mutations being identified, with the subsequent identification of several new COX assembly factors. However, the lack of genotype-phenotype correlations and the large number of genes involved in generating a functional COX mean that functional studies must be undertaken to assign a genetic variant as being causal. In this review, we provide a brief overview of the use of yeast as a model system and briefly compare the COX assembly process in yeast and humans. We focus primarily on the studies in yeast that have allowed us to both identify new COX assembly factors and to demonstrate the pathogenicity of a subset of the mutations that have been identified in patients with inherited defects in COX. We conclude with an overview of the areas in which studies in yeast are likely to continue to contribute to progress in understanding disease arising from inherited COX deficiencies.
Collapse
Affiliation(s)
- Chenelle A. Caron-Godon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Emma Collington
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Jessica L. Wolf
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Genna Coletta
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - D. Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
4
|
Horten P, Song K, Garlich J, Hardt R, Colina-Tenorio L, Horvath SE, Schulte U, Fakler B, van der Laan M, Becker T, Stuart RA, Pfanner N, Rampelt H. Identification of MIMAS, a multifunctional mega-assembly integrating metabolic and respiratory biogenesis factors of mitochondria. Cell Rep 2024; 43:113772. [PMID: 38393949 PMCID: PMC11010658 DOI: 10.1016/j.celrep.2024.113772] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The mitochondrial inner membrane plays central roles in bioenergetics and metabolism and contains several established membrane protein complexes. Here, we report the identification of a mega-complex of the inner membrane, termed mitochondrial multifunctional assembly (MIMAS). Its large size of 3 MDa explains why MIMAS has escaped detection in the analysis of mitochondria so far. MIMAS combines proteins of diverse functions from respiratory chain assembly to metabolite transport, dehydrogenases, and lipid biosynthesis but not the large established supercomplexes of the respiratory chain, ATP synthase, or prohibitin scaffold. MIMAS integrity depends on the non-bilayer phospholipid phosphatidylethanolamine, in contrast to respiratory supercomplexes whose stability depends on cardiolipin. Our findings suggest that MIMAS forms a protein-lipid mega-assembly in the mitochondrial inner membrane that integrates respiratory biogenesis and metabolic processes in a multifunctional platform.
Collapse
Affiliation(s)
- Patrick Horten
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Kuo Song
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Joshua Garlich
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Robert Hardt
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Lilia Colina-Tenorio
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Susanne E Horvath
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
5
|
Ronchi D, Garbellini M, Magri F, Menni F, Meneri M, Bedeschi MF, Dilena R, Cecchetti V, Picciolli I, Furlan F, Polimeni V, Salani S, Pezzoli L, Fortunato F, Bellini M, Piga D, Ripolone M, Zanotti S, Napoli L, Ciscato P, Sciacco M, Mangili G, Mosca F, Corti S, Iascone M, Comi GP. A biallelic variant in COX18 cause isolated Complex IV deficiency associated with neonatal encephalo-cardio-myopathy and axonal sensory neuropathy. Eur J Hum Genet 2023; 31:1414-1420. [PMID: 37468577 PMCID: PMC10689781 DOI: 10.1038/s41431-023-01433-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Pathogenic variants impacting upon assembly of mitochondrial respiratory chain Complex IV (Cytochrome c Oxidase or COX) predominantly result in early onset mitochondrial disorders often leading to CNS, skeletal and cardiac muscle manifestations. The aim of this study is to describe a molecular defect in the COX assembly factor gene COX18 as the likely cause of a neonatal form of mitochondrial encephalo-cardio-myopathy and axonal sensory neuropathy. The proband is a 19-months old female displaying hypertrophic cardiomyopathy at birth and myopathy with axonal sensory neuropathy and failure to thrive developing in the first months of life. Serum lactate was consistently increased. Whole exome sequencing allowed the prioritization of the unreported homozygous substitution NM_001297732.2:c.667 G > C p.(Asp223His) in COX18. Patient's muscle biopsy revealed severe and diffuse COX deficiency and striking mitochondrial abnormalities. Biochemical and enzymatic studies in patient's myoblasts and in HEK293 cells after COX18 silencing showed a severe impairment of both COX activity and assembly. The biochemical defect was partially rescued by delivery of wild-type COX18 cDNA into patient's myoblasts. Our study identifies a novel defect of COX assembly and expands the number of nuclear genes involved in a mitochondrial disorder due to isolated COX deficiency.
Collapse
Affiliation(s)
- Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Manuela Garbellini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Francesca Magri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Francesca Menni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Regional Clinical Center for expanded newborn screening, Milan, Italy
| | - Megi Meneri
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | | | - Robertino Dilena
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UO Neurofisiopatologia, Milan, Italy
| | - Valeria Cecchetti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Irene Picciolli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Francesca Furlan
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Regional Clinical Center for expanded newborn screening, Milan, Italy
| | - Valentina Polimeni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Sabrina Salani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Laura Pezzoli
- ASST Papa Giovanni XXIII, Laboratorio di Genetica Medica, Bergamo, Italy
| | - Francesco Fortunato
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Matteo Bellini
- ASST Papa Giovanni XXIII, Laboratorio di Genetica Medica, Bergamo, Italy
| | - Daniela Piga
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Michela Ripolone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Simona Zanotti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Laura Napoli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Patrizia Ciscato
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Monica Sciacco
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | | | - Fabio Mosca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Maria Iascone
- ASST Papa Giovanni XXIII, Laboratorio di Genetica Medica, Bergamo, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.
| |
Collapse
|
6
|
Petrů M, Dohnálek V, Füssy Z, Doležal P. Fates of Sec, Tat, and YidC Translocases in Mitochondria and Other Eukaryotic Compartments. Mol Biol Evol 2021; 38:5241-5254. [PMID: 34436602 PMCID: PMC8662606 DOI: 10.1093/molbev/msab253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formation of mitochondria by the conversion of a bacterial endosymbiont was a key moment in the evolution of eukaryotes. It was made possible by outsourcing the endosymbiont's genetic control to the host nucleus, while developing the import machinery for proteins synthesized on cytosolic ribosomes. The original protein export machines of the nascent organelle remained to be repurposed or were completely abandoned. This review follows the evolutionary fates of three prokaryotic inner membrane translocases Sec, Tat, and YidC. Homologs of all three translocases can still be found in current mitochondria, but with different importance for mitochondrial function. Although the mitochondrial YidC homolog, Oxa1, became an omnipresent independent insertase, the other two remained only sporadically present in mitochondria. Only a single substrate is known for the mitochondrial Tat and no function has yet been assigned for the mitochondrial Sec. Finally, this review compares these ancestral mitochondrial proteins with their paralogs operating in the plastids and the endomembrane system.
Collapse
Affiliation(s)
- Markéta Petrů
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
7
|
Challa S, Khulpateea BR, Nandu T, Camacho CV, Ryu KW, Chen H, Peng Y, Lea JS, Kraus WL. Ribosome ADP-ribosylation inhibits translation and maintains proteostasis in cancers. Cell 2021; 184:4531-4546.e26. [PMID: 34314702 PMCID: PMC8380725 DOI: 10.1016/j.cell.2021.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/11/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Defects in translation lead to changes in the expression of proteins that can serve as drivers of cancer formation. Here, we show that cytosolic NAD+ synthesis plays an essential role in ovarian cancer by regulating translation and maintaining protein homeostasis. Expression of NMNAT-2, a cytosolic NAD+ synthase, is highly upregulated in ovarian cancers. NMNAT-2 supports the catalytic activity of the mono(ADP-ribosyl) transferase (MART) PARP-16, which mono(ADP-ribosyl)ates (MARylates) ribosomal proteins. Depletion of NMNAT-2 or PARP-16 leads to inhibition of MARylation, increased polysome association and enhanced translation of specific mRNAs, aggregation of their translated protein products, and reduced growth of ovarian cancer cells. Furthermore, MARylation of the ribosomal proteins, such as RPL24 and RPS6, inhibits polysome assembly by stabilizing eIF6 binding to ribosomes. Collectively, our results demonstrate that ribosome MARylation promotes protein homeostasis in cancers by fine-tuning the levels of protein synthesis and preventing toxic protein aggregation.
Collapse
Affiliation(s)
- Sridevi Challa
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Beman R Khulpateea
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cristel V Camacho
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keun W Ryu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jayanthi S Lea
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Franco LVR, Su CH, Tzagoloff A. Modular assembly of yeast mitochondrial ATP synthase and cytochrome oxidase. Biol Chem 2021; 401:835-853. [PMID: 32142477 DOI: 10.1515/hsz-2020-0112] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
The respiratory pathway of mitochondria is composed of four electron transfer complexes and the ATP synthase. In this article, we review evidence from studies of Saccharomyces cerevisiae that both ATP synthase and cytochrome oxidase (COX) are assembled from independent modules that correspond to structurally and functionally identifiable components of each complex. Biogenesis of the respiratory chain requires a coordinate and balanced expression of gene products that become partner subunits of the same complex, but are encoded in the two physically separated genomes. Current evidence indicates that synthesis of two key mitochondrial encoded subunits of ATP synthase is regulated by the F1 module. Expression of COX1 that codes for a subunit of the COX catalytic core is also regulated by a mechanism that restricts synthesis of this subunit to the availability of a nuclear-encoded translational activator. The respiratory chain must maintain a fixed stoichiometry of the component enzyme complexes during cell growth. We propose that high-molecular-weight complexes composed of Cox6, a subunit of COX, and of the Atp9 subunit of ATP synthase play a key role in establishing the ratio of the two complexes during their assembly.
Collapse
Affiliation(s)
- Leticia Veloso Ribeiro Franco
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.,Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brasil
| | - Chen Hsien Su
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| |
Collapse
|
9
|
Le Vasseur M, Friedman J, Jost M, Xu J, Yamada J, Kampmann M, Horlbeck MA, Salemi MR, Phinney BS, Weissman JS, Nunnari J. Genome-wide CRISPRi screening identifies OCIAD1 as a prohibitin client and regulatory determinant of mitochondrial Complex III assembly in human cells. eLife 2021; 10:67624. [PMID: 34034859 PMCID: PMC8154037 DOI: 10.7554/elife.67624] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Dysfunction of the mitochondrial electron transport chain (mETC) is a major cause of human mitochondrial diseases. To identify determinants of mETC function, we screened a genome-wide human CRISPRi library under oxidative metabolic conditions with selective inhibition of mitochondrial Complex III and identified ovarian carcinoma immunoreactive antigen (OCIA) domain-containing protein 1 (OCIAD1) as a Complex III assembly factor. We find that OCIAD1 is an inner mitochondrial membrane protein that forms a complex with supramolecular prohibitin assemblies. Our data indicate that OCIAD1 is required for maintenance of normal steady-state levels of Complex III and the proteolytic processing of the catalytic subunit cytochrome c1 (CYC1). In OCIAD1 depleted mitochondria, unprocessed CYC1 is hemylated and incorporated into Complex III. We propose that OCIAD1 acts as an adaptor within prohibitin assemblies to stabilize and/or chaperone CYC1 and to facilitate its proteolytic processing by the IMMP2L protease.
Collapse
Affiliation(s)
- Maxence Le Vasseur
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| | - Jonathan Friedman
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marco Jost
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, United States.,Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, United States
| | - Jiawei Xu
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| | - Justin Yamada
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, United States.,Institute for Neurodegenerative Diseases and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, United States.,Chan-Zuckerberg Biohub, San Francisco, United States
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, United States
| | - Michelle R Salemi
- Proteomics Core Facility, University of California, Davis, Davis, United States
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, Davis, United States
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, United States.,Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| |
Collapse
|
10
|
Lee SH, Hadipour-Lakmehsari S, Kim DH, Di Paola M, Kuzmanov U, Shah S, Lee JJH, Kislinger T, Sharma P, Oudit GY, Gramolini AO. Bioinformatic analysis of membrane and associated proteins in murine cardiomyocytes and human myocardium. Sci Data 2020; 7:425. [PMID: 33262348 PMCID: PMC7708497 DOI: 10.1038/s41597-020-00762-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
In the current study we examined several proteomic- and RNA-Seq-based datasets of cardiac-enriched, cell-surface and membrane-associated proteins in human fetal and mouse neonatal ventricular cardiomyocytes. By integrating available microarray and tissue expression profiles with MGI phenotypic analysis, we identified 173 membrane-associated proteins that are cardiac-enriched, conserved amongst eukaryotic species, and have not yet been linked to a 'cardiac' Phenotype-Ontology. To highlight the utility of this dataset, we selected several proteins to investigate more carefully, including FAM162A, MCT1, and COX20, to show cardiac enrichment, subcellular distribution and expression patterns in disease. We performed three-dimensional confocal imaging analysis to validate subcellular localization and expression in adult mouse ventricular cardiomyocytes. FAM162A, MCT1, and COX20 were expressed differentially at the transcriptomic and proteomic levels in multiple models of mouse and human heart diseases and may represent potential diagnostic and therapeutic targets for human dilated and ischemic cardiomyopathies. Altogether, we believe this comprehensive cardiomyocyte membrane proteome dataset will prove instrumental to future investigations aimed at characterizing heart disease markers and/or therapeutic targets for heart failure.
Collapse
Affiliation(s)
- Shin-Haw Lee
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Sina Hadipour-Lakmehsari
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Da Hye Kim
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Michelle Di Paola
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Uros Kuzmanov
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Saumya Shah
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, T6G 2B7, Canada
| | - Joseph Jong-Hwan Lee
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Research Centre, Toronto, Ontario, M5G 1L8, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Parveen Sharma
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada
- Department of Cardiovascular & Metabolic Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, T6G 2B7, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, M5G 1M1, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1M8, Canada.
| |
Collapse
|
11
|
Cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148335. [PMID: 33171185 DOI: 10.1016/j.bbabio.2020.148335] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
Cytochrome c oxidase (COX) deficiency is characterized by a high degree of genetic and phenotypic heterogeneity, partly reflecting the extreme structural complexity, multiple post-translational modification, variable, tissue-specific composition, and the high number of and intricate connections among the assembly factors of this enzyme. In fact, decreased COX specific activity can manifest with different degrees of severity, affect the whole organism or specific tissues, and develop a wide spectrum of disease natural history, including disease onsets ranging from birth to late adulthood. More than 30 genes have been linked to COX deficiency, but the list is still incomplete and in fact constantly updated. We here discuss the current knowledge about COX in health and disease, focusing on genetic aetiology and link to clinical manifestations. In addition, information concerning either fundamental biological features of the enzymes or biochemical signatures of its defects have been provided by experimental in vivo models, including yeast, fly, mouse and fish, which expanded our knowledge on the functional features and the phenotypical consequences of different forms of COX deficiency.
Collapse
|
12
|
Mitochondrial OXPHOS Biogenesis: Co-Regulation of Protein Synthesis, Import, and Assembly Pathways. Int J Mol Sci 2020; 21:ijms21113820. [PMID: 32481479 PMCID: PMC7312649 DOI: 10.3390/ijms21113820] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
The assembly of mitochondrial oxidative phosphorylation (OXPHOS) complexes is an intricate process, which—given their dual-genetic control—requires tight co-regulation of two evolutionarily distinct gene expression machineries. Moreover, fine-tuning protein synthesis to the nascent assembly of OXPHOS complexes requires regulatory mechanisms such as translational plasticity and translational activators that can coordinate mitochondrial translation with the import of nuclear-encoded mitochondrial proteins. The intricacy of OXPHOS complex biogenesis is further evidenced by the requirement of many tightly orchestrated steps and ancillary factors. Early-stage ancillary chaperones have essential roles in coordinating OXPHOS assembly, whilst late-stage assembly factors—also known as the LYRM (leucine–tyrosine–arginine motif) proteins—together with the mitochondrial acyl carrier protein (ACP)—regulate the incorporation and activation of late-incorporating OXPHOS subunits and/or co-factors. In this review, we describe recent discoveries providing insights into the mechanisms required for optimal OXPHOS biogenesis, including the coordination of mitochondrial gene expression with the availability of nuclear-encoded factors entering via mitochondrial protein import systems.
Collapse
|
13
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
14
|
Keerthiraju E, Du C, Tucker G, Greetham D. A Role for COX20 in Tolerance to Oxidative Stress and Programmed Cell Death in Saccharomyces cerevisiae. Microorganisms 2019; 7:microorganisms7110575. [PMID: 31752220 PMCID: PMC6920987 DOI: 10.3390/microorganisms7110575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/28/2022] Open
Abstract
Industrial production of bioethanol from lignocellulosic materials (LCM′s) is reliant on a microorganism being tolerant to the stresses inherent to fermentation. Previous work has highlighted the importance of a cytochrome oxidase chaperone gene (COX20) in improving yeast tolerance to acetic acid, a common inhibitory compound produced during pre-treatment of LCM’s. The presence of acetic acid has been shown to induce oxidative stress and programmed cell death, so the role of COX20 in oxidative stress was determined. Analysis using flow cytometry revealed that COX20 expression was associated with reduced levels of reactive oxygen species (ROS) in hydrogen peroxide and metal-induced stress, and there was a reduction in apoptotic and necrotic cells when compared with a strain without COX20. Results on the functionality of COX20 have revealed that overexpression of COX20 induced respiratory growth in Δimp1 and Δcox18, two genes whose presence is essential for yeast respiratory growth. COX20 also has a role in protecting the yeast cell against programmed cell death.
Collapse
Affiliation(s)
- Ethiraju Keerthiraju
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
| | - Chenyu Du
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
| | - Gregory Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
| | - Darren Greetham
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
- Correspondence: ; Tel.: +44-1484-472378
| |
Collapse
|
15
|
Rubalcava-Gracia D, García-Rincón J, Pérez-Montfort R, Hamel PP, González-Halphen D. Key within-membrane residues and precursor dosage impact the allotopic expression of yeast subunit II of cytochrome c oxidase. Mol Biol Cell 2019; 30:2358-2366. [PMID: 31318312 PMCID: PMC6741066 DOI: 10.1091/mbc.e18-12-0788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Experimentally relocating mitochondrial genes to the nucleus for functional expression (allotopic expression) is a challenging process. The high hydrophobicity of mitochondria-encoded proteins seems to be one of the main factors preventing this allotopic expression. We focused on subunit II of cytochrome c oxidase (Cox2) to study which modifications may enable or improve its allotopic expression in yeast. Cox2 can be imported from the cytosol into mitochondria in the presence of the W56R substitution, which decreases the protein hydrophobicity and allows partial respiratory rescue of a cox2-null strain. We show that the inclusion of a positive charge is more favorable than substitutions that only decrease the hydrophobicity. We also searched for other determinants enabling allotopic expression in yeast by examining the COX2 gene in organisms where it was transferred to the nucleus during evolution. We found that naturally occurring variations at within-membrane residues in the legume Glycine max Cox2 could enable yeast COX2 allotopic expression. We also evidence that directing high doses of allotopically synthesized Cox2 to mitochondria seems to be counterproductive because the subunit aggregates at the mitochondrial surface. Our findings are relevant to the design of allotopic expression strategies and contribute to the understanding of gene retention in organellar genomes.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan García-Rincón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ruy Pérez-Montfort
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Patrice Paul Hamel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
16
|
Kolli R, Soll J, Carrie C. OXA2b is Crucial for Proper Membrane Insertion of COX2 during Biogenesis of Complex IV in Plant Mitochondria. PLANT PHYSIOLOGY 2019; 179:601-615. [PMID: 30487140 PMCID: PMC6426407 DOI: 10.1104/pp.18.01286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/10/2018] [Indexed: 05/07/2023]
Abstract
The evolutionarily conserved YidC/Oxa1/Alb3 proteins are involved in the insertion of membrane proteins in all domains of life. In plant mitochondria, individual knockouts of OXA1a, OXA2a, and OXA2b are embryo-lethal. In contrast to other members of the protein family, OXA2a and OXA2b contain a tetratricopeptide repeat (TPR) domain at the C-terminus. Here, the role of Arabidopsis (Arabidopsis thaliana) OXA2b was determined by using viable mutant plants that were generated by complementing homozygous lethal OXA2b T-DNA insertional mutants with a C-terminally truncated OXA2b lacking the TPR domain. The truncated-OXA2b-complemented plants displayed severe growth retardation due to a strong reduction in the steady-state abundance and enzyme activity of the mitochondrial respiratory chain complex IV. The TPR domain of OXA2b directly interacts with cytochrome c oxidase subunit 2, aiding in efficient membrane insertion and translocation of its C-terminus. Thus, OXA2b is crucial for the biogenesis of complex IV in plant mitochondria.
Collapse
Affiliation(s)
- Renuka Kolli
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Jürgen Soll
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
- Munich Centre for Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| |
Collapse
|
17
|
Franco LVR, Su CH, McStay GP, Yu GJ, Tzagoloff A. Cox2p of yeast cytochrome oxidase assembles as a stand-alone subunit with the Cox1p and Cox3p modules. J Biol Chem 2018; 293:16899-16911. [PMID: 30224355 DOI: 10.1074/jbc.ra118.004138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/11/2018] [Indexed: 11/06/2022] Open
Abstract
Cytochrome oxidase (COX) is a hetero-oligomeric complex of the mitochondrial inner membrane that reduces molecular oxygen to water, a reaction coupled to proton transfer from the mitochondrial matrix to the intermembrane space. In the yeast Saccharomyces cerevisiae, COX is composed of 11-13 different polypeptide subunits. Here, using pulse labeling of mitochondrial gene products in isolated yeast mitochondria, combined with purification of tagged COX subunits and ancillary factors, we studied the Cox2p assembly intermediates. Analysis of radiolabeled Cox2p obtained in pulldown assays by native gel electrophoresis revealed the existence of several assembly intermediates, the largest of which had an estimated mass of 450-550 kDa. None of the other known subunits of COX were present in these Cox2p intermediates. This was also true for the several ancillary factors having still undefined functions in COX assembly. In agreement with earlier evidence, Cox18p and Cox20p, previously shown to be involved in processing and in membrane insertion of the Cox2p precursor, were found to be associated with the two largest Cox2p intermediates. A small fraction of the Cox2p module contained Sco1p and Coa6p, which have been implicated in metalation of the binuclear copper site on this subunit. Our results indicate that following its insertion into the mitochondrial inner membrane, Cox2p assembles as a stand-alone protein with the compositionally more complex Cox1p and Cox3p modules.
Collapse
Affiliation(s)
- Leticia Veloso R Franco
- From the Department of Biological Sciences, Columbia University, New York, New York 10027 and
| | - Chen-Hsien Su
- From the Department of Biological Sciences, Columbia University, New York, New York 10027 and
| | - Gavin P McStay
- Department of Biological Sciences, Staffordshire University, Stoke-on-Trent, ST4 2DF, United Kingdom
| | - George J Yu
- From the Department of Biological Sciences, Columbia University, New York, New York 10027 and
| | - Alexander Tzagoloff
- From the Department of Biological Sciences, Columbia University, New York, New York 10027 and
| |
Collapse
|
18
|
Rubalcava-Gracia D, Vázquez-Acevedo M, Funes S, Pérez-Martínez X, González-Halphen D. Mitochondrial versus nuclear gene expression and membrane protein assembly: the case of subunit 2 of yeast cytochrome c oxidase. Mol Biol Cell 2018; 29:820-833. [PMID: 29437907 PMCID: PMC5905295 DOI: 10.1091/mbc.e17-09-0560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
Deletion of the yeast mitochondrial gene COX2, encoding subunit 2 (mtCox2) of cytochrome c oxidase (CcO), results in a respiratory-incompetent Δcox2 strain. For a cytosol-synthesized Cox2 to restore respiratory growth, it must carry the W56R mutation (cCox2W56R). Nevertheless, only a fraction of cCox2W56R is matured in mitochondria, allowing ∼60% steady-state accumulation of CcO. This can be attributed either to the point mutation or to an inefficient biogenesis of cCox2W56R. We generated a strain expressing the mutant protein mtCox2W56R inside mitochondria which should follow the canonical biogenesis of mitochondria-encoded Cox2. This strain exhibited growth rates, CcO steady-state levels, and CcO activity similar to those of the wild type; therefore, the efficiency of Cox2 biogenesis is the limiting step for successful allotopic expression. Upon coexpression of cCox2W56R and mtCox2, each protein assembled into CcO independently from its genetic origin, resulting in a mixed population of CcO with most complexes containing the mtCox2 version. Notably, the presence of the mtCox2 enhances cCox2W56R incorporation. We provide proof of principle that an allotopically expressed Cox2 may complement a phenotype due to a mutant mitochondrial COX2 gene. These results are relevant to developing a rational design of genes for allotopic expression intended to treat human mitochondrial diseases.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| |
Collapse
|
19
|
Lorenzi I, Oeljeklaus S, Aich A, Ronsör C, Callegari S, Dudek J, Warscheid B, Dennerlein S, Rehling P. The mitochondrial TMEM177 associates with COX20 during COX2 biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:323-333. [PMID: 29154948 PMCID: PMC5764226 DOI: 10.1016/j.bbamcr.2017.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation.
Collapse
Affiliation(s)
- Isotta Lorenzi
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Silke Oeljeklaus
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Christin Ronsör
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Jan Dudek
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Bettina Warscheid
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany.
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
20
|
Jett KA, Leary SC. Building the Cu A site of cytochrome c oxidase: A complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins. J Biol Chem 2017; 293:4644-4652. [PMID: 28972150 DOI: 10.1074/jbc.r117.816132] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c oxidase (COX) was initially purified more than 70 years ago. A tremendous amount of insight into its structure and function has since been gleaned from biochemical, biophysical, genetic, and molecular studies. As a result, we now appreciate that COX relies on its redox-active metal centers (heme a and a3, CuA and CuB) to reduce oxygen and pump protons in a reaction essential for most eukaryotic life. Questions persist, however, about how individual structural subunits are assembled into a functional holoenzyme. Here, we focus on what is known and what remains to be learned about the accessory proteins that facilitate CuA site maturation.
Collapse
Affiliation(s)
- Kimberly A Jett
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Scot C Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
21
|
Timón-Gómez A, Nývltová E, Abriata LA, Vila AJ, Hosler J, Barrientos A. Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Semin Cell Dev Biol 2017; 76:163-178. [PMID: 28870773 DOI: 10.1016/j.semcdb.2017.08.055] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
Abstract
Mitochondrial cytochrome c oxidase (COX) is the primary site of cellular oxygen consumption and is essential for aerobic energy generation in the form of ATP. Human COX is a copper-heme A hetero-multimeric complex formed by 3 catalytic core subunits encoded in the mitochondrial DNA and 11 subunits encoded in the nuclear genome. Investigations over the last 50 years have progressively shed light into the sophistication surrounding COX biogenesis and the regulation of this process, disclosing multiple assembly factors, several redox-regulated processes leading to metal co-factor insertion, regulatory mechanisms to couple synthesis of COX subunits to COX assembly, and the incorporation of COX into respiratory supercomplexes. Here, we will critically summarize recent progress and controversies in several key aspects of COX biogenesis: linear versus modular assembly, the coupling of mitochondrial translation to COX assembly and COX assembly into respiratory supercomplexes.
Collapse
Affiliation(s)
- Alba Timón-Gómez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eva Nývltová
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling & Protein Purification and Structure Facility, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Switzerland
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Jonathan Hosler
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
22
|
Glynn SE. Multifunctional Mitochondrial AAA Proteases. Front Mol Biosci 2017; 4:34. [PMID: 28589125 PMCID: PMC5438985 DOI: 10.3389/fmolb.2017.00034] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022] Open
Abstract
Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.
Collapse
Affiliation(s)
- Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony Brook, NY, United States
| |
Collapse
|
23
|
Ribosome-Associated Mba1 Escorts Cox2 from Insertion Machinery to Maturing Assembly Intermediates. Mol Cell Biol 2016; 36:2782-2793. [PMID: 27550809 PMCID: PMC5086520 DOI: 10.1128/mcb.00361-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/08/2016] [Accepted: 08/17/2016] [Indexed: 01/25/2023] Open
Abstract
The three conserved core subunits of the cytochrome c oxidase are encoded by mitochondria in close to all eukaryotes. The Cox2 subunit spans the inner membrane twice, exposing the N and C termini to the intermembrane space. For this, the N terminus is exported cotranslationally by Oxa1 and subsequently undergoes proteolytic maturation in Saccharomyces cerevisiae. Little is known about the translocation of the C terminus, but Cox18 has been identified to be a critical protein in this process. Here we find that the scaffold protein Cox20, which promotes processing of Cox2, is in complex with the ribosome receptor Mba1 and translating mitochondrial ribosomes in a Cox2-dependent manner. The Mba1-Cox20 complex accumulates when export of the C terminus of Cox2 is blocked by the loss of the Cox18 protein. While Cox20 engages with Cox18, Mba1 is no longer present at this stage. Our analyses indicate that Cox20 associates with nascent Cox2 and Mba1 to promote Cox2 maturation cotranslationally. We suggest that Mba1 stabilizes the Cox20-ribosome complex and supports the handover of Cox2 to the Cox18 tail export machinery.
Collapse
|
24
|
Lasserre JP, Dautant A, Aiyar RS, Kucharczyk R, Glatigny A, Tribouillard-Tanvier D, Rytka J, Blondel M, Skoczen N, Reynier P, Pitayu L, Rötig A, Delahodde A, Steinmetz LM, Dujardin G, Procaccio V, di Rago JP. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 2016; 8:509-26. [PMID: 26035862 PMCID: PMC4457039 DOI: 10.1242/dmm.020438] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast. Summary: In this Review, we discuss the use of budding yeast to understand mitochondrial diseases and help in the search for their treatments.
Collapse
Affiliation(s)
- Jean-Paul Lasserre
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Alain Dautant
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Raeka S Aiyar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Roza Kucharczyk
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Annie Glatigny
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Déborah Tribouillard-Tanvier
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Joanna Rytka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Natalia Skoczen
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Pascal Reynier
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Laras Pitayu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Agnès Rötig
- Inserm U1163, Hôpital Necker-Enfants-Malades, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 149 rue de Sèvres, Paris 75015, France
| | - Agnès Delahodde
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, CA 94304, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5301, USA
| | - Geneviève Dujardin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Vincent Procaccio
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Jean-Paul di Rago
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| |
Collapse
|
25
|
Bourens M, Boulet A, Leary SC, Barrientos A. Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase. Hum Mol Genet 2014; 23:2901-13. [PMID: 24403053 DOI: 10.1093/hmg/ddu003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cytochrome c oxidase (CIV) deficiency is one of the most common respiratory chain defects in patients presenting with mitochondrial encephalocardiomyopathies. CIV biogenesis is complicated by the dual genetic origin of its structural subunits, and assembly of a functional holoenzyme complex requires a large number of nucleus-encoded assembly factors. In general, the functions of these assembly factors remain poorly understood, and mechanistic investigations of human CIV biogenesis have been limited by the availability of model cell lines. Here, we have used small interference RNA and transcription activator-like effector nucleases (TALENs) technology to create knockdown and knockout human cell lines, respectively, to study the function of the CIV assembly factor COX20 (FAM36A). These cell lines exhibit a severe, isolated CIV deficiency due to instability of COX2, a mitochondrion-encoded CIV subunit. Mitochondria lacking COX20 accumulate CIV subassemblies containing COX1 and COX4, similar to those detected in fibroblasts from patients carrying mutations in the COX2 copper chaperones SCO1 and SCO2. These results imply that in the absence of COX20, COX2 is inefficiently incorporated into early CIV subassemblies. Immunoprecipitation assays using a stable COX20 knockout cell line expressing functional COX20-FLAG allowed us to identify an interaction between COX20 and newly synthesized COX2. Additionally, we show that SCO1 and SCO2 act on COX20-bound COX2. We propose that COX20 acts as a chaperone in the early steps of COX2 maturation, stabilizing the newly synthesized protein and presenting COX2 to its metallochaperone module, which in turn facilitates the incorporation of mature COX2 into the CIV assembly line.
Collapse
|
26
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
27
|
Szklarczyk R, Wanschers BFJ, Nijtmans LG, Rodenburg RJ, Zschocke J, Dikow N, van den Brand MAM, Hendriks-Franssen MGM, Gilissen C, Veltman JA, Nooteboom M, Koopman WJH, Willems PHGM, Smeitink JAM, Huynen MA, van den Heuvel LP. A mutation in the FAM36A gene, the human ortholog of COX20, impairs cytochrome c oxidase assembly and is associated with ataxia and muscle hypotonia. Hum Mol Genet 2012; 22:656-67. [PMID: 23125284 DOI: 10.1093/hmg/dds473] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mitochondrial respiratory chain complex IV (cytochrome c oxidase) is a multi-subunit enzyme that transfers electrons from cytochrome c to molecular oxygen, yielding water. Its biogenesis requires concerted expression of mitochondria- and nuclear-encoded subunits and assembly factors. In this report, we describe a homozygous missense mutation in FAM36A from a patient who displays ataxia and muscle hypotonia. The FAM36A gene is a remote, putative ortholog of the fungal complex IV assembly factor COX20. Messenger RNA (mRNA) and protein co-expression analyses support the involvement of FAM36A in complex IV function in mammals. The c.154A>C mutation in the FAM36A gene, a mutation that is absent in sequenced exomes, leads to a reduced activity and lower levels of complex IV and its protein subunits. The FAM36A protein is nearly absent in patient's fibroblasts. Cells affected by the mutation accumulate subassemblies of complex IV that contain COX1 but are almost devoid of COX2 protein. We observe co-purification of FAM36A and COX2 proteins, supporting that the FAM36A defect hampers the early step of complex IV assembly at the incorporation of the COX2 subunit. Lentiviral complementation of patient's fibroblasts with wild-type FAM36A increases the complex IV activity as well as the amount of holocomplex IV and of individual subunits. These results establish the function of the human gene FAM36A/COX20 in complex IV assembly and support a causal role of the gene in complex IV deficiency.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen 6500HB, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schreiner B, Westerburg H, Forné I, Imhof A, Neupert W, Mokranjac D. Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria. Mol Biol Cell 2012; 23:4335-46. [PMID: 22993211 PMCID: PMC3496608 DOI: 10.1091/mbc.e12-05-0420] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We show here that the i-AAA protease Yme1 has a role in folding of proteins in the intermembrane space of mitochondria and identify a number of endogenous proteins that aggregate in its absence. Thus the function of Yme1 in mitochondrial proteostasis extends beyond its role in proteolytic removal of misfolded and nonassembled inner membrane proteins. The vast majority of mitochondrial proteins are synthesized in the cytosol and transported into the organelle in a largely, if not completely, unfolded state. The proper function of mitochondria thus depends on folding of several hundreds of proteins in the various subcompartments of the organelle. Whereas folding of proteins in the mitochondrial matrix is supported by members of several chaperone families, very little is known about folding of proteins in the intermembrane space (IMS). We targeted dihydrofolate reductase (DHFR) as a model substrate to the IMS of yeast mitochondria and analyzed its folding. DHFR can fold in this compartment, and its aggregation upon heat shock can be prevented in an ATP-dependent manner. Yme1, an AAA (ATPases associated with diverse cellular activities) protease of the IMS, prevented aggregation of DHFR. Analysis of protein aggregates in mitochondria lacking Yme1 revealed the presence of a number of proteins involved in the establishment of mitochondrial ultrastructure, lipid metabolism, protein import, and respiratory growth. These findings explain the pleiotropic effects of deletion of YME1 and suggest an important role for Yme1 as a folding assistant, in addition to its proteolytic function, in the protein homeostasis of mitochondria
Collapse
Affiliation(s)
- Bernadette Schreiner
- Adolf Butenandt Institute, Physiological Chemistry, University of Munich, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Keil M, Bareth B, Woellhaf MW, Peleh V, Prestele M, Rehling P, Herrmann JM. Oxa1-ribosome complexes coordinate the assembly of cytochrome C oxidase in mitochondria. J Biol Chem 2012; 287:34484-93. [PMID: 22904327 DOI: 10.1074/jbc.m112.382630] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The terminal enzyme of the respiratory chain, cytochrome c oxidase, consists of a hydrophobic reaction center formed by three mitochondrially encoded subunits with which 9-10 nuclear encoded subunits are associated. The three core subunits are synthesized on mitochondrial ribosomes and inserted into the inner membrane in a co-translational reaction facilitated by the Oxa1 insertase. Oxa1 consists of an N-terminal insertase domain and a C-terminal ribosome-binding region. Mutants lacking the C-terminal region show specific defects in co-translational insertion, suggesting that the close contact of the ribosome with the insertase promotes co-translational insertion of nascent chains. In this study, we inserted flexible linkers of 100 or 200 amino acid residues between the insertase domain and ribosome-binding region of Oxa1 of Saccharomyces cerevisiae. In the absence of the ribosome receptor Mba1, these linkers caused a length-dependent decrease in mitochondrial respiratory activity caused by diminished levels of cytochrome c oxidase. Interestingly, considerable amounts of mitochondrial translation products were still integrated into the inner membrane in these linker mutants. However, they showed severe defects in later stages of the biogenesis process, presumably during assembly into functional complexes. Our observations suggest that the close proximity of Oxa1 to ribosomes is not only used to improve membrane insertion but is also critical for the productive assembly of the subunits of the cytochrome c oxidase. This points to a role for Oxa1 in the spatial coordination of the ribosome with assembly factors that are critical for enzyme biogenesis.
Collapse
Affiliation(s)
- Melanie Keil
- Department of Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|