1
|
Li Z, Chen J, Liu C, He S, Wang M, Wang L, Bhadauria V, Wang S, Cheng W, Liu H, Yang X, Xu M, Peng YL, Zhu W. Natural variations of maize ZmLecRK1 determine its interaction with ZmBAK1 and resistance patterns to multiple pathogens. MOLECULAR PLANT 2024; 17:1606-1623. [PMID: 39305013 DOI: 10.1016/j.molp.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Maize (Zea mays) is one of the most important crops in the world, but its yield and quality are seriously affected by diverse diseases. Identifying broad-spectrum resistance genes is crucial for developing effective strategies to control the disease in maize. In a genome-wide study in maize, we identified a G-type lectin receptor kinase ZmLecRK1, as a new resistance protein against Pythium aphanidermatum, one of the causal pathogens of stalk rot in maize. Genetic analysis showed that the specific ZmLecRK1 allele can confer resistance to multiple pathogens in maize. The cell death and disease resistance phenotype mediated by the resistant variant of ZmLecRK1 requires the co-receptor ZmBAK1. A naturally occurring A404S variant in the extracellular domain of ZmLecRK1 determines the ZmLecRK1-ZmBAK1 interaction and the formation of ZmLecRK1-related protein complexes. Interestingly, the ZmLecRK1 susceptible variant was found to possess the amino acid S404 that is present in the ancestral variants of ZmLecRK1 and conserved among the majority of grass species, while the resistance variant of ZmLecRK1 with A404 is only present in a few maize inbred lines. Substitution of S by A at position 404 in ZmLecRK1-like proteins of sorghum and rice greatly enhances their ability to induce cell death. Further transcriptomic analysis reveals that ZmLecRK1 likely regulates gene expression related to the pathways in cell wall organization or biogenesis in response to pathogen infection. Taken together, these results suggest that the ZmLecRK1 resistance variant enhances its binding affinity to the co-receptor ZmBAK1, thereby enhancing the formation of active complexes for defense in maize. Our work highlights the biotechnological potential for generating disease-resistant crops by precisely modulating the activity of ZmLecRK1 and its homologs through targeted base editing.
Collapse
Affiliation(s)
- Zhenju Li
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection/Ministry of Agriculture and Rural Affairs Key Laboratory of Surveillance and Management for Plant Quarantine Pests, China Agricultural University, Beijing 100193, P.R. China
| | - Junbin Chen
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection/Ministry of Agriculture and Rural Affairs Key Laboratory of Surveillance and Management for Plant Quarantine Pests, China Agricultural University, Beijing 100193, P.R. China
| | - Chuang Liu
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection/Ministry of Agriculture and Rural Affairs Key Laboratory of Surveillance and Management for Plant Quarantine Pests, China Agricultural University, Beijing 100193, P.R. China
| | - Shengfeng He
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection/Ministry of Agriculture and Rural Affairs Key Laboratory of Surveillance and Management for Plant Quarantine Pests, China Agricultural University, Beijing 100193, P.R. China
| | - Mingyu Wang
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection/Ministry of Agriculture and Rural Affairs Key Laboratory of Surveillance and Management for Plant Quarantine Pests, China Agricultural University, Beijing 100193, P.R. China; Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021, P.R. China
| | - Lei Wang
- Yazhouwan National Laboratory, Sanya, Hainan 572024, P.R. China
| | - Vijai Bhadauria
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Shiwei Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Wenyu Cheng
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection/Ministry of Agriculture and Rural Affairs Key Laboratory of Surveillance and Management for Plant Quarantine Pests, China Agricultural University, Beijing 100193, P.R. China
| | - Hui Liu
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection/Ministry of Agriculture and Rural Affairs Key Laboratory of Surveillance and Management for Plant Quarantine Pests, China Agricultural University, Beijing 100193, P.R. China
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - You-Liang Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, P.R. China
| | - Wangsheng Zhu
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection/Ministry of Agriculture and Rural Affairs Key Laboratory of Surveillance and Management for Plant Quarantine Pests, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
2
|
Adams AK, Kristy BD, Gorman M, Balint-Kurti P, Yencho GC, Olukolu BA. Qmatey: an automated pipeline for fast exact matching-based alignment and strain-level taxonomic binning and profiling of metagenomes. Brief Bioinform 2023; 24:bbad351. [PMID: 37824740 PMCID: PMC10569747 DOI: 10.1093/bib/bbad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
Metagenomics is a powerful tool for understanding organismal interactions; however, classification, profiling and detection of interactions at the strain level remain challenging. We present an automated pipeline, quantitative metagenomic alignment and taxonomic exact matching (Qmatey), that performs a fast exact matching-based alignment and integration of taxonomic binning and profiling. It interrogates large databases without using metagenome-assembled genomes, curated pan-genes or k-mer spectra that limit resolution. Qmatey minimizes misclassification and maintains strain level resolution by using only diagnostic reads as shown in the analysis of amplicon, quantitative reduced representation and shotgun sequencing datasets. Using Qmatey to analyze shotgun data from a synthetic community with 35% of the 26 strains at low abundance (0.01-0.06%), we revealed a remarkable 85-96% strain recall and 92-100% species recall while maintaining 100% precision. Benchmarking revealed that the highly ranked Kraken2 and KrakenUniq tools identified 2-4 more taxa (92-100% recall) than Qmatey but produced 315-1752 false positive taxa and high penalty on precision (1-8%). The speed, accuracy and precision of the Qmatey pipeline positions it as a valuable tool for broad-spectrum profiling and for uncovering biologically relevant interactions.
Collapse
Affiliation(s)
- Alison K Adams
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon D Kristy
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Myranda Gorman
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7613, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC, USA
| | - G Craig Yencho
- Department of Horticultural Science, NC State University, Raleigh, NC 27695-7609, USA
| | - Bode A Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
3
|
Sun Y, Ma S, Liu X, Wang GF. The maize ZmVPS23-like protein relocates the nucleotide-binding leucine-rich repeat protein Rp1-D21 to endosomes and suppresses the defense response. THE PLANT CELL 2023; 35:2369-2390. [PMID: 36869653 PMCID: PMC10226561 DOI: 10.1093/plcell/koad061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 05/30/2023]
Abstract
Plants often utilize nucleotide-binding leucine-rich repeat (NLR) proteins to perceive pathogen infections and trigger a hypersensitive response (HR). The endosomal sorting complex required for transport (ESCRT) machinery is a conserved multisubunit complex that is essential for the biogenesis of multivesicular bodies and cargo protein sorting. VPS23 is a key component of ESCRT-I and plays important roles in plant development and abiotic stresses. ZmVPS23L, a homolog of VPS23-like in maize (Zea mays), was previously identified as a candidate gene in modulating HR mediated by the autoactive NLR protein Rp1-D21 in different maize populations. Here, we demonstrate that ZmVPS23L suppresses Rp1-D21-mediated HR in maize and Nicotiana benthamiana. Variation in the suppressive effect of HR by different ZmVPS23L alleles was correlated with variation in their expression levels. ZmVPS23 also suppressed Rp1-D21-mediated HR. ZmVPS23L and ZmVPS23 predominantly localized to endosomes, and they physically interacted with the coiled-coil domain of Rp1-D21 and mediated the relocation of Rp1-D21 from the nucleo-cytoplasm to endosomes. In summary, we demonstrate that ZmVPS23L and ZmVPS23 are negative regulators of Rp1-D21-mediated HR, likely by sequestrating Rp1-D21 in endosomes via physical interaction. Our findings reveal the role of ESCRT components in controlling plant NLR-mediated defense responses.
Collapse
Affiliation(s)
- Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Shijun Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Kolkman JM, Moreta DE, Repka A, Bradbury P, Nelson RJ. Brown midrib mutant and genome-wide association analysis uncover lignin genes for disease resistance in maize. THE PLANT GENOME 2023; 16:e20278. [PMID: 36533711 DOI: 10.1002/tpg2.20278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 05/10/2023]
Abstract
Brown midrib (BMR) maize (Zea mays L.) harbors mutations that result in lower lignin levels and higher feed digestibility, making it a desirable silage market class for ruminant nutrition. Northern leaf blight (NLB) epidemics in upstate New York highlighted the disease susceptibility of commercially grown BMR maize hybrids. We found the bm1, bm2, bm3, and bm4 mutants in a W64A genetic background to be more susceptible to foliar fungal (NLB, gray leaf spot [GLS], and anthracnose leaf blight [ALB]) and bacterial (Stewart's wilt) diseases. The bm1, bm2, and bm3 mutants showed enhanced susceptibility to anthracnose stalk rot (ASR), and the bm1 and bm3 mutants were more susceptible to Gibberella ear rot (GER). Colocalization of quantitative trait loci (QTL) and correlations between stalk strength and disease traits in recombinant inbred line families suggest possible pleiotropies. The role of lignin in plant defense was explored using high-resolution, genome-wide association analysis for resistance to NLB in the Goodman diversity panel. Association analysis identified 100 single and clustered single-nucleotide polymorphism (SNP) associations for resistance to NLB but did not implicate natural functional variation at bm1-bm5. Strong associations implicated a suite of diverse candidate genes including lignin-related genes such as a β-glucosidase gene cluster, hct11, knox1, knox2, zim36, lbd35, CASP-like protein 8, and xat3. The candidate genes are targets for breeding quantitative resistance to NLB in maize for use in silage and nonsilage purposes.
Collapse
Affiliation(s)
- Judith M Kolkman
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
| | - Danilo E Moreta
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853, USA
| | - Ace Repka
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
| | | | - Rebecca J Nelson
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Khaipho-Burch M, Ferebee T, Giri A, Ramstein G, Monier B, Yi E, Romay MC, Buckler ES. Elucidating the patterns of pleiotropy and its biological relevance in maize. PLoS Genet 2023; 19:e1010664. [PMID: 36943844 PMCID: PMC10030035 DOI: 10.1371/journal.pgen.1010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023] Open
Abstract
Pleiotropy-when a single gene controls two or more seemingly unrelated traits-has been shown to impact genes with effects on flowering time, leaf architecture, and inflorescence morphology in maize. However, the genome-wide impact of biological pleiotropy across all maize phenotypes is largely unknown. Here, we investigate the extent to which biological pleiotropy impacts phenotypes within maize using GWAS summary statistics reanalyzed from previously published metabolite, field, and expression phenotypes across the Nested Association Mapping population and Goodman Association Panel. Through phenotypic saturation of 120,597 traits, we obtain over 480 million significant quantitative trait nucleotides. We estimate that only 1.56-32.3% of intervals show some degree of pleiotropy. We then assess the relationship between pleiotropy and various biological features such as gene expression, chromatin accessibility, sequence conservation, and enrichment for gene ontology terms. We find very little relationship between pleiotropy and these variables when compared to permuted pleiotropy. We hypothesize that biological pleiotropy of common alleles is not widespread in maize and is highly impacted by nuisance terms such as population structure and linkage disequilibrium. Natural selection on large standing natural variation in maize populations may target wide and large effect variants, leaving the prevalence of detectable pleiotropy relatively low.
Collapse
Affiliation(s)
| | - Taylor Ferebee
- Department of Computational Biology, Cornell University, Ithaca, New York
| | - Anju Giri
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Guillaume Ramstein
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Emily Yi
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Edward S Buckler
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York
- Institute for Genomic Diversity, Cornell University, Ithaca, New York
- USDA-ARS, Ithaca, New York, United States of America
| |
Collapse
|
6
|
Karre S, Kim SB, Kim BS, Khangura RS, Sermons SM, Dilkes B, Johal G, Balint-Kurti P. Maize Plants Chimeric for an Autoactive Resistance Gene Display a Cell-Autonomous Hypersensitive Response but Non-Cell Autonomous Defense Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:606-616. [PMID: 33507801 DOI: 10.1094/mpmi-04-20-0091-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The maize gene Rp1-D21 is a mutant form of the gene Rp1-D that confers resistance to common rust. Rp1-D21 triggers a spontaneous defense response that occurs in the absence of the pathogen and includes a programed cell death called the hypersensitive response (HR). Eleven plants heterozygous for Rp1-D21, in four different genetic backgrounds, were identified that had chimeric leaves with lesioned sectors showing HR abutting green nonlesioned sectors lacking HR. The Rp1-D21 sequence derived from each of the lesioned portions of leaves was unaltered from the expected sequence whereas the Rp1-D21 sequences from nine of the nonlesioned sectors displayed various mutations, and we were unable to amplify Rp1-D21 from the other two nonlesioned sectors. In every case, the borders between the sectors were sharp, with no transition zone, suggesting that HR and chlorosis associated with Rp1-D21 activity was cell autonomous. Expression of defense response marker genes was assessed in the lesioned and nonlesioned sectors as well as in near-isogenic plants lacking and carrying Rp1-D21. Defense gene expression was somewhat elevated in nonlesioned sectors abutting sectors carrying Rp1-D21 compared with near-isogenic plants lacking Rp1-D21. This suggests that, whereas the HR itself was cell autonomous, other aspects of the defense response initiated by Rp1-D21 were not.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shailesh Karre
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - Saet-Byul Kim
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - Bong-Suk Kim
- Botany and Plant Pathology, Purdue University, West Lafayette, IN, U.S.A
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Shannon M Sermons
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, U.S.A
| | - Guri Johal
- Botany and Plant Pathology, Purdue University, West Lafayette, IN, U.S.A
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| |
Collapse
|
7
|
Karre S, Kim S, Samira R, Balint‐Kurti P. The maize ZmMIEL1 E3 ligase and ZmMYB83 transcription factor proteins interact and regulate the hypersensitive defence response. MOLECULAR PLANT PATHOLOGY 2021; 22:694-709. [PMID: 33825303 PMCID: PMC8126188 DOI: 10.1111/mpp.13057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
The plant hypersensitive response (HR), a rapid cell death at the point of pathogenesis, is mediated by nucleotide-binding site, leucine-rich repeat (NLR) resistance proteins (R-proteins) that recognize the presence of specific pathogen-derived proteins. Rp1-D21 is an autoactive maize NLR R-protein that triggers HR spontaneously. We previously mapped loci associated with variation in the strength of HR induced by Rp1-D21. Here we identify the E3 ligase ZmMIEL1 as the causal gene at a chromosome 10 modifier locus. Transient ZmMIEL1 expression in Nicotiana benthamiana reduced HR induced by Rp1-D21, while suppression of ZmMIEL1 expression in maize carrying Rp1-D21 increased HR. ZmMIEL1 also suppressed HR induced by another autoactive NLR, the Arabidopsis R-protein RPM1D505V, in N. benthamiana. We demonstrated that ZmMIEL1 is a functional E3 ligase and that the effect of ZmMIEL1 was dependent on the proteasome but also that levels of Rp1-D21 and RPM1D505V were not reduced when coexpressed with ZmMIEL1 in the N. benthamiana system. By comparison to a similar system in Arabidopsis, we identify ZmMYB83 as a potential target of ZmMIEL1. Suppression of ZmMYB83 expression in maize lines carrying Rp1-D21 suppressed HR. Suppression of ZmMIEL1 expression caused an increase in ZmMYB83 transcript and protein levels in N. benthamiana and maize. Using coimmunoprecipitation and bimolecular fluorescence complementation assays, we demonstrated that ZmMIEL1 and ZmMYB83 physically interacted. Additionally, ZmMYB83 and ZmMIEL1 regulated the expression of a set of maize very long chain fatty acid (VLCFA) biosynthetic genes that may be involved in regulating HR.
Collapse
Affiliation(s)
- Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Rozalynne Samira
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Fiber and Biopolymer Research InstituteDepartment of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research Unit USDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
8
|
Liu M, Li Y, Zhu Y, Sun Y, Wang G. Maize nicotinate N-methyltransferase interacts with the NLR protein Rp1-D21 and modulates the hypersensitive response. MOLECULAR PLANT PATHOLOGY 2021; 22:564-579. [PMID: 33675291 PMCID: PMC8035639 DOI: 10.1111/mpp.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
Most plant intracellular immune receptors belong to nucleotide-binding, leucine-rich repeat (NLR) proteins. The recognition between NLRs and their corresponding pathogen effectors often triggers a hypersensitive response (HR) at the pathogen infection sites. The nicotinate N-methyltransferase (NANMT) is responsible for the conversion of nicotinate to trigonelline in plants. However, the role of NANMT in plant defence response is unknown. In this study, we demonstrated that the maize ZmNANMT, but not its close homolog ZmCOMT, an enzyme in the lignin biosynthesis pathway, suppresses the HR mediated by the autoactive NLR protein Rp1-D21 and its N-terminal coiled-coil signalling domain (CCD21 ). ZmNANMT, but not ZmCOMT, interacts with CCD21 , and they form a complex with HCT1806 and CCoAOMT2, two key enzymes in lignin biosynthesis, which can also suppress the autoactive HR mediated by Rp1-D21. ZmNANMT is mainly localized in the cytoplasm and nucleus, and either localization is important for suppressing the HR phenotype. These results lay the foundation for further elucidating the molecular mechanism of NANMTs in plant disease resistance.
Collapse
Affiliation(s)
- Mengjie Liu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
- The Key Laboratory of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and MedicineQingdao Agricultural UniversityQingdaoChina
| | - Ya‐Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yu‐Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Guan‐Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| |
Collapse
|
9
|
Gao S, Wang F, Niran J, Li N, Yin Y, Yu C, Jiao C, Yao M. Transcriptome analysis reveals defense-related genes and pathways against Xanthomonas campestris pv. vesicatoria in pepper (Capsicum annuum L.). PLoS One 2021; 16:e0240279. [PMID: 33705404 PMCID: PMC7951875 DOI: 10.1371/journal.pone.0240279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/20/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial spot (BS), incited by Xanthomonas campestris pv. vesicatoria (Xcv), is one of the most serious diseases of pepper. For a comparative analysis of defense responses to Xcv infection, we performed a transcriptomic analysis of a susceptible cultivar, ECW, and a resistant cultivar, VI037601, using the HiSeqTM 2500 sequencing platform. Approximately 120.23 G clean bases were generated from 18 libraries. From the libraries generated, a total of 38,269 expressed genes containing 11,714 novel genes and 11,232 differentially expressed genes (DEGs) were identified. Functional enrichment analysis revealed that the most noticeable pathways were plant-pathogen interaction, MAPK signaling pathway—plant, plant hormone signal transduction and secondary metabolisms. 1,599 potentially defense-related genes linked to pattern recognition receptors (PRRs), mitogen-activated protein kinase (MAPK), calcium signaling, and transcription factors may regulate pepper resistance to Xcv. Moreover, after Xcv inoculation, 364 DEGs differentially expressed only in VI037601 and 852 genes in both ECW and VI037601. Many of those genes were classified as NBS-LRR genes, oxidoreductase gene, WRKY and NAC transcription factors, and they were mainly involved in metabolic process, response to stimulus and biological regulation pathways. Quantitative RT-PCR of sixteen selected DEGs further validated the RNA-seq differential gene expression analysis. Our results will provide a valuable resource for understanding the molecular mechanisms of pepper resistance to Xcv infection and improving pepper resistance cultivars against Xcv.
Collapse
Affiliation(s)
- Shenghua Gao
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Fei Wang
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | | | - Ning Li
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yanxu Yin
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Chuying Yu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Chunhai Jiao
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- * E-mail: (MY); (CJ)
| | - Minghua Yao
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- * E-mail: (MY); (CJ)
| |
Collapse
|
10
|
Luan QL, Zhu YX, Ma S, Sun Y, Liu XY, Liu M, Balint-Kurti PJ, Wang GF. Maize metacaspases modulate the defense response mediated by the NLR protein Rp1-D21 likely by affecting its subcellular localization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:151-166. [PMID: 33107667 DOI: 10.1111/tpj.15047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 05/22/2023]
Abstract
Plants usually employ resistance (R) genes to defend against the infection of pathogens, and most R genes encode intracellular nucleotide-binding, leucine-rich repeat (NLR) proteins. The recognition between R proteins and their cognate pathogens often triggers a rapid localized cell death at the pathogen infection sites, termed the hypersensitive response (HR). Metacaspases (MCs) belong to a cysteine protease family, structurally related to metazoan caspases. MCs play crucial roles in plant immunity. However, the underlying molecular mechanism and the link between MCs and NLR-mediated HR are not clear. In this study, we systematically investigated the MC gene family in maize and identified 11 ZmMCs belonging to two types. Further functional analysis showed that the type I ZmMC1 and ZmMC2, but not the type II ZmMC9, suppress the HR-inducing activity of the autoactive NLR protein Rp1-D21 and of its N-terminal coiled-coil (CCD21 ) signaling domain when transiently expressed in Nicotiana benthamiana. ZmMC1 and ZmMC2 physically associate with CCD21 in vivo. We further showed that ZmMC1 and ZmMC2, but not ZmMC9, are predominantly localized in a punctate distribution in both N. benthamiana and maize (Zea mays) protoplasts. Furthermore, the co-expression of ZmMC1 and ZmMC2 with Rp1-D21 and CCD21 causes their re-distribution from being uniformly distributed in the nucleocytoplasm to a punctate distribution co-localizing with ZmMC1 and ZmMC2. We reveal a novel role of plant MCs in modulating the NLR-mediated defense response and derive a model to explain it.
Collapse
Affiliation(s)
- Qing-Ling Luan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Yu-Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Shijun Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Xiao-Ying Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Mengjie Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Peter J Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, 27695, USA
| | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, PR China
| |
Collapse
|
11
|
Murphree C, Kim S, Karre S, Samira R, Balint‐Kurti P. Use of virus-induced gene silencing to characterize genes involved in modulating hypersensitive cell death in maize. MOLECULAR PLANT PATHOLOGY 2020; 21:1662-1676. [PMID: 33037769 PMCID: PMC7694674 DOI: 10.1111/mpp.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 05/22/2023]
Abstract
Plant disease resistance proteins (R-proteins) detect specific pathogen-derived molecules, triggering a defence response often including a rapid localized cell death at the point of pathogen penetration called the hypersensitive response (HR). The maize Rp1-D21 gene encodes a protein that triggers a spontaneous HR causing spots on leaves in the absence of any pathogen. Previously, we used fine mapping and functional analysis in a Nicotiana benthamiana transient expression system to identify and characterize a number of genes associated with variation in Rp1-D21-induced HR. Here we describe a system for characterizing genes mediating HR, using virus-induced gene silencing (VIGS) in a maize line carrying Rp1-D21. We assess the roles of 12 candidate genes. Three of these genes, SGT1, RAR1, and HSP90, are required for HR induced by a number of R-proteins across several plant-pathogen systems. We confirmed that maize HSP90 was required for full Rp1-D21-induced HR. However, suppression of SGT1 expression unexpectedly increased the severity of Rp1-D21-induced HR while suppression of RAR1 expression had no measurable effect. We confirmed the effects on HR of two genes we had previously validated in the N. benthamiana system, hydroxycinnamoyltransferase and caffeoyl CoA O-methyltransferase. We further showed the suppression the expression of two previously uncharacterized, candidate genes, IQ calmodulin binding protein (IQM3) and vacuolar protein sorting protein 37, suppressed Rp1-D21-induced HR. This approach is an efficient way to characterize the roles of genes modulating the hypersensitive defence response and other dominant lesion phenotypes in maize.
Collapse
Affiliation(s)
- Colin Murphree
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Rozalynne Samira
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Fiber and Biopolymer Research Institute (FBRI)Department of Plant and Soil ScienceTexas Tech UniversityTexasUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
12
|
Zhu YX, Ge C, Ma S, Liu XY, Liu M, Sun Y, Wang GF. Maize ZmFNSI Homologs Interact with an NLR Protein to Modulate Hypersensitive Response. Int J Mol Sci 2020; 21:E2529. [PMID: 32260554 PMCID: PMC7177559 DOI: 10.3390/ijms21072529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Nucleotide binding, leucine-rich-repeat (NLR) proteins are the major class of resistance (R) proteins used by plants to defend against pathogen infection. The recognition between NLRs and their cognate pathogen effectors usually triggers a rapid localized cell death, termed the hypersensitive response (HR). Flavone synthase I (FNSI) is one of the key enzymes in the flavone biosynthesis pathway. It also displays salicylic acid (SA) 5-hydroxylase (S5H) activity. A close homolog of FNSI/S5H displays SA 3-hydroxylase (S3H) activity. Both FNSI/S5H and S3H play important roles in plant innate immunity. However, the underlying molecular mechanisms and the relationship between S5H and S3H with the NLR-mediated HR are not known in any plant species. In this study, we identified three genes encoding ZmFNSI-1, ZmFNSI-2 and ZmS3H that are significantly upregulated in a maize line carrying an autoactive NLR Rp1-D21 mutant. Functional analysis showed that ZmFNSI-1 and ZmFNSI-2, but not ZmS3H, suppressed HR conferred by Rp1-D21 and its signaling domain CCD21 when transiently expressed in N. benthamiana. ZmFNSI-1 and ZmFNSI-2 physically interacted with CCD21. Furthermore, ZmFNSI-1 and ZmFNSI-2 interacted with HCT, a key enzyme in lignin biosynthesis pathway, which can also suppress Rp1-D21-mediated HR. These results lay the foundation for the further functional analysis of the roles of FNSI in plant innate immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (Y.-X.Z.); (C.G.); (S.M.); (X.-Y.L.); (M.L.); (Y.S.)
| |
Collapse
|
13
|
Liu J, Fernie AR, Yan J. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. PLANT COMMUNICATIONS 2020; 1:100010. [PMID: 33404535 PMCID: PMC7747985 DOI: 10.1016/j.xplc.2019.100010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 05/14/2023]
Abstract
After being domesticated from teosinte, cultivated maize (Zea mays ssp. mays) spread worldwide and now is one of the most important staple crops. Due to its tremendous phenotypic and genotypic diversity, maize also becomes to be one of the most widely used model plant species for fundamental research, with many important discoveries reported by maize researchers. Here, we provide an overview of the history of maize domestication and key genes controlling major domestication-related traits, review the currently available resources for functional genomics studies in maize, and discuss the functions of most of the maize genes that have been positionally cloned and can be used for crop improvement. Finally, we provide some perspectives on future directions regarding functional genomics research and the breeding of maize and other crops.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author
| | - Alisdair R. Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author
| |
Collapse
|
14
|
Bararyenya A, Olukolu BA, Tukamuhabwa P, Grüneberg WJ, Ekaya W, Low J, Ochwo-Ssemakula M, Odong TL, Talwana H, Badji A, Kyalo M, Nasser Y, Gemenet D, Kitavi M, Mwanga ROM. Genome-wide association study identified candidate genes controlling continuous storage root formation and bulking in hexaploid sweetpotato. BMC PLANT BIOLOGY 2020; 20:3. [PMID: 31898489 PMCID: PMC6941292 DOI: 10.1186/s12870-019-2217-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/23/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Continuous storage root formation and bulking (CSRFAB) in sweetpotato is an important trait from agronomic and biological perspectives. Information about the molecular mechanisms underlying CSRFAB traits is lacking. RESULTS Here, as a first step toward understanding the genetic basis of CSRFAB in sweetpotato, we performed a genome-wide association study (GWAS) using phenotypic data from four distinct developmental stages and 33,068 single nucleotide polymorphism (SNP) and insertion-deletion (indel) markers. Based on Bonferroni threshold (p-value < 5 × 10- 7), we identified 34 unique SNPs that were significantly associated with the complex trait of CSRFAB at 150 days after planting (DAP) and seven unique SNPs associated with discontinuous storage root formation and bulking (DCSRFAB) at 90 DAP. Importantly, most of the loci associated with these identified SNPs were located within genomic regions (using Ipomoea trifida reference genome) previously reported for quantitative trait loci (QTL) controlling similar traits. Based on these trait-associated SNPs, 12 and seven candidate genes were respectively annotated for CSRFAB and DCSRFAB traits. Congruent with the contrasting and inverse relationship between discontinuous and continuous storage root formation and bulking, a DCSRFAB-associated candidate gene regulates redox signaling, involved in auxin-mediated lateral root formation, while CSRFAB is enriched for genes controlling growth and senescence. CONCLUSION Candidate genes identified in this study have potential roles in cell wall remodeling, plant growth, senescence, stress, root development and redox signaling. These findings provide valuable insights into understanding the functional networks to develop strategies for sweetpotato yield improvement. The markers as well as candidate genes identified in this pioneering research for CSRFAB provide important genomic resources for sweetpotato and other root crops.
Collapse
Affiliation(s)
- Astère Bararyenya
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.
- Institut des Sciences Agronomiques du Burundi, Avenue de la Cathédrale - B.P. 795, Bujumbura, Burundi.
| | - Bode A Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996-4560, USA
| | - Phinehas Tukamuhabwa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Wolfgang J Grüneberg
- International Potato Center (CIP), Avenida La Molina 1895, La Molina Apartado Postal, 1558, Lima, Peru
| | - Wellington Ekaya
- International Livestock Research Institute, ILRI Campus, Naivasha Rd, Nairobi, 30709-00100, Kenya
| | - Jan Low
- International Potato Center (CIP), Regional office sub-Sahara Africa, P.O. Box 25171-00603, Nairobi, Kenya
| | - Mildred Ochwo-Ssemakula
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Thomas L Odong
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Herbert Talwana
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Arfang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Martina Kyalo
- International Livestock Research Institute, ILRI Campus, Naivasha Rd, Nairobi, 30709-00100, Kenya
| | - Yao Nasser
- International Livestock Research Institute, ILRI Campus, Naivasha Rd, Nairobi, 30709-00100, Kenya
| | - Dorcus Gemenet
- International Potato Center (CIP), Regional office sub-Sahara Africa, P.O. Box 25171-00603, Nairobi, Kenya
| | - Mercy Kitavi
- International Potato Center (CIP), Regional office sub-Sahara Africa, P.O. Box 25171-00603, Nairobi, Kenya
| | - Robert O M Mwanga
- International Potato Center (CIP), Plot 47, Ntinda II Road, P.O. Box 22274, Kampala, Uganda
| |
Collapse
|
15
|
López-Malvar A, Butrón A, Samayoa LF, Figueroa-Garrido DJ, Malvar RA, Santiago R. Genome-wide association analysis for maize stem Cell Wall-bound Hydroxycinnamates. BMC PLANT BIOLOGY 2019; 19:519. [PMID: 31775632 PMCID: PMC6882159 DOI: 10.1186/s12870-019-2135-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/13/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND The structural reinforcement of cell walls by hydroxycinnamates has a significant role in defense against pests and pathogens, but it also interferes with forage digestibility and biofuel production. Elucidation of maize genetic variations that contribute to variation for stem hydroxycinnamate content could simplify breeding for cell wall strengthening by using markers linked to the most favorable genetic variants in marker-assisted selection or genomic selection approaches. RESULTS A genome-wide association study was conducted using a subset of 282 inbred lines from a maize diversity panel to identify single nucleotide polymorphisms (SNPs) associated with stem cell wall hydroxycinnamate content. A total of 5, 8, and 2 SNPs were identified as significantly associated to p-coumarate, ferulate, and total diferulate concentrations, respectively in the maize pith. Attending to particular diferulate isomers, 3, 6, 1 and 2 SNPs were related to 8-O-4 diferulate, 5-5 diferulate, 8-5 diferulate and 8-5 linear diferulate contents, respectively. This study has the advantage of being done with direct biochemical determinations instead of using estimates based on Near-infrared spectroscopy (NIRS) predictions. In addition, novel genomic regions involved in hydroxycinnamate content were found, such as those in bins 1.06 (for FA), 4.01 (for PCA and FA), 5.04 (for FA), 8.05 (for PCA), and 10.03 and 3.06 (for DFAT and some dimers). CONCLUSIONS The effect of individual SNPs significantly associated with stem hydroxycinnamate content was low, explaining a low percentage of total phenotypic variability (7 to 10%). Nevertheless, we spotlighted new genomic regions associated with the accumulation of cell-wall-bound hydroxycinnamic acids in the maize stem, and genes involved in cell wall modulation in response to biotic and abiotic stresses have been proposed as candidate genes for those quantitative trait loci (QTL). In addition, we cannot rule out that uncharacterized genes linked to significant SNPs could be implicated in dimer formation and arobinoxylan feruloylation because genes involved in those processes have been poorly characterized. Overall, genomic selection considering markers distributed throughout the whole genome seems to be a more appropriate breeding strategy than marker-assisted selection focused in markers linked to QTL.
Collapse
Affiliation(s)
- A López-Malvar
- Facultad de Biología, Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310, Vigo, Spain.
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Vigo, Spain.
| | - A Butrón
- Misión Biológica de Galicia (CSIC), Pazo de Salcedo, Carballeira 8, 36143, Pontevedra, Spain
| | - L F Samayoa
- Department of Crop and Soil Sciences, North Carolina State University Raleigh, Raleigh, NC, 27695-7620, USA
| | - D J Figueroa-Garrido
- Facultad de Biología, Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310, Vigo, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Vigo, Spain
| | - R A Malvar
- Misión Biológica de Galicia (CSIC), Pazo de Salcedo, Carballeira 8, 36143, Pontevedra, Spain
| | - R Santiago
- Facultad de Biología, Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310, Vigo, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Vigo, Spain
| |
Collapse
|
16
|
Yan L, Kenchanmane Raju SK, Lai X, Zhang Y, Dai X, Rodriguez O, Mahboub S, Roston RL, Schnable JC. Parallels between natural selection in the cold-adapted crop-wild relative Tripsacum dactyloides and artificial selection in temperate adapted maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:965-977. [PMID: 31069858 DOI: 10.1111/tpj.14376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Artificial selection has produced varieties of domesticated maize that thrive in temperate climates around the world. However, the direct progenitor of maize, teosinte, is indigenous only to a relatively small range of tropical and subtropical latitudes and grows poorly or not at all outside of this region. Tripsacum, a sister genus to maize and teosinte, is naturally endemic to the majority of areas in the western hemisphere where maize is cultivated. A full-length reference transcriptome for Tripsacum dactyloides generated using long-read Iso-Seq data was used to characterize independent adaptation to temperate climates in this clade. Genes related to phospholipid biosynthesis, a critical component of cold acclimation in other cold-adapted plant lineages, were enriched among those genes experiencing more rapid rates of protein sequence evolution in T. dactyloides. In contrast with previous studies of parallel selection, we find that there is a significant overlap between the genes that were targets of artificial selection during the adaptation of maize to temperate climates and those that were targets of natural selection in temperate-adapted T. dactyloides. Genes related to growth, development, response to stimulus, signaling, and organelles were enriched in the set of genes identified as both targets of natural and artificial selection.
Collapse
Affiliation(s)
- Lang Yan
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Laboratory of Functional Genome and Application of Potato, Xichang University, Liangshan, 615000, China
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | | | - Xianjun Lai
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Laboratory of Functional Genome and Application of Potato, Xichang University, Liangshan, 615000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Xiuru Dai
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Oscar Rodriguez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, NE, USA
| | - Samira Mahboub
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rebecca L Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, NE, USA
| |
Collapse
|
17
|
Balint‐Kurti P. The plant hypersensitive response: concepts, control and consequences. MOLECULAR PLANT PATHOLOGY 2019; 20:1163-1178. [PMID: 31305008 PMCID: PMC6640183 DOI: 10.1111/mpp.12821] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The hypersensitive defence response is found in all higher plants and is characterized by a rapid cell death at the point of pathogen ingress. It is usually associated with pathogen resistance, though, in specific situations, it may have other consequences such as pathogen susceptibility, growth retardation and, over evolutionary timescales, speciation. Due to the potentially severe costs of inappropriate activation, plants employ multiple mechanisms to suppress inappropriate activation of HR and to constrain it after activation. The ubiquity of this response among higher plants despite its costs suggests that it is an extremely effective component of the plant immune system.
Collapse
Affiliation(s)
- Peter Balint‐Kurti
- Plant Science Research UnitUSDA‐ARSRaleighNCUSA
- Department of Entomology and Plant PathologyNC State UniversityRaleighNC27695‐7613USA
| |
Collapse
|
18
|
He Y, Karre S, Johal GS, Christensen SA, Balint-Kurti P. A maize polygalacturonase functions as a suppressor of programmed cell death in plants. BMC PLANT BIOLOGY 2019; 19:310. [PMID: 31307401 PMCID: PMC6628502 DOI: 10.1186/s12870-019-1897-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/19/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The hypersensitive defense response (HR) in plants is a fast, localized necrotic response around the point of pathogen ingress. HR is usually triggered by a pathogen recognition event mediated by a nucleotide-binding site, leucine-rich repeat (NLR) protein. The autoactive maize NLR gene Rp1-D21 confers a spontaneous HR response in the absence of pathogen recognition. Previous work identified a set of loci associated with variation in the strength of Rp1-D21-induced HR. A polygalacturonase gene homolog, here termed ZmPGH1, was identified as a possible causal gene at one of these loci on chromosome 7. RESULTS Expression of ZmPGH1 inhibited the HR-inducing activity of both Rp1-D21 and that of another autoactive NLR, RPM1(D505V), in a Nicotiana benthamiana transient expression assay system. Overexpression of ZmPGH1 in a transposon insertion line of maize was associated with suppression of chemically-induced programmed cell death and with suppression of HR induced by Rp1-D21 in maize plants grown in the field. CONCLUSIONS ZmPGH1 functions as a suppressor of programmed cell death induced by at least two autoactive NLR proteins and by two chemical inducers. These findings deepen our understanding of the control of the HR in plants.
Collapse
Affiliation(s)
- Yijian He
- Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7616 USA
| | - Shailesh Karre
- Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7616 USA
| | - Gurmukh S. Johal
- Botany and Plant Pathology, Purdue University, West Lafayette, USA
| | - Shawn A. Christensen
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Department of Agriculture–Agricultural Research Service (USDA–ARS), Gainesville, FL 32608 USA
| | - Peter Balint-Kurti
- Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7616 USA
- Plant Science Research Unit, USDA-ARS, NC State University, Raleigh, NC 27695-7616 USA
| |
Collapse
|
19
|
A Very Oil Yellow1 Modifier of the Oil Yellow1-N1989 Allele Uncovers a Cryptic Phenotypic Impact of Cis-regulatory Variation in Maize. G3-GENES GENOMES GENETICS 2019; 9:375-390. [PMID: 30518539 PMCID: PMC6385977 DOI: 10.1534/g3.118.200798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Forward genetics determines the function of genes underlying trait variation by identifying the change in DNA responsible for changes in phenotype. Detecting phenotypically-relevant variation outside protein coding sequences and distinguishing this from neutral variants is not trivial; partly because the mechanisms by which DNA polymorphisms in the intergenic regions affect gene regulation are poorly understood. Here we utilized a dominant genetic reporter to investigate the effect of cis and trans-acting regulatory variation. We performed a forward genetic screen for natural variation that suppressed or enhanced the semi-dominant mutant allele Oy1-N1989, encoding the magnesium chelatase subunit I of maize. This mutant permits rapid phenotyping of leaf color as a reporter for chlorophyll accumulation, and mapping of natural variation in maize affecting chlorophyll metabolism. We identified a single modifier locus segregating between B73 and Mo17 that was linked to the reporter gene itself, which we call very oil yellow1 (vey1). Based on the variation in OY1 transcript abundance and genome-wide association data, vey1 is predicted to consist of multiple cis-acting regulatory sequence polymorphisms encoded at the wild-type oy1 alleles. The vey1 locus appears to be a common polymorphism in the maize germplasm that alters the expression level of a key gene in chlorophyll biosynthesis. These vey1 alleles have no discernable impact on leaf chlorophyll in the absence of the Oy1-N1989 reporter. Thus, the use of a mutant as a reporter for magnesium chelatase activity resulted in the detection of expression-level polymorphisms not readily visible in the laboratory.
Collapse
|
20
|
Stagnati L, Lanubile A, Samayoa LF, Bragalanti M, Giorni P, Busconi M, Holland JB, Marocco A. A Genome Wide Association Study Reveals Markers and Genes Associated with Resistance to Fusarium verticillioides Infection of Seedlings in a Maize Diversity Panel. G3 (BETHESDA, MD.) 2019; 9:571-579. [PMID: 30567831 PMCID: PMC6385986 DOI: 10.1534/g3.118.200916] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Fusarium verticillioides infects maize, causing ear rot, yield loss and contamination by fumonisin mycotoxins. The fungus can be transmitted via kernels and cause systemic infection in maize. Maize resistance to the fungus may occur at different developmental stages, from seedling to maturity. Resistance during kernel germination is part of the plant-pathogen interaction and so far this aspect has not been investigated. In the present study, a genome wide association study (GWAS) of resistance to Fusarium during the seedling developmental stage was conducted in a maize diversity panel using 226,446 SNP markers. Seedling germination and disease phenotypes were scored on artificially inoculated kernels using the rolled towel assay. GWAS identified 164 SNPs significantly associated with the traits examined. Four SNPs were associated with disease severity score after inoculation, 153 were associated with severity in asymptomatic kernels and 7 with the difference between the severity ratings in inoculated and non-inoculated seeds. A set of genes containing or physically near the significant SNPs were identified as candidates for Fusarium resistance at the seedling stage. Functional analysis revealed that many of these genes are directly involved in plant defense against pathogens and stress responses, including transcription factors, chitinase, cytochrome P450, and ubiquitination proteins. In addition, 25 genes were found in high linkage disequilibrium with the associated SNPs identified by GWAS and four of them directly involved in disease resistance. These findings contribute to understanding the complex system of maize-F. verticillioides and may improve genomic selection for Fusarium resistance at the seedling stage.
Collapse
Affiliation(s)
- Lorenzo Stagnati
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| | - Alessandra Lanubile
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| | - Luis F Samayoa
- Department of Crop & Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Mario Bragalanti
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| | - Paola Giorni
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| | - Matteo Busconi
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| | - James B Holland
- Department of Crop & Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina 27695
| | - Adriano Marocco
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza (Italy)
| |
Collapse
|
21
|
Xiaodong X, Olukolu B, Yang Q, Balint-Kurti P. Identification of a locus in maize controlling response to a host-selective toxin derived from Cochliobolus heterostrophus, causal agent of southern leaf blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2601-2612. [PMID: 30191251 DOI: 10.1007/s00122-018-3175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
A host-selective, proteinaceous maize toxin was identified from the culture filtrate of the maize pathogen Cochliobolus heterostrophus. A dominant gene for toxin susceptibility was identified on maize chromosome 4. A toxic activity was identified from the culture filtrate (CF) of the fungus Cochliobolus heterostrophus, causal agent of the maize disease southern leaf blight (SLB) with differential toxicity on maize lines. Two independent mapping populations; a 113-line recombinant inbred line population and a 258-line association population, were used to map loci associated with sensitivity to the CF at the seedling stage. A major QTL on chromosome 4 was identified at the same locus using both populations. Mapping in the association population defined a 400 kb region that contained the sensitivity locus. By comparing CF-sensitivity of the parents of the RIL population with that of the F1 progeny, we determined that the sensitivity allele was dominant. No relationship was observed between CF-sensitivity in seedlings and SLB susceptibility in mature plants; however, a significant correlation (- 0.58) was observed between SLB susceptibility and CF-sensitivity in seedlings. The activity of the CF was light-dependent and was sensitive to pronase, indicating that the toxin was proteinaceous.
Collapse
Affiliation(s)
- Xie Xiaodong
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA
| | - Bode Olukolu
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Qin Yang
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA
- College of Agronomy and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA.
- USDA-ARS Plant Science Research Unit, Raleigh, NC, 27695, USA.
| |
Collapse
|
22
|
|
23
|
Horner DS, Pasini ME, Beltrame M, Mastrodonato V, Morelli E, Vaccari T. ESCRT genes and regulation of developmental signaling. Semin Cell Dev Biol 2017; 74:29-39. [PMID: 28847745 DOI: 10.1016/j.semcdb.2017.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/06/2017] [Accepted: 08/18/2017] [Indexed: 11/30/2022]
Abstract
ESCRT (Endosomal Sorting Complex Required for Transport) proteins have been shown to control an increasing number of membrane-associated processes. Some of these, and prominently regulation of receptor trafficking, profoundly shape signal transduction. Evidence in fungi, plants and multiple animal models support the emerging concept that ESCRTs are main actors in coordination of signaling with the changes in cells and tissues occurring during development and homeostasis. Consistent with their pleiotropic function, ESCRTs are regulated in multiple ways to tailor signaling to developmental and homeostatic needs. ESCRT activity is crucial to correct execution of developmental programs, especially at key transitions, allowing eukaryotes to thrive and preventing appearance of congenital defects.
Collapse
Affiliation(s)
- David S Horner
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Maria E Pasini
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Monica Beltrame
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Valeria Mastrodonato
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| |
Collapse
|
24
|
Trtikova M, Lohn A, Binimelis R, Chapela I, Oehen B, Zemp N, Widmer A, Hilbeck A. Teosinte in Europe - Searching for the Origin of a Novel Weed. Sci Rep 2017; 7:1560. [PMID: 28484216 PMCID: PMC5431553 DOI: 10.1038/s41598-017-01478-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/30/2017] [Indexed: 11/09/2022] Open
Abstract
A novel weed has recently emerged, causing serious agronomic damage in one of the most important maize-growing regions of Western Europe, the Northern Provinces of Spain. The weed has morphological similarities to a wild relative of maize and has generally been referred to as teosinte. However, the identity, origin or genetic composition of 'Spanish teosinte' was unknown. Here, we present a genome-wide analysis of single-nucleotide polymorphism (SNP) data for Spanish teosinte, sympatric populations of cultivated maize and samples of reference teosinte taxa. Our data are complemented with previously published SNP datasets of cultivated maize and two Mexican teosinte subspecies. Our analyses reveal that Spanish teosinte does not group with any of the currently recognized teosinte taxa. Based on Bayesian clustering analysis and hybridization simulations, we infer that Spanish teosinte is of admixed origin, most likely involving Zea mays ssp. mexicana as one parental taxon, and an unidentified cultivated maize variety as the other. Analyses of plants grown from seeds collected in Spanish maize fields and experimental crosses under controlled conditions reveal that hybridization does occur between Spanish teosinte and cultivated maize in Spain, and that current hybridization is asymmetric, favouring the introgression of Spanish teosinte into cultivated maize, rather than vice versa.
Collapse
Affiliation(s)
- Miluse Trtikova
- ETH Zurich, Institute of Integrative Biology (IBZ), Universitätstrasse 16, 8092, Zurich, Switzerland.
| | - Andre Lohn
- ETH Zurich, Institute of Integrative Biology (IBZ), Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Rosa Binimelis
- Agroecology and Food Systems Chair, Universitat de Vic - Universitat Central de Catalunya, c/de la Laura 13, 08500, Vic, Spain
| | - Ignacio Chapela
- University of California Berkeley, Department of Environmental Science, Policy and Management, 108 Hilgard Hall, 94720, Berkeley, USA
| | - Bernadette Oehen
- ETH Zurich, Institute of Integrative Biology (IBZ), Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Niklaus Zemp
- ETH Zurich, Genetic Diversity Centre (GDC), Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Alex Widmer
- ETH Zurich, Institute of Integrative Biology (IBZ), Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Angelika Hilbeck
- ETH Zurich, Institute of Integrative Biology (IBZ), Universitätstrasse 16, 8092, Zurich, Switzerland
| |
Collapse
|
25
|
Xiao Y, Liu H, Wu L, Warburton M, Yan J. Genome-wide Association Studies in Maize: Praise and Stargaze. MOLECULAR PLANT 2017; 10:359-374. [PMID: 28039028 DOI: 10.1016/j.molp.2016.12.008] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/02/2016] [Accepted: 12/20/2016] [Indexed: 05/18/2023]
Abstract
Genome-wide association study (GWAS) has become a widely accepted strategy for decoding genotype-phenotype associations in many species thanks to advances in next-generation sequencing (NGS) technologies. Maize is an ideal crop for GWAS and significant progress has been made in the last decade. This review summarizes current GWAS efforts in maize functional genomics research and discusses future prospects in the omics era. The general goal of GWAS is to link genotypic variations to corresponding differences in phenotype using the most appropriate statistical model in a given population. The current review also presents perspectives for optimizing GWAS design and analysis. GWAS analysis of data from RNA, protein, and metabolite-based omics studies is discussed, along with new models and new population designs that will identify causes of phenotypic variation that have been hidden to date. The joint and continuous efforts of the whole community will enhance our understanding of maize quantitative traits and boost crop molecular breeding designs.
Collapse
Affiliation(s)
- Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Liuji Wu
- Synergetic Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Marilyn Warburton
- United States of Department of Agriculture, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Box 9555, MS 39762, Mississippi, USA
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Rosa M, Abraham-Juárez MJ, Lewis MW, Fonseca JP, Tian W, Ramirez V, Luan S, Pauly M, Hake S. The Maize MID-COMPLEMENTING ACTIVITY Homolog CELL NUMBER REGULATOR13/NARROW ODD DWARF Coordinates Organ Growth and Tissue Patterning. THE PLANT CELL 2017; 29:474-490. [PMID: 28254777 PMCID: PMC5385958 DOI: 10.1105/tpc.16.00878] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 05/07/2023]
Abstract
Organogenesis occurs through cell division, expansion, and differentiation. How these cellular processes are coordinated remains elusive. The maize (Zea mays) leaf provides a robust system to study cellular differentiation due to its distinct tissues and cell types. The narrow odd dwarf (nod) mutant displays defects at both the cellular and tissue level that increase in severity throughout growth. nod mutant leaves have reduced size due to fewer and smaller cells compared with the wild type. The juvenile-to-adult transition is delayed, and proximal distal-patterning is abnormal in this mutant. Differentiation of specialized cells such as those forming stomata and trichomes is incomplete. Analysis of nod-1 sectors suggests that NOD plays a cell-autonomous function in the leaf. We cloned nod positionally and found that it encodes CELL NUMBER REGULATOR13 (CNR13), the maize MID-COMPLEMENTING ACTIVITY homolog. CNR13/NOD is localized to the membrane and is enriched in dividing tissues. Transcriptome analysis of nod mutants revealed overrepresentation of cell wall, hormone metabolism, and defense gene categories. We propose that NOD coordinates cell activity in response to intrinsic and extrinsic cues.
Collapse
Affiliation(s)
- Marisa Rosa
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | | | - Michael W Lewis
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - João Pedro Fonseca
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143
| | - Wang Tian
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - Vicente Ramirez
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - Markus Pauly
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - Sarah Hake
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
- Plant Gene Expression Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710
| |
Collapse
|
27
|
Olukolu BA, Bian Y, De Vries B, Tracy WF, Wisser RJ, Holland JB, Balint-Kurti PJ. The Genetics of Leaf Flecking in Maize and Its Relationship to Plant Defense and Disease Resistance. PLANT PHYSIOLOGY 2016; 172:1787-1803. [PMID: 27670817 PMCID: PMC5100796 DOI: 10.1104/pp.15.01870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 09/22/2016] [Indexed: 05/20/2023]
Abstract
Physiological leaf spotting, or flecking, is a mild-lesion phenotype observed on the leaves of several commonly used maize (Zea mays) inbred lines and has been anecdotally linked to enhanced broad-spectrum disease resistance. Flecking was assessed in the maize nested association mapping (NAM) population, comprising 4,998 recombinant inbred lines from 25 biparental families, and in an association population, comprising 279 diverse maize inbreds. Joint family linkage analysis was conducted with 7,386 markers in the NAM population. Genome-wide association tests were performed with 26.5 million single-nucleotide polymorphisms (SNPs) in the NAM population and with 246,497 SNPs in the association population, resulting in the identification of 18 and three loci associated with variation in flecking, respectively. Many of the candidate genes colocalizing with associated SNPs are similar to genes that function in plant defense response via cell wall modification, salicylic acid- and jasmonic acid-dependent pathways, redox homeostasis, stress response, and vesicle trafficking/remodeling. Significant positive correlations were found between increased flecking, stronger defense response, increased disease resistance, and increased pest resistance. A nonlinear relationship with total kernel weight also was observed whereby lines with relatively high levels of flecking had, on average, lower total kernel weight. We present evidence suggesting that mild flecking could be used as a selection criterion for breeding programs trying to incorporate broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Bode A Olukolu
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616 (B.A.O., P.J.B.-K.)
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695-7620 (B.A.O., Y.B., J.B.H.)
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (B.D.V., W.F.T.)
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716 (R.J.W.); and
- United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, North Carolina 27695 (J.B.H., P.J.B.-K.)
| | - Yang Bian
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616 (B.A.O., P.J.B.-K.)
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695-7620 (B.A.O., Y.B., J.B.H.)
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (B.D.V., W.F.T.)
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716 (R.J.W.); and
- United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, North Carolina 27695 (J.B.H., P.J.B.-K.)
| | - Brian De Vries
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616 (B.A.O., P.J.B.-K.)
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695-7620 (B.A.O., Y.B., J.B.H.)
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (B.D.V., W.F.T.)
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716 (R.J.W.); and
- United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, North Carolina 27695 (J.B.H., P.J.B.-K.)
| | - William F Tracy
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616 (B.A.O., P.J.B.-K.)
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695-7620 (B.A.O., Y.B., J.B.H.)
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (B.D.V., W.F.T.)
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716 (R.J.W.); and
- United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, North Carolina 27695 (J.B.H., P.J.B.-K.)
| | - Randall J Wisser
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616 (B.A.O., P.J.B.-K.)
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695-7620 (B.A.O., Y.B., J.B.H.)
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (B.D.V., W.F.T.)
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716 (R.J.W.); and
- United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, North Carolina 27695 (J.B.H., P.J.B.-K.)
| | - James B Holland
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616 (B.A.O., P.J.B.-K.)
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695-7620 (B.A.O., Y.B., J.B.H.)
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (B.D.V., W.F.T.)
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716 (R.J.W.); and
- United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, North Carolina 27695 (J.B.H., P.J.B.-K.)
| | - Peter J Balint-Kurti
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616 (B.A.O., P.J.B.-K.);
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695-7620 (B.A.O., Y.B., J.B.H.);
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (B.D.V., W.F.T.);
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716 (R.J.W.); and
- United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, North Carolina 27695 (J.B.H., P.J.B.-K.)
| |
Collapse
|
28
|
Olukolu BA, Tracy WF, Wisser R, De Vries B, Balint-Kurti PJ. A Genome-Wide Association Study for Partial Resistance to Maize Common Rust. PHYTOPATHOLOGY 2016; 106:745-51. [PMID: 27003507 DOI: 10.1094/phyto-11-15-0305-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Quantitative resistance to maize common rust (causal agent Puccinia sorghi) was assessed in an association mapping population of 274 diverse inbred lines. Resistance to common rust was found to be moderately correlated with resistance to three other diseases and with the severity of the hypersensitive defense response previously assessed in the same population. Using a mixed linear model accounting for the confounding effects of population structure and flowering time, genome-wide association tests were performed based at 246,497 single-nucleotide polymorphism loci. Three loci associated with maize common rust resistance were identified. Candidate genes at each locus had predicted roles, mainly in cell wall modification. Other candidate genes included a resistance gene and a gene with a predicted role in regulating accumulation of reactive oxygen species.
Collapse
Affiliation(s)
- Bode A Olukolu
- First author: Department of Plant Pathology and Department of Horticulture, North Carolina State University, Raleigh 27695; second and fourth authors: Department of Agronomy, University of Wisconsin-Madison, Madison 53706; third author: Department of Plant & Soil Sciences, University of Delaware, Newark 19716; and fifth author: Department of Plant Pathology, North Carolina State University, and United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, NC 27695
| | - William F Tracy
- First author: Department of Plant Pathology and Department of Horticulture, North Carolina State University, Raleigh 27695; second and fourth authors: Department of Agronomy, University of Wisconsin-Madison, Madison 53706; third author: Department of Plant & Soil Sciences, University of Delaware, Newark 19716; and fifth author: Department of Plant Pathology, North Carolina State University, and United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, NC 27695
| | - Randall Wisser
- First author: Department of Plant Pathology and Department of Horticulture, North Carolina State University, Raleigh 27695; second and fourth authors: Department of Agronomy, University of Wisconsin-Madison, Madison 53706; third author: Department of Plant & Soil Sciences, University of Delaware, Newark 19716; and fifth author: Department of Plant Pathology, North Carolina State University, and United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, NC 27695
| | - Brian De Vries
- First author: Department of Plant Pathology and Department of Horticulture, North Carolina State University, Raleigh 27695; second and fourth authors: Department of Agronomy, University of Wisconsin-Madison, Madison 53706; third author: Department of Plant & Soil Sciences, University of Delaware, Newark 19716; and fifth author: Department of Plant Pathology, North Carolina State University, and United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, NC 27695
| | - Peter J Balint-Kurti
- First author: Department of Plant Pathology and Department of Horticulture, North Carolina State University, Raleigh 27695; second and fourth authors: Department of Agronomy, University of Wisconsin-Madison, Madison 53706; third author: Department of Plant & Soil Sciences, University of Delaware, Newark 19716; and fifth author: Department of Plant Pathology, North Carolina State University, and United States Department of Agriculture-Agricultural Research Service Plant Science Research Unit, Raleigh, NC 27695
| |
Collapse
|
29
|
Wang GF, Balint-Kurti PJ. Maize Homologs of CCoAOMT and HCT, Two Key Enzymes in Lignin Biosynthesis, Form Complexes with the NLR Rp1 Protein to Modulate the Defense Response. PLANT PHYSIOLOGY 2016; 171:2166-77. [PMID: 27208251 PMCID: PMC4936554 DOI: 10.1104/pp.16.00224] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/08/2016] [Indexed: 05/20/2023]
Abstract
Disease resistance (R) genes encode nucleotide binding Leu-rich-repeat (NLR) proteins that confer resistance to specific pathogens. Upon pathogen recognition they trigger a defense response that usually includes a so-called hypersensitive response (HR), a rapid localized cell death at the site of pathogen infection. Intragenic recombination between two maize (Zea mays) NLRs, Rp1-D and Rp1-dp2, resulted in the formation of a hybrid NLR, Rp1-D21, which confers an autoactive HR in the absence of pathogen infection. From a previous quantitative trait loci and genome-wide association study, we identified genes encoding two key enzymes in lignin biosynthesis, hydroxycinnamoyltransferase (HCT) and caffeoyl CoA O-methyltransferase (CCoAOMT), adjacent to the nucleotide polymorphisms that were highly associated with variation in the severity of Rp1-D21-induced HR We have previously shown that the two maize HCT homologs suppress the HR conferred by Rp1-D21 in a heterologous system, very likely through physical interaction. Here, we show, similarly, that CCoAOMT2 suppresses the HR induced by either the full-length or by the N-terminal coiled-coil domain of Rp1-D21 also likely via physical interaction and that the metabolic activity of CCoAOMT2 is unlikely to be necessary for its role in suppressing HR. We also demonstrate that CCoAOMT2, HCTs, and Rp1 proteins can form in the same complexes. A model is derived to explain the roles of CCoAOMT and HCT in Rp1-mediated defense resistance.
Collapse
Affiliation(s)
- Guan-Feng Wang
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 (G.-F.W., P.J.B.-K.)Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P.R. China (G.-F.W.); U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Peter J Balint-Kurti
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 (G.-F.W., P.J.B.-K.)Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P.R. China (G.-F.W.); U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina 27695 (P.J.B.-K.)
| |
Collapse
|
30
|
Mahuku G, Chen J, Shrestha R, Narro LA, Guerrero KVO, Arcos AL, Xu Y. Combined linkage and association mapping identifies a major QTL (qRtsc8-1), conferring tar spot complex resistance in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1217-29. [PMID: 26971113 DOI: 10.1007/s00122-016-2698-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/18/2016] [Indexed: 05/22/2023]
Abstract
A major QTL ( qRtsc8 - 1 ) conditioning resistance to tar spot complex of maize and occurring at a frequency of 3.5 % across 890 maize inbred lines. Tar spot complex (TSC) is a highly destructive disease of maize found in some countries in America. Identification of TSC resistant germplasm and elucidating the genetic mechanism of resistance is crucial for the use of host resistance to manage this disease. We evaluated 890 elite maize inbred lines in multiple environments and used genome wide association analysis (GWAS) with genotypic data from Illumina MaizeSNP50 BeadChip containing 56 K SNPs to dissect the genetics of TSC resistance. GWAS results were validated through linkage analysis in three bi-parental populations derived from different resistant and susceptible parents. Through GWAS, three TSC resistance loci were identified on chromosome 2, 7 and 8 (-log10 (p) > 5.99). A major quantitative resistance locus (QTL) designated qRtsc8-1, was detected on maize chromosome bin 8.03. qRtsc8-1, was confirmed in three independent bi-parental populations and it accounted for 18-43 % of the observed phenotypic variation for TSC. A rare haplotype within the qRtsc8-1 region, occurring at a frequency of 3.5 % increased TSC resistance by 14 %. Candidate gene analysis revealed that a leucine-rich repeat receptor-like protein (LRR-RLKs) gene family maybe the candidate gene for qRtsc8-1. Identification and localization of a major locus conditioning TSC resistance provides the foundation for fine mapping qRtsc8-1 and developing functional markers for improving TSC resistance in maize breeding programs. To the best of our knowledge, this is the first report of a major QTL for TSC resistance.
Collapse
Affiliation(s)
- George Mahuku
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, PO Box 1041-00621, Nairobi, Kenya.
- International Institute of Tropical Agriculture (IITA), P.O.Box, 34443, Dar es Salaam, Tanzania.
| | - Jiafa Chen
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Rosemary Shrestha
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Luis A Narro
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Aereo 67-13, Cali, Colombia
| | | | - Alba Lucia Arcos
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Aereo 67-13, Cali, Colombia
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CIMMYT) and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
31
|
Wang GF, He Y, Strauch R, Olukolu BA, Nielsen D, Li X, Balint-Kurti PJ. Maize Homologs of Hydroxycinnamoyltransferase, a Key Enzyme in Lignin Biosynthesis, Bind the Nucleotide Binding Leucine-Rich Repeat Rp1 Proteins to Modulate the Defense Response. PLANT PHYSIOLOGY 2015; 169:2230-43. [PMID: 26373661 PMCID: PMC4634058 DOI: 10.1104/pp.15.00703] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/08/2015] [Indexed: 05/18/2023]
Abstract
In plants, most disease resistance genes encode nucleotide binding Leu-rich repeat (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) upon pathogen recognition. The maize (Zea mays) NLR protein Rp1-D21 derives from an intragenic recombination between two NLRs, Rp1-D and Rp1-dp2, and confers an autoactive HR in the absence of pathogen infection. From a previous quantitative trait loci and genome-wide association study, we identified a single-nucleotide polymorphism locus highly associated with variation in the severity of Rp1-D21-induced HR. Two maize genes encoding hydroxycinnamoyltransferase (HCT; a key enzyme involved in lignin biosynthesis) homologs, termed HCT1806 and HCT4918, were adjacent to this single-nucleotide polymorphism. Here, we show that both HCT1806 and HCT4918 physically interact with and suppress the HR conferred by Rp1-D21 but not other autoactive NLRs when transiently coexpressed in Nicotiana benthamiana. Other maize HCT homologs are unable to confer the same level of suppression on Rp1-D21-induced HR. The metabolic activity of HCT1806 and HCT4918 is unlikely to be necessary for their role in suppressing HR. We show that the lignin pathway is activated by Rp1-D21 at both the transcriptional and metabolic levels. We derive a model to explain the roles of HCT1806 and HCT4918 in Rp1-mediated disease resistance.
Collapse
Affiliation(s)
- Guan-Feng Wang
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Yijian He
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Renee Strauch
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Bode A Olukolu
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Dahlia Nielsen
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Xu Li
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Peter J Balint-Kurti
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| |
Collapse
|
32
|
Wang GF, Ji J, EI-Kasmi F, Dangl JL, Johal G, Balint-Kurti PJ. Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity. PLoS Pathog 2015; 11:e1004674. [PMID: 25719542 PMCID: PMC4342346 DOI: 10.1371/journal.ppat.1004674] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NLR) proteins which remain auto-inhibited until recognition of specific pathogen-derived molecules causes their activation, triggering a rapid, localized cell death called a hypersensitive response (HR). Three domains are recognized in one of the major classes of NLR proteins: a coiled-coil (CC), a nucleotide binding (NB-ARC) and a leucine rich repeat (LRR) domains. The maize NLR gene Rp1-D21 derives from an intergenic recombination event between two NLR genes, Rp1-D and Rp1-dp2 and confers an autoactive HR. We report systematic structural and functional analyses of Rp1 proteins in maize and N. benthamiana to characterize the molecular mechanism of NLR activation/auto-inhibition. We derive a model comprising the following three main features: Rp1 proteins appear to self-associate to become competent for activity. The CC domain is signaling-competent and is sufficient to induce HR. This can be suppressed by the NB-ARC domain through direct interaction. In autoactive proteins, the interaction of the LRR domain with the NB-ARC domain causes de-repression and thus disrupts the inhibition of HR. Further, we identify specific amino acids and combinations thereof that are important for the auto-inhibition/activity of Rp1 proteins. We also provide evidence for the function of MHD2, a previously uncharacterized, though widely conserved NLR motif. This work reports several novel insights into the precise structural requirement for NLR function and informs efforts towards utilizing these proteins for engineering disease resistance.
Collapse
Affiliation(s)
- Guan-Feng Wang
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (GFW); (PJBK)
| | - Jiabing Ji
- Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Farid EI-Kasmi
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffery L. Dangl
- Department of Biology and Howard Hughes Medical Institute, Curriculum in Genetics and Molecular Biology, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Guri Johal
- Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Peter J. Balint-Kurti
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- USDA-ARS Plant Science Research Unit, Raleigh, North Carolina, United States of America
- * E-mail: (GFW); (PJBK)
| |
Collapse
|
33
|
Samayoa LF, Malvar RA, Olukolu BA, Holland JB, Butrón A. Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel. BMC PLANT BIOLOGY 2015; 15:35. [PMID: 25652257 PMCID: PMC4340109 DOI: 10.1186/s12870-014-0403-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/22/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Corn borers are the primary maize pest; their feeding on the pith results in stem damage and yield losses. In this study, we performed a genome-wide association study (GWAS) to identify SNPs associated with resistance to Mediterranean corn borer in a maize diversity panel using a set of more than 240,000 SNPs. RESULTS Twenty five SNPs were significantly associated with three resistance traits: 10 were significantly associated with tunnel length, 4 with stem damage, and 11 with kernel resistance. Allelic variation at each significant SNP was associated with from 6 to 9% of the phenotypic variance. A set of genes containing or physically close to these SNPs are proposed as candidate genes for borer resistance, supported by their involvement in plant defense-related mechanisms in previously published evidence. The linkage disequilibrium decayed (r(2) < 0.10) rapidly within short distance, suggesting high resolution of GWAS associations. CONCLUSIONS Most of the candidate genes found in this study are part of signaling pathways, others act as regulator of expression under biotic stress condition, and a few genes are encoding enzymes with antibiotic effect against insects such as the cystatin1 gene and the defensin proteins. These findings contribute to the understanding the complex relationship between plant-insect interactions.
Collapse
Affiliation(s)
- Luis Fernando Samayoa
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Bode A Olukolu
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - James B Holland
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, 27695, USA.
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| |
Collapse
|
34
|
Ogura T, Busch W. From phenotypes to causal sequences: using genome wide association studies to dissect the sequence basis for variation of plant development. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:98-108. [PMID: 25449733 DOI: 10.1016/j.pbi.2014.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 05/20/2023]
Abstract
Tremendous natural variation of growth and development exists within species. Uncovering the molecular mechanisms that tune growth and development promises to shed light on a broad set of biological issues including genotype to phenotype relations, regulatory mechanisms of biological processes and evolutionary questions. Recent progress in sequencing and data processing capabilities has enabled Genome Wide Association Studies (GWASs) to identify DNA sequence polymorphisms that underlie the variation of biological traits. In the last years, GWASs have proven powerful in revealing the complex genetic bases of many phenotypes in various plant species. Here we highlight successful recent GWASs that uncovered mechanistic and sequence bases of trait variation related to plant growth and development and discuss important considerations for conducting successful GWASs.
Collapse
Affiliation(s)
- Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
35
|
Olukolu BA, Wang GF, Vontimitta V, Venkata BP, Marla S, Ji J, Gachomo E, Chu K, Negeri A, Benson J, Nelson R, Bradbury P, Nielsen D, Holland JB, Balint-Kurti PJ, Johal G. A genome-wide association study of the maize hypersensitive defense response identifies genes that cluster in related pathways. PLoS Genet 2014; 10:e1004562. [PMID: 25166276 PMCID: PMC4148229 DOI: 10.1371/journal.pgen.1004562] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/27/2014] [Indexed: 02/04/2023] Open
Abstract
Much remains unknown of molecular events controlling the plant hypersensitive defense response (HR), a rapid localized cell death that limits pathogen spread and is mediated by resistance (R-) genes. Genetic control of the HR is hard to quantify due to its microscopic and rapid nature. Natural modifiers of the ectopic HR phenotype induced by an aberrant auto-active R-gene (Rp1-D21), were mapped in a population of 3,381 recombinant inbred lines from the maize nested association mapping population. Joint linkage analysis was conducted to identify 32 additive but no epistatic quantitative trait loci (QTL) using a linkage map based on more than 7000 single nucleotide polymorphisms (SNPs). Genome-wide association (GWA) analysis of 26.5 million SNPs was conducted after adjusting for background QTL. GWA identified associated SNPs that colocalized with 44 candidate genes. Thirty-six of these genes colocalized within 23 of the 32 QTL identified by joint linkage analysis. The candidate genes included genes predicted to be in involved programmed cell death, defense response, ubiquitination, redox homeostasis, autophagy, calcium signalling, lignin biosynthesis and cell wall modification. Twelve of the candidate genes showed significant differential expression between isogenic lines differing for the presence of Rp1-D21. Low but significant correlations between HR-related traits and several previously-measured disease resistance traits suggested that the genetic control of these traits was substantially, though not entirely, independent. This study provides the first system-wide analysis of natural variation that modulates the HR response in plants. The hypersensitive pathogen defense response (HR) in plants typically consists of a rapid, localized cell death around the point of attempted pathogen penetration. It is found in all plant species and is associated with high levels of resistance to a wide range of pathogens and pests including bacteria, fungi, viruses, nematodes, parasitic plants and insects. Little is known about the control of HR after initiation, largely because it is so rapid and localized and therefore difficult to quantify. Here we use a mutant maize gene conferring an exaggerated HR to quantify HR levels in a set of 3,381 mapping lines characterised at 26.5 million loci to identify genes associated with naturally-occurring variation in HR. Many of these genes seem to be involved in a set of connected regulatory pathways including protein degradation, control of programmed cell death, recycling of cellular components and regulation of oxidative stress. We have also shown that several of these genes show high levels of expression induction during HR. The study provides the first comprehensive list of natural variants in maize genes that modulate HR and cluster within reported pathways underlying molecular events during HR.
Collapse
Affiliation(s)
- Bode A Olukolu
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Guan-Feng Wang
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Vijay Vontimitta
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Bala P Venkata
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Sandeep Marla
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Jiabing Ji
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Emma Gachomo
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Kevin Chu
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| | - Adisu Negeri
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Jacqueline Benson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Rebecca Nelson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Peter Bradbury
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - Dahlia Nielsen
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, United States of America
| | - James B Holland
- USDA-ARS Plant Science Research Unit, Raleigh, North Carolina, United States of America; Department of Crop Science, NC State University, Raleigh, North Carolina, United States of America
| | - Peter J Balint-Kurti
- Department of Plant Pathology, NC State University, Raleigh, North Carolina, United States of America; USDA-ARS Plant Science Research Unit, Raleigh, North Carolina, United States of America
| | - Gurmukh Johal
- Department of Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, Indiana, United States of America
| |
Collapse
|
36
|
Abstract
Multiple disease resistance has important implications for plant fitness, given the selection pressure that many pathogens exert directly on natural plant populations and indirectly via crop improvement programs. Evidence of a locus conditioning resistance to multiple pathogens was found in bin 1.06 of the maize genome with the allele from inbred line "Tx303" conditioning quantitative resistance to northern leaf blight (NLB) and qualitative resistance to Stewart's wilt. To dissect the genetic basis of resistance in this region and to refine candidate gene hypotheses, we mapped resistance to the two diseases. Both resistance phenotypes were localized to overlapping regions, with the Stewart's wilt interval refined to a 95.9-kb segment containing three genes and the NLB interval to a 3.60-Mb segment containing 117 genes. Regions of the introgression showed little to no recombination, suggesting structural differences between the inbred lines Tx303 and "B73," the parents of the fine-mapping population. We examined copy number variation across the region using next-generation sequencing data, and found large variation in read depth in Tx303 across the region relative to the reference genome of B73. In the fine-mapping region, association mapping for NLB implicated candidate genes, including a putative zinc finger and pan1. We tested mutant alleles and found that pan1 is a susceptibility gene for NLB and Stewart's wilt. Our data strongly suggest that structural variation plays an important role in resistance conditioned by this region, and pan1, a gene conditioning susceptibility for NLB, may underlie the QTL.
Collapse
|
37
|
Hulbert S, Pumphrey M. A time for more booms and fewer busts? Unraveling cereal-rust interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:207-14. [PMID: 24499028 DOI: 10.1094/mpmi-09-13-0295-fi] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recent advances in our understanding of the nature of resistance genes and rust fungus genomics are providing some insight into the basis of resistance and susceptibility to rust diseases in our cereal crops. Characterized rust resistance genes, for the most part, resemble other resistance genes that interact with effectors intracellularly, but some have unique features. Characterization of rust effectors is just beginning but genomic information and technical advances in rust functional genomics will accelerate their characterization. The ephemeral nature of resistance in past varieties has made the design of cultivars with durable resistance a major focus for geneticists and cereal breeders. This includes strategies for deploying race-specific resistance genes that prolong their effects and methods of predicting which will be difficult for the pathogen to defeat. Identification of resistance genes with race-nonspecific effects is another strategy where recent breakthroughs have been made. Routinely combining the numerous genes required for complex resistance, whether specific or nonspecific, in elite cultivars remains a primary constraint to realizing durable resistance in most programs.
Collapse
|
38
|
Zila CT, Samayoa LF, Santiago R, Butrón A, Holland JB. A genome-wide association study reveals genes associated with fusarium ear rot resistance in a maize core diversity panel. G3 (BETHESDA, MD.) 2013; 3:2095-104. [PMID: 24048647 PMCID: PMC3815068 DOI: 10.1534/g3.113.007328] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/11/2013] [Indexed: 12/28/2022]
Abstract
Fusarium ear rot is a common disease of maize that affects food and feed quality globally. Resistance to the disease is highly quantitative, and maize breeders have difficulty incorporating polygenic resistance alleles from unadapted donor sources into elite breeding populations without having a negative impact on agronomic performance. Identification of specific allele variants contributing to improved resistance may be useful to breeders by allowing selection of resistance alleles in coupling phase linkage with favorable agronomic characteristics. We report the results of a genome-wide association study to detect allele variants associated with increased resistance to Fusarium ear rot in a maize core diversity panel of 267 inbred lines evaluated in two sets of environments. We performed association tests with 47,445 single-nucleotide polymorphisms (SNPs) while controlling for background genomic relationships with a mixed model and identified three marker loci significantly associated with disease resistance in at least one subset of environments. Each associated SNP locus had relatively small additive effects on disease resistance (±1.1% on a 0-100% scale), but nevertheless were associated with 3 to 12% of the genotypic variation within or across environment subsets. Two of three identified SNPs colocalized with genes that have been implicated with programmed cell death. An analysis of associated allele frequencies within the major maize subpopulations revealed enrichment for resistance alleles in the tropical/subtropical and popcorn subpopulations compared with other temperate breeding pools.
Collapse
Affiliation(s)
- Charles T. Zila
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695
| | | | | | - Ana Butrón
- Misión Biológica de Galicia, CSIC, Pontevedra, Spain, 36080
| | - James B. Holland
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695
- U.S. Department of Agriculture—Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina 27695
| |
Collapse
|
39
|
Negeri A, Wang GF, Benavente L, Kibiti CM, Chaikam V, Johal G, Balint-Kurti P. Characterization of temperature and light effects on the defense response phenotypes associated with the maize Rp1-D21 autoactive resistance gene. BMC PLANT BIOLOGY 2013; 13:106. [PMID: 23890100 PMCID: PMC3733612 DOI: 10.1186/1471-2229-13-106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 07/12/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rp1 is a complex locus of maize, which carries a set of genes controlling race-specific resistance to the common rust fungus, Puccinia sorghi. The resistance response includes the "Hypersensitive response" (HR), a rapid response triggered by a pathogen recognition event that includes localized cell death at the point of pathogen penetration and the induction of pathogenesis associated genes. The Rp1-D21gene is an autoactive allelic variant at the Rp1 locus, causing spontaneous activation of the HR response, in the absence of pathogenesis. Previously we have shown that the severity of the phenotype conferred by Rp1-D21 is highly dependent on genetic background. RESULTS In this study we show that the phenotype conferred by Rp1-D21 is highly dependent on temperature, with lower temperatures favoring the expression of the HR lesion phenotype. This temperature effect was observed in all the 14 genetic backgrounds tested. Significant interactions between the temperature effects and genetic background were observed. When plants were grown at temperatures above 30°C, the spontaneous HR phenotype conferred by Rp1-D21 was entirely suppressed. Furthermore, this phenotype could be restored or suppressed by alternately reducing and increasing the temperature appropriately. Light was also required for the expression of this phenotype. By examining the expression of genes associated with the defense response we showed that, at temperatures above 30°C, the Rp1-D21 phenotype was suppressed at both the phenotypic and molecular level. CONCLUSIONS We have shown that the lesion phenotype conferred by maize autoactive resistance gene Rp1-D21 is temperature sensitive in a reversible manner, that the temperature-sensitivity phenotype interacts with genetic background and that the phenotype is light sensitive. This is the first detailed demonstration of this phenomenon in monocots and also the first demonstration of the interaction of this effect with genetic background. The use of temperature shifts to induce a massive and synchronous HR in plants carrying the Rp1-D21 genes will be valuable in identifying components of the defense response pathway.
Collapse
Affiliation(s)
- Adisu Negeri
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Guan-Feng Wang
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Larissa Benavente
- USDA-ARS, Plant Science Research Unit, North Carolina State University, Raleigh, NC 27695, USA
| | - Cromwell M Kibiti
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Vijay Chaikam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Guri Johal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Peter Balint-Kurti
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- USDA-ARS, Plant Science Research Unit, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|