1
|
Erdmann EA, Forbes M, Becker M, Perez S, Hundley HA. ADR-2 regulates fertility and oocyte fate in Caenorhabditis elegans. Genetics 2024; 228:iyae114. [PMID: 39028799 PMCID: PMC11457940 DOI: 10.1093/genetics/iyae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
RNA-binding proteins (RBPs) play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the adenosine deaminase acting on RNA family of RBPs and the sole adenosine-to-inosine RNA-editing enzyme in Caenorhabditis elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RBPs that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogeneous nuclear ribonucleoprotein family of RBPs. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and RNA editing-independent mechanisms in regulating embryogenesis.
Collapse
Affiliation(s)
- Emily A Erdmann
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, IN 47405, USA
| | - Melanie Forbes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Margaret Becker
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Sarina Perez
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis and maintain translational repression of maternal mRNA and oocyte quality. Mol Biol Cell 2024; 35:ar131. [PMID: 39167497 PMCID: PMC11481691 DOI: 10.1091/mbc.e24-05-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo Caenorhabditis elegans oogenesis model to characterize the properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and three other translational regulators. We demonstrate that MEX-3 undergoes phase separation and appears to have intrinsic gel-like properties in vitro. We also identify novel roles for the chaperonin-containing tailless complex polypeptide 1 (CCT) chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. The CCT chaperonin and actin also oppose the expansion of endoplasmic reticulum sheets that may promote ectopic condensation of RNA-binding proteins. These novel regulators of condensation are also required for the translational repression of maternal mRNA which is essential for oocyte quality and fertility. The identification of this regulatory network may also have implications for understanding the role of hMex3 phase transitions in cancer.
Collapse
Affiliation(s)
- Mohamed T. Elaswad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Mingze Gao
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Victoria E. Tice
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Cora G. Bright
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Grace M. Thomas
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Chloe Munderloh
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | | | - Christya N. Haddad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Ulysses G. Johnson
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859
| | - Ashley N. Cichon
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Jennifer A. Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| |
Collapse
|
3
|
Su Y, Shea J, Destephanis D, Su Z. Transcriptomic analysis of the spatiotemporal axis of oogenesis and fertilization in C. elegans. Front Cell Dev Biol 2024; 12:1436975. [PMID: 39224437 PMCID: PMC11366716 DOI: 10.3389/fcell.2024.1436975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Caenorhabditis elegans hermaphrodite presents a unique model to study the formation of oocytes. However, the size of the model animal and difficulties in retrieval of specific stages of the germline have obviated closer systematic studies of this process throughout the years. Here, we present a transcriptomic level analysis into the oogenesis of C. elegans hermaphrodites. We dissected a hermaphrodite gonad into seven sections corresponding to the mitotic distal region, the pachytene region, the diplotene region, the early diakinesis region and the 3 most proximal oocytes, and deeply sequenced the transcriptome of each of them along with that of the fertilized egg using a single-cell RNA-seq (scRNA-seq) protocol. We identified specific gene expression events as well as gene splicing events in finer detail along the gonad and provided novel insights into underlying mechanisms of the oogenesis process. Furthermore, through careful review of relevant research literature coupled with patterns observed in our analysis, we delineate transcripts that may serve functions in the interactions between the germline and cells of the somatic gonad. These results expand our knowledge of the transcriptomic space of the C. elegans germline and lay a foundation on which future studies of the germline can be based upon.
Collapse
Affiliation(s)
| | | | | | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
4
|
Ivanova M, Moss EG. A temporal sequence of heterochronic gene activities promotes stage-specific developmental events in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae130. [PMID: 38865472 PMCID: PMC11304605 DOI: 10.1093/g3journal/jkae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 02/25/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
The heterochronic genes of the nematode Caenorhabditis elegans control the succession of postembryonic developmental events. The 4 core heterochronic genes lin-14, lin-28, hbl-1, and lin-41 act in a sequence to specify cell fates specific to each of the 4 larval stages. It was previously shown that lin-14 has 2 activities separated in time that promote L1 and L2 developmental events, respectively. Using the auxin-inducible degron system, we find that lin-28 and hbl-1 each have 2 activities that control L2 and L3 events which are also separated in time. Relative to events they control, both lin-28 and hbl-1 appear to act just prior to or concurrently with events of the L2. Relative to each other, lin-28 and hbl-1 appear to act simultaneously. By contrast, the lin-14 activity controlling L2 events precedes those of lin-28 and hbl-1 controlling the same events, suggesting that lin-14's regulation of lin-28 is responsible for the delay. Likewise, the activities of lin-28 and hbl-1 controlling L3 fates act well in advance of those fates, suggesting a similar regulatory gap. lin-41 acts early in the L3 to affect fates of the L4, although it was not possible to determine whether it too has 2 temporally separated activities. We also uncovered a feedback phenomenon that prevents the reactivation of heterochronic gene activity late in development after it has been downregulated. This study places the heterochronic gene activities into a timeline of postembryonic development relative to one another and to the developmental events whose timing they control.
Collapse
Affiliation(s)
- Maria Ivanova
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Eric G Moss
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ 08084, USA
| |
Collapse
|
5
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis to maintain translational repression of maternal mRNA and oocyte quality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601596. [PMID: 39005301 PMCID: PMC11244991 DOI: 10.1101/2024.07.01.601596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo C. elegans oogenesis model to determine the intrinsic properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and the Lsm protein, CAR-1. We demonstrate that MEX-3 undergoes liquid-liquid phase separation and appears to have intrinsic gel-like properties in vitro . We also identify novel roles for the CCT chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. CCT and actin also oppose the expansion of ER sheets that may promote ectopic condensation of RNA-binding proteins that are associated with de-repression of maternal mRNA. This regulatory network is essential to preserve oocyte quality, prevent infertility, and may have implications for understanding the role of hMex3 phase transitions in cancer. Significance statement The molecular mechanisms that regulate phase transitions of oogenic RNA-binding proteins are critical to elucidate but are not fully understood.We identify novel regulators of RNA-binding protein phase transitions in maturing oocytes that are required to maintain translational repression of maternal mRNAs and oocyte quality.This study is the first to elucidate a regulatory network involving the CCT chaperonin, actin, and the ER for phase transitions of RNA-binding proteins during oogenesis. Our findings for the conserved MEX-3 protein may also be applicable to better understanding the role of hMex3 phase transitions in cancer.
Collapse
|
6
|
Su Y, Shea J, DeStephanis D, Su Z. Transcriptomic Analysis of the Spatiotemporal Axis of Oogenesis and Fertilization in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597235. [PMID: 38895354 PMCID: PMC11185608 DOI: 10.1101/2024.06.03.597235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The oocyte germline of the C. elegans hermaphrodite presents a unique model to study the formation of oocytes. However, the size of the model animal and difficulties in retrieval of specific stages of the germline have obviated closer systematic studies of this process throughout the years. Here, we present a transcriptomic level analysis into the oogenesis of C. elegans hermaphrodites. We dissected a hermaphrodite gonad into seven sections corresponding to the mitotic distal region, the pachytene, the diplotene, the early diakinesis region and the 3 most proximal oocytes, and deeply sequenced the transcriptome of each of them along with that of the fertilized egg using a single-cell RNA-seq protocol. We identified specific gene expression events as well as gene splicing events in finer detail along the oocyte germline and provided novel insights into underlying mechanisms of the oogenesis process. Furthermore, through careful review of relevant research literature coupled with patterns observed in our analysis, we attempt to delineate transcripts that may serve functions in the interaction between the germline and cells of the somatic gonad. These results expand our knowledge of the transcriptomic space of the C. elegans germline and lay a foundation on which future studies of the germline can be based upon.
Collapse
Affiliation(s)
- Yangqi Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jonathan Shea
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Darla DeStephanis
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
7
|
Gajjar G, Huggins HP, Kim ES, Huang W, Bonnet FX, Updike DL, Keiper BD. Two germ granule eIF4E isoforms reside in different mRNPs to hand off C elegans mRNAs from translational repression to activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595216. [PMID: 38826235 PMCID: PMC11142241 DOI: 10.1101/2024.05.24.595216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We studied the function of translation factor eIF4E isoforms in regulating mRNAs in germ cell granules/condensates. Translational control of mRNAs plays an essential role in germ cell gene regulation. Messenger ribonucleoprotein (mRNP) complexes assemble on mRNAs as they move from the nucleus into perinuclear germ granules to exert both positive and negative post-transcriptional regulation in the cytoplasm. In C. elegans , germ granules are surprisingly dynamic mRNP condensates that remodel during development. Two eIF4E isoforms (called IFE-1 and IFE-3), eIF4E-Interacting Proteins (4EIPs), RBPs, DEAD-box helicases, polyadenylated mRNAs, Argonautes and miRNAs all occupy positions in germ granules. Affinity purification of IFE-1 and IFE-3 allowed mass spectrometry and mRNA-Seq to identify the proteins and mRNAs that populate stable eIF4E mRNPs. We find translationally controlled mRNAs (e.g. pos-1, mex-3, spn-4, etc.) enriched in IFE-3 mRNPs, but excluded from IFE-1 mRNPs. These mRNAs also require IFE-1 for efficient translation. The findings support a model in which oocytes and embryos utilize the two eIF4Es for opposite purposes on critically regulated germline mRNAs. Careful colocalization of the eIF4Es with other germ granule components suggests an architecture in which GLH-1, PGL-1 and the IFEs are stratified to facilitate sequential interactions for mRNAs. Biochemical characterization demonstrates opposing yet cooperative roles for IFE-3 and IFE-1 to hand-off of translationally controlled mRNAs from the repressed to the activated state, respectively. The model involves eIF4E mRNPs shuttling mRNAs through nuclear pore-associated granules/condensates to cytoplasmic ribosomes.
Collapse
|
8
|
Erdmann EA, Forbes M, Becker M, Perez S, Hundley HA. ADR-2 regulates fertility and oocyte fate in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565157. [PMID: 37961348 PMCID: PMC10635048 DOI: 10.1101/2023.11.01.565157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
RNA binding proteins play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the Adenosine DeAminase acting on RNA (ADAR) family of RNA binding proteins and the sole adenosine-to-inosine RNA editing enzyme in C. elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RNA binding proteins that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogenous nuclear ribonucleoprotein (hnRNP) family of RNA binding proteins. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals, and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and independent mechanisms in regulating embryogenesis.
Collapse
Affiliation(s)
- Emily A. Erdmann
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington IN, US 47405
| | - Melanie Forbes
- Department of Biology, Indiana University, Bloomington IN, US 47405
| | - Margaret Becker
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN, US 47405
| | - Sarina Perez
- Department of Biology, Indiana University, Bloomington IN, US 47405
| | | |
Collapse
|
9
|
Mishra S, Dabaja M, Akhlaq A, Pereira B, Marbach K, Rovcanin M, Chandra R, Caballero A, Fernandes de Abreu D, Ch'ng Q, Alcedo J. Specific sensory neurons and insulin-like peptides modulate food type-dependent oogenesis and fertilization in Caenorhabditis elegans. eLife 2023; 12:e83224. [PMID: 37975568 PMCID: PMC10665013 DOI: 10.7554/elife.83224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
An animal's responses to environmental cues are critical for its reproductive program. Thus, a mechanism that allows the animal to sense and adjust to its environment should make for a more efficient reproductive physiology. Here, we demonstrate that in Caenorhabditis elegans specific sensory neurons influence onset of oogenesis through insulin signaling in response to food-derived cues. The chemosensory neurons ASJ modulate oogenesis onset through the insulin-like peptide (ILP) INS-6. In contrast, other sensory neurons, the olfactory neurons AWA, regulate food type-dependent differences in C. elegans fertilization rates, but not onset of oogenesis. AWA modulates fertilization rates at least partly in parallel to insulin receptor signaling, since the insulin receptor DAF-2 regulates fertilization independently of food type, which requires ILPs other than INS-6. Together our findings suggest that optimal reproduction requires the integration of diverse food-derived inputs through multiple neuronal signals acting on the C. elegans germline.
Collapse
Affiliation(s)
- Shashwat Mishra
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Mohamed Dabaja
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Asra Akhlaq
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Bianca Pereira
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Kelsey Marbach
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Mediha Rovcanin
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Rashmi Chandra
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Antonio Caballero
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| | | | - QueeLim Ch'ng
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| |
Collapse
|
10
|
Kumari P, Thuestad L, Ciosk R. Post-transcriptional repression of CFP-1 expands the regulatory repertoire of LIN-41/TRIM71. Nucleic Acids Res 2023; 51:10668-10680. [PMID: 37670562 PMCID: PMC10602926 DOI: 10.1093/nar/gkad729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
The Caenorhabditis elegans LIN-41/TRIM71 is a well-studied example of a versatile regulator of mRNA fate, which plays different biological functions involving distinct post-transcriptional mechanisms. In the soma, LIN-41 determines the timing of developmental transitions between larval stages. The somatic LIN-41 recognizes specific mRNAs via LREs (LIN-41 Recognition Elements) and elicits either mRNA decay or translational repression. In the germline, LIN-41 controls the oocyte-to-embryo transition (OET), although the relevant targets and regulatory mechanisms are poorly understood. The germline LIN-41 was suggested to regulate mRNAs indirectly by associating with another RNA-binding protein. We show here that LIN-41 can also regulate germline mRNAs via the LREs. Through a computational-experimental analysis, we identified the germline mRNAs potentially controlled via LREs and validated one target, the cfp-1 mRNA, encoding a conserved chromatin modifier. Our analysis suggests that cfp-1 may be a long-sought target whose LIN-41-mediated regulation during OET facilitates the transcriptional reprogramming underlying the switch from germ- to somatic cell identity.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Rafal Ciosk
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
11
|
Price IF, Wagner JA, Pastore B, Hertz HL, Tang W. C. elegans germ granules sculpt both germline and somatic RNAome. Nat Commun 2023; 14:5965. [PMID: 37749091 PMCID: PMC10520050 DOI: 10.1038/s41467-023-41556-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
Germ granules are membrane-less organelles essential for small RNA biogenesis and germline development. Among the conserved properties of germ granules is their association with the nuclear membrane. Recent studies demonstrated that LOTUS domain proteins, EGGD-1 and EGGD-2 (also known as MIP-1 and MIP-2 respectively), promote the formation of perinuclear germ granules in C. elegans. This finding presents a unique opportunity to evaluate the significance of perinuclear localization of germ granules. Here we show that loss of eggd-1 causes the coalescence of germ granules and formation of abnormal cytoplasmic aggregates. Impairment of perinuclear granules affects certain germline classes of small RNAs including Piwi-interacting RNAs. Transcriptome profiling reveals overexpression of spermatogenic and cuticle-related genes in eggd-1 hermaphrodites. We further demonstrate that disruption of germ granules activates HLH-30-mediated transcriptional program in somatic tissues. Collectively, our findings underscore the essential role of EGGD-1 in germ granule organization and reveal an unexpected germ granule-to-soma communication.
Collapse
Affiliation(s)
- Ian F Price
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jillian A Wagner
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Hannah L Hertz
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Albarqi MMY, Ryder SP. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Front Cell Dev Biol 2023; 10:1094295. [PMID: 36684428 PMCID: PMC9846511 DOI: 10.3389/fcell.2022.1094295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
RNA passed from parents to progeny controls several aspects of early development. The germline of the free-living nematode Caenorhabditis elegans contains many families of evolutionarily conserved RNA-binding proteins (RBPs) that target the untranslated regions of mRNA transcripts to regulate their translation and stability. In this review, we summarize what is known about the binding specificity of C. elegans germline RNA-binding proteins and the mechanisms of mRNA regulation that contribute to their function. We examine the emerging role of miRNAs in translational regulation of germline and embryo development. We also provide an overview of current technology that can be used to address the gaps in our understanding of RBP regulation of mRNAs. Finally, we present a hypothetical model wherein multiple 3'UTR-mediated regulatory processes contribute to pattern formation in the germline to ensure the proper and timely localization of germline proteins and thus a functional reproductive system.
Collapse
|
13
|
Brenner JL, Jyo EM, Mohammad A, Fox P, Jones V, Mardis E, Schedl T, Maine EM. TRIM-NHL protein, NHL-2, modulates cell fate choices in the C. elegans germ line. Dev Biol 2022; 491:43-55. [PMID: 36063869 PMCID: PMC9922029 DOI: 10.1016/j.ydbio.2022.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 12/01/2022]
Abstract
Many tissues contain multipotent stem cells that are critical for maintaining tissue function. In Caenorhabditis elegans, germline stem cells allow gamete production to continue in adulthood. In the gonad, GLP-1/Notch signaling from the distal tip cell niche to neighboring germ cells activates a complex regulatory network to maintain a stem cell population. GLP-1/Notch signaling positively regulates production of LST-1 and SYGL-1 proteins that, in turn, interact with a set of PUF/FBF proteins to positively regulate the stem cell fate. We previously described sog (suppressor of glp-1 loss of function) and teg (tumorous enhancer of glp-1 gain of function) genes that limit the stem cell fate and/or promote the meiotic fate. Here, we show that sog-10 is allelic to nhl-2. NHL-2 is a member of the conserved TRIM-NHL protein family whose members can bind RNA and ubiquitinate protein substrates. We show that NHL-2 acts, at least in part, by inhibiting the expression of PUF-3 and PUF-11 translational repressor proteins that promote the stem cell fate. Two other negative regulators of stem cell fate, CGH-1 (conserved germline helicase) and ALG-5 (Argonaute protein), may work with NHL-2 to modulate the stem cell population. In addition, NHL-2 activity promotes the male germ cell fate in XX animals.
Collapse
Affiliation(s)
- John L Brenner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erin M Jyo
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul Fox
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vovanti Jones
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elaine Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Eleanor M Maine
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA.
| |
Collapse
|
14
|
Spike CA, Tsukamoto T, Greenstein D. Ubiquitin ligases and a processive proteasome facilitate protein clearance during the oocyte-to-embryo transition in Caenorhabditis elegans. Genetics 2022; 221:iyac051. [PMID: 35377419 PMCID: PMC9071522 DOI: 10.1093/genetics/iyac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-mediated degradation of oocyte translational regulatory proteins is a conserved feature of the oocyte-to-embryo transition. In the nematode Caenorhabditis elegans, multiple translational regulatory proteins, including the TRIM-NHL RNA-binding protein LIN-41/Trim71 and the Pumilio-family RNA-binding proteins PUF-3 and PUF-11, are degraded during the oocyte-to-embryo transition. Degradation of each protein requires activation of the M-phase cyclin-dependent kinase CDK-1, is largely complete by the end of the first meiotic division and does not require the anaphase-promoting complex. However, only LIN-41 degradation requires the F-box protein SEL-10/FBW7/Cdc4p, the substrate recognition subunit of an SCF-type E3 ubiquitin ligase. This finding suggests that PUF-3 and PUF-11, which localize to LIN-41-containing ribonucleoprotein particles, are independently degraded through the action of other factors and that the oocyte ribonucleoprotein particles are disassembled in a concerted fashion during the oocyte-to-embryo transition. We develop and test the hypothesis that PUF-3 and PUF-11 are targeted for degradation by the proteasome-associated HECT-type ubiquitin ligase ETC-1/UBE3C/Hul5, which is broadly expressed in C. elegans. We find that several GFP-tagged fusion proteins that are degraded during the oocyte-to-embryo transition, including fusions with PUF-3, PUF-11, LIN-41, IFY-1/Securin, and CYB-1/Cyclin B, are incompletely degraded when ETC-1 function is compromised. However, it is the fused GFP moiety that appears to be the critical determinant of this proteolysis defect. These findings are consistent with a conserved role for ETC-1 in promoting proteasome processivity and suggest that proteasomal processivity is an important element of the oocyte-to-embryo transition during which many key oocyte regulatory proteins are rapidly targeted for degradation.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tatsuya Tsukamoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Duan Y, Veksler-Lublinsky I, Ambros V. Critical contribution of 3' non-seed base pairing to the in vivo function of the evolutionarily conserved let-7a microRNA. Cell Rep 2022; 39:110745. [PMID: 35476978 PMCID: PMC9161110 DOI: 10.1016/j.celrep.2022.110745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/21/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Base pairing of the seed region (g2–g8) is essential for microRNA targeting; however, the in vivo function of the 3′ non-seed region (g9–g22) is less well understood. Here, we report a systematic investigation of the in vivo roles of 3′ non-seed nucleotides in microRNA let-7a, whose entire g9–g22 region is conserved among bilaterians. We find that the 3′ non-seed sequence functionally distinguishes let-7a from its family paralogs. The complete pairing of g11–g16 is essential for let-7a to fully repress multiple key targets, including evolutionarily conserved lin-41, daf-12, and hbl-1. Nucleotides at g17–g22 are less critical but may compensate for mismatches in the g11–g16 region. Interestingly, a certain minimal complementarity to let-7a 3′ non-seed sequence can be required even for sites with perfect seed pairing. These results provide evidence that the specific configurations of both seed and 3′ non-seed base pairing can critically influence microRNA-mediated gene regulation in vivo. Duan et al. find that microRNA-target pairing at g11–g16 is critical for the function of evolutionarily conserved microRNA let-7a; 3′ pairing is required for both perfect and imperfect seed in regulating multiple targets. These findings provide evidence that base pairing of specific microRNA non-seed nucleotides can critically contribute to target regulation.
Collapse
Affiliation(s)
- Ye Duan
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
16
|
Kubota Y, Ota N, Takatsuka H, Unno T, Onami S, Sugimoto A, Ito M. The
PAF1
complex cell‐autonomously promotes oogenesis in
Caenorhabditis elegans. Genes Cells 2022; 27:409-420. [PMID: 35430776 PMCID: PMC9321568 DOI: 10.1111/gtc.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
The RNA polymerase II‐associated factor 1 complex (PAF1C) is a protein complex that consists of LEO1, RTF1, PAF1, CDC73, and CTR9, and has been shown to be involved in RNA polymerase II‐mediated transcriptional and chromatin regulation. Although it has been shown to regulate a variety of biological processes, the precise role of the PAF1C during germ line development has not been clarified. In this study, we found that reduction in the function of the PAF1C components, LEO‐1, RTFO‐1, PAFO‐1, CDC‐73, and CTR‐9, in Caenorhabditis elegans affects oogenesis. Defects in oogenesis were also confirmed using an oocyte maturation marker, OMA‐1::GFP. While four to five OMA‐1::GFP‐positive oocytes were observed in wild‐type animals, their numbers were significantly decreased in pafo‐1 mutant and leo‐1(RNAi), pafo‐1(RNAi), and cdc‐73(RNAi) animals. Expression of a functional PAFO‐1::mCherry transgene in the germline significantly rescued the oogenesis‐defective phenotype of the pafo‐1 mutants, suggesting that expression of the PAF1C in germ cells is required for oogenesis. Notably, overexpression of OMA‐1::GFP partially rescued the oogenesis defect in the pafo‐1 mutants. Based on our findings, we propose that the PAF1C promotes oogenesis in a cell‐autonomous manner by positively regulating the expression of genes involved in oocyte maturation.
Collapse
Affiliation(s)
- Yukihiro Kubota
- Department of Bioinformatics College of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Natsumi Ota
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Hisashi Takatsuka
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Takuma Unno
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Shuichi Onami
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
- RIKEN Center for Biosystems Dynamics Research 2‐2‐3, Minatojima‐minamimachi, Chuo‐ku Kobe Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dinamics Graduate School of Life Sciences, Tohoku University 2‐1‐1 Katahira Sendai Miyagi Japan
| | - Masahiro Ito
- Department of Bioinformatics College of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| |
Collapse
|
17
|
Kinterová V, Kaňka J, Bartková A, Toralová T. SCF Ligases and Their Functions in Oogenesis and Embryogenesis-Summary of the Most Important Findings throughout the Animal Kingdom. Cells 2022; 11:234. [PMID: 35053348 PMCID: PMC8774150 DOI: 10.3390/cells11020234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/10/2022] Open
Abstract
SCF-dependent proteolysis was first discovered via genetic screening of budding yeast almost 25 years ago. In recent years, more and more functions of SCF (Skp1-Cullin 1-F-box) ligases have been described, and we can expect the number of studies on this topic to increase. SCF ligases, which are E3 ubiquitin multi-protein enzymes, catalyse protein ubiquitination and thus allow protein degradation mediated by the 26S proteasome. They play a crucial role in the degradation of cell cycle regulators, regulation of the DNA repair and centrosome cycle and play an important role in several diseases. SCF ligases seem to be needed during all phases of development, from oocyte formation through fertilization, activation of the embryonic genome to embryo implantation. In this review, we summarize known data on SCF ligase-mediated degradation during oogenesis and embryogenesis. In particular, SCFβTrCP and SCFSEL-10/FBXW7 are among the most important and best researched ligases during early development. SCFβTrCP is crucial for the oogenesis of Xenopus and mouse and also in Xenopus and Drosophila embryogenesis. SCFSEL-10/FBXW7 participates in the degradation of several RNA-binding proteins and thereby affects the regulation of gene expression during the meiosis of C. elegans. Nevertheless, a large number of SCF ligases that are primarily involved in embryogenesis remain to be elucidated.
Collapse
Affiliation(s)
- Veronika Kinterová
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| | - Jiří Kaňka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| | - Alexandra Bartková
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Tereza Toralová
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| |
Collapse
|
18
|
Shih M, Chang C. Brain-wide identification of LIN-41 (TRIM71) protein-expressing neurons by NeuroPAL. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000472. [PMID: 35622497 PMCID: PMC9015712 DOI: 10.17912/micropub.biology.000472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/10/2022]
Abstract
LIN-41 (TRIM71), an ancient protein best known for its role in timing mitotic stem cell lineages, has been recently shown to be involved in postmitotic neurons to time their differentiation and post-differentiation. Here, we report the identification of 276 LIN-41 protein-expressing neurons in the C. elegans nervous system by NeuroPAL and a CRISPR-engineered mNG::LIN-41 reporter, which represents 91% of all hermaphrodite neurons and includes 87 neurons that were not previously reported by CeNGEN using single-cell RNA-seq. Broad lin-41 protein expression in C. elegans neurons suggests a widespread role of LIN-41 (TRIM71) in timing neuronal assembly, plasticity, and maintenance.
Collapse
Affiliation(s)
- Mushaine Shih
- Department of Biological Sciences, University of Illinois at Chicago
| | - Chieh Chang
- Department of Biological Sciences, University of Illinois at Chicago
| |
Collapse
|
19
|
Albarqi MMY, Ryder SP. The endogenous mex-3 3´UTR is required for germline repression and contributes to optimal fecundity in C. elegans. PLoS Genet 2021; 17:e1009775. [PMID: 34424904 PMCID: PMC8412283 DOI: 10.1371/journal.pgen.1009775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
RNA regulation is essential to successful reproduction. Messenger RNAs delivered from parent to progeny govern early embryonic development. RNA-binding proteins (RBPs) are the key effectors of this process, regulating the translation and stability of parental transcripts to control cell fate specification events prior to zygotic gene activation. The KH-domain RBP MEX-3 is conserved from nematode to human. It was first discovered in Caenorhabditis elegans, where it is essential for anterior cell fate and embryo viability. Here, we show that loss of the endogenous mex-3 3´UTR disrupts its germline expression pattern. An allelic series of 3´UTR deletion variants identify repressing regions of the UTR and demonstrate that repression is not precisely coupled to reproductive success. We also show that several RBPs regulate mex-3 mRNA through its 3´UTR to define its unique germline spatiotemporal expression pattern. Additionally, we find that both poly(A) tail length control and the translation initiation factor IFE-3 contribute to its expression pattern. Together, our results establish the importance of the mex-3 3´UTR to reproductive health and its expression in the germline. Our results suggest that additional mechanisms control MEX-3 function when 3´UTR regulation is compromised. In sexually reproducing organisms, germ cells undergo meiosis and differentiate to form oocytes or sperm. Coordination of this process requires a gene regulatory program that acts while the genome is undergoing chromatin condensation. As such, RNA regulatory pathways are an important contributor. The germline of the nematode Caenorhabditis elegans is a suitable model system to study germ cell differentiation. Several RNA-binding proteins (RBPs) coordinate each transition in the germline such as the transition from mitosis to meiosis. MEX-3 is a conserved RNA-binding protein found in most animals including humans. In C. elegans, MEX-3 displays a highly restricted pattern of expression. Here, we define the importance of the 3´UTR in regulating MEX-3 expression pattern in vivo and characterize the RNA-binding proteins involved in this regulation. Our results show that deleting various mex-3 3´UTR regions alter the pattern of expression in the germline in various ways. These mutations also reduced—but did not eliminate—reproductive capacity. Finally, we demonstrate that multiple post-transcriptional mechanisms control MEX-3 levels in different domains of the germline. Our data suggest that coordination of MEX-3 activity requires multiple layers of regulation to ensure reproductive robustness.
Collapse
Affiliation(s)
- Mennatallah M. Y. Albarqi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Torres-Fernández LA, Emich J, Port Y, Mitschka S, Wöste M, Schneider S, Fietz D, Oud MS, Di Persio S, Neuhaus N, Kliesch S, Hölzel M, Schorle H, Friedrich C, Tüttelmann F, Kolanus W. TRIM71 Deficiency Causes Germ Cell Loss During Mouse Embryogenesis and Is Associated With Human Male Infertility. Front Cell Dev Biol 2021; 9:658966. [PMID: 34055789 PMCID: PMC8155544 DOI: 10.3389/fcell.2021.658966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Mutations affecting the germline can result in infertility or the generation of germ cell tumors (GCT), highlighting the need to identify and characterize the genes controlling germ cell development. The RNA-binding protein and E3 ubiquitin ligase TRIM71 is essential for embryogenesis, and its expression has been reported in GCT and adult mouse testes. To investigate the role of TRIM71 in mammalian germ cell embryonic development, we generated a germline-specific conditional Trim71 knockout mouse (cKO) using the early primordial germ cell (PGC) marker Nanos3 as a Cre-recombinase driver. cKO mice are infertile, with male mice displaying a Sertoli cell-only (SCO) phenotype which in humans is defined as a specific subtype of non-obstructive azoospermia characterized by the absence of germ cells in the seminiferous tubules. Infertility in male Trim71 cKO mice originates during embryogenesis, as the SCO phenotype was already apparent in neonatal mice. The in vitro differentiation of mouse embryonic stem cells (ESCs) into PGC-like cells (PGCLCs) revealed reduced numbers of PGCLCs in Trim71-deficient cells. Furthermore, TCam-2 cells, a human GCT-derived seminoma cell line which was used as an in vitro model for PGCs, showed proliferation defects upon TRIM71 knockdown. Additionally, in vitro growth competition assays, as well as proliferation assays with wild type and CRISPR/Cas9-generated TRIM71 mutant NCCIT cells showed that TRIM71 also promotes proliferation in this malignant GCT-derived non-seminoma cell line. Importantly, the PGC-specific markers BLIMP1 and NANOS3 were consistently downregulated in Trim71 KO PGCLCs, TRIM71 knockdown TCam-2 cells and TRIM71 mutant NCCIT cells. These data collectively support a role for TRIM71 in PGC development. Last, via exome sequencing analysis, we identified several TRIM71 variants in a cohort of infertile men, including a loss-of-function variant in a patient with an SCO phenotype. Altogether, our work reveals for the first time an association of TRIM71 deficiency with human male infertility, and uncovers further developmental roles for TRIM71 in the germline during mouse embryogenesis.
Collapse
Affiliation(s)
| | - Jana Emich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Yasmine Port
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Sibylle Mitschka
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Marius Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Simon Schneider
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Gießen, Gießen, Germany
- Hessian Centre of Reproductive Medicine (HZRM), Justus Liebig University Gießen, Gießen, Germany
| | - Manon S. Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Hospital Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Hospital Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Nelson C, Ambros V. A cohort of Caenorhabditis species lacking the highly conserved let-7 microRNA. G3 (BETHESDA, MD.) 2021; 11:jkab022. [PMID: 33890616 PMCID: PMC8063082 DOI: 10.1093/g3journal/jkab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/12/2021] [Indexed: 01/13/2023]
Abstract
The let-7 gene encodes a highly conserved microRNA with critical functions integral to cell fate specification and developmental progression in diverse animals. In Caenorhabditis elegans, let-7 is a component of the heterochronic (developmental timing) gene regulatory network, and loss-of-function mutations of let-7 result in lethality during the larval to adult transition due to misregulation of the conserved let-7 target, lin-41. To date, no bilaterian animal lacking let-7 has been characterized. In this study, we identify a cohort of nematode species within the genus Caenorhabditis, closely related to C. elegans, that lack the let-7 microRNA, owing to absence of the let-7 gene. Using Caenorhabditis sulstoni as a representative let-7-lacking species to characterize normal larval development in the absence of let-7, we demonstrate that, except for the lack of let-7, the heterochronic gene network is otherwise functionally conserved. We also report that species lacking let-7 contain a group of divergent let-7 paralogs-also known as the let-7-family of microRNAs-that have apparently assumed the role of targeting the LIN-41 mRNA.
Collapse
Affiliation(s)
- Charles Nelson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
22
|
Cale AR, Karp X. lin-41 controls dauer formation and morphology via lin-29 in C. elegans. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 33313484 PMCID: PMC7721599 DOI: 10.17912/micropub.biology.000323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Allison R Cale
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859.,Current address: Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Xantha Karp
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| |
Collapse
|
23
|
Starich TA, Bai X, Greenstein D. Gap junctions deliver malonyl-CoA from soma to germline to support embryogenesis in Caenorhabditis elegans. eLife 2020; 9:58619. [PMID: 32735213 PMCID: PMC7445009 DOI: 10.7554/elife.58619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
Gap junctions are ubiquitous in metazoans and play critical roles in important biological processes, including electrical conduction and development. Yet, only a few defined molecules passing through gap junction channels have been linked to specific functions. We isolated gap junction channel mutants that reduce coupling between the soma and germ cells in the Caenorhabditis elegans gonad. We provide evidence that malonyl-CoA, the rate-limiting substrate for fatty acid synthesis (FAS), is produced in the soma and delivered through gap junctions to the germline; there it is used in fatty acid synthesis to critically support embryonic development. Separation of malonyl-CoA production from its site of utilization facilitates somatic control of germline development. Additionally, we demonstrate that loss of malonyl-CoA production in the intestine negatively impacts germline development independently of FAS. Our results suggest that metabolic outsourcing of malonyl-CoA may be a strategy by which the soma communicates nutritional status to the germline.
Collapse
Affiliation(s)
- Todd A Starich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Xiaofei Bai
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| |
Collapse
|
24
|
Nousch M, Yeroslaviz A, Eckmann CR. Stage-specific combinations of opposing poly(A) modifying enzymes guide gene expression during early oogenesis. Nucleic Acids Res 2020; 47:10881-10893. [PMID: 31511882 PMCID: PMC6845980 DOI: 10.1093/nar/gkz787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 11/14/2022] Open
Abstract
RNA-modifying enzymes targeting mRNA poly(A) tails are universal regulators of post-transcriptional gene expression programs. Current data suggest that an RNA-binding protein (RBP) directed tug-of-war between tail shortening and re-elongating enzymes operates in the cytoplasm to repress or activate specific mRNA targets. While this concept is widely accepted, it was primarily described in the final meiotic stages of frog oogenesis and relies molecularly on a single class of RBPs, i.e. CPEBs, the deadenylase PARN and cytoplasmic poly(A) polymerase GLD-2. Using the spatial and temporal resolution of female gametogenesis in the nematode C. elegans, we determined the distinct roles of known deadenylases throughout germ cell development and discovered that the Ccr4-Not complex is the main antagonist to GLD-2-mediated mRNA regulation. We find that the Ccr4-Not/GLD-2 balance is critical for essentially all steps of oocyte production and reiteratively employed by various classes of RBPs. Interestingly, its two deadenylase subunits appear to affect mRNAs stage specifically: while a Caf1/GLD-2 antagonism regulates mRNA abundance during all stages of oocyte production, a Ccr4/GLD-2 antagonism regulates oogenesis in an mRNA abundance independent manner. Our combined data suggests that the Ccr4-Not complex represents the evolutionarily conserved molecular opponent to GLD-2 providing an antagonistic framework of gene-specific poly(A)-tail regulation.
Collapse
Affiliation(s)
- Marco Nousch
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg (MLU), Weinbergweg 10, Halle (Saale) 06120, Germany
| | - Assa Yeroslaviz
- Max Planck Institute of Biochemistry (MPIB), Am Klopferspitz 18, Martinsried 82152, Germany
| | - Christian R Eckmann
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg (MLU), Weinbergweg 10, Halle (Saale) 06120, Germany
| |
Collapse
|
25
|
Chen J, Mohammad A, Pazdernik N, Huang H, Bowman B, Tycksen E, Schedl T. GLP-1 Notch-LAG-1 CSL control of the germline stem cell fate is mediated by transcriptional targets lst-1 and sygl-1. PLoS Genet 2020; 16:e1008650. [PMID: 32196486 PMCID: PMC7153901 DOI: 10.1371/journal.pgen.1008650] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/13/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Stem cell systems are essential for the development and maintenance of polarized tissues. Intercellular signaling pathways control stem cell systems, where niche cells signal stem cells to maintain the stem cell fate/self-renewal and inhibit differentiation. In the C. elegans germline, GLP-1 Notch signaling specifies the stem cell fate, employing the sequence-specific DNA binding protein LAG-1 to implement the transcriptional response. We undertook a comprehensive genome-wide approach to identify transcriptional targets of GLP-1 signaling. We expected primary response target genes to be evident at the intersection of genes identified as directly bound by LAG-1, from ChIP-seq experiments, with genes identified as requiring GLP-1 signaling for RNA accumulation, from RNA-seq analysis. Furthermore, we performed a time-course transcriptomics analysis following auxin inducible degradation of LAG-1 to distinguish between genes whose RNA level was a primary or secondary response of GLP-1 signaling. Surprisingly, only lst-1 and sygl-1, the two known target genes of GLP-1 in the germline, fulfilled these criteria, indicating that these two genes are the primary response targets of GLP-1 Notch and may be the sole germline GLP-1 signaling protein-coding transcriptional targets for mediating the stem cell fate. In addition, three secondary response genes were identified based on their timing following loss of LAG-1, their lack of a LAG-1 ChIP-seq peak and that their glp-1 dependent mRNA accumulation could be explained by a requirement for lst-1 and sygl-1 activity. Moreover, our analysis also suggests that the function of the primary response genes lst-1 and sygl-1 can account for the glp-1 dependent peak protein accumulation of FBF-2, which promotes the stem cell fate and, in part, for the spatial restriction of elevated LAG-1 accumulation to the stem cell region. Stem cell systems are central to tissue development, homeostasis and regeneration, where niche to stem cell signaling pathways promote the stem cell fate/self-renewal and inhibit differentiation. The evolutionarily conserved GLP-1 Notch signaling pathway in the C. elegans germline is an experimentally tractable system, allowing dissection of control of the stem cell fate and inhibition of meiotic development. However, as in many systems, the primary molecular targets of the signaling pathway in stem cells is incompletely known, as are secondary molecular targets, and this knowledge is essential for a deep understanding of stem cell systems. Here we focus on the identification of the primary transcriptional targets of the GLP-1 signaling pathway that promotes the stem cell fate, employing unbiased multilevel genomic approaches. We identify only lst-1 and sygl-1, two of a number of previously reported targets, as likely the sole primary mRNA transcriptional targets of GLP-1 signaling that promote the germline stem cell fate. We also identify secondary GLP-1 signaling RNA and protein targets, whose expression shows dependence on lst-1 and sygl-1, where the protein targets reinforce the importance of posttranscriptional regulation in control of the stem cell fate.
Collapse
Affiliation(s)
- Jian Chen
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Nanette Pazdernik
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Current address, Integrated DNA Technologies, Coralville, Iowa, United States of America
| | - Huiyan Huang
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Beth Bowman
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Current address, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
26
|
Insights into the Involvement of Spliceosomal Mutations in Myelodysplastic Disorders from Analysis of SACY-1/DDX41 in Caenorhabditis elegans. Genetics 2020; 214:869-893. [PMID: 32060018 PMCID: PMC7153925 DOI: 10.1534/genetics.119.302973] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations affecting spliceosomal proteins are frequently found in hematological malignancies, including myelodysplastic syndromes and acute myeloid leukemia (AML). DDX41/Abstrakt is a metazoan-specific spliceosomal DEAD-box RNA helicase that is recurrently mutated in inherited myelodysplastic syndromes and in relapsing cases of AML. The genetic properties and genomic impacts of disease-causing missense mutations in DDX41 and other spliceosomal proteins have been uncertain. Here, we conduct a comprehensive analysis of the Caenorhabditis elegans DDX41 ortholog, SACY-1 Biochemical analyses defined SACY-1 as a component of the C. elegans spliceosome, and genetic analyses revealed synthetic lethal interactions with spliceosomal components. We used the auxin-inducible degradation system to analyze the consequence of SACY-1 depletion on the transcriptome using RNA sequencing. SACY-1 depletion impacts the transcriptome through splicing-dependent and splicing-independent mechanisms. Altered 3' splice site usage represents the predominant splicing defect observed upon SACY-1 depletion, consistent with a role for SACY-1 in the second step of splicing. Missplicing events appear more prevalent in the soma than the germline, suggesting that surveillance mechanisms protect the germline from aberrant splicing. The transcriptome changes observed after SACY-1 depletion suggest that disruption of the spliceosome induces a stress response, which could contribute to the cellular phenotypes conferred by sacy-1 mutant alleles. Multiple sacy-1 /ddx41 missense mutations, including the R525H human oncogenic variant, confer antimorphic activity, suggesting that their incorporation into the spliceosome is detrimental. Antagonistic variants that perturb the function of the spliceosome may be relevant to the disease-causing mutations, including DDX41, affecting highly conserved components of the spliceosome in humans.
Collapse
|
27
|
Mutlu B, Chen HM, Gutnik S, Hall DH, Keppler-Ross S, Mango SE. Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis. Development 2019; 146:dev174516. [PMID: 31540912 PMCID: PMC6803369 DOI: 10.1242/dev.174516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/09/2019] [Indexed: 01/25/2023]
Abstract
During the first hours of embryogenesis, formation of higher-order heterochromatin coincides with the loss of developmental potential. Here, we examine the relationship between these two events, and we probe the processes that contribute to the timing of their onset. Mutations that disrupt histone H3 lysine 9 (H3K9) methyltransferases reveal that the methyltransferase MET-2 helps terminate developmental plasticity, through mono- and di-methylation of H3K9 (me1/me2), and promotes heterochromatin formation, through H3K9me3. Although loss of H3K9me3 perturbs formation of higher-order heterochromatin, embryos are still able to terminate plasticity, indicating that the two processes can be uncoupled. Methylated H3K9 appears gradually in developing C. elegans embryos and depends on nuclear localization of MET-2. We find that the timing of H3K9me2 and nuclear MET-2 is sensitive to rapid cell cycles, but not to zygotic genome activation or cell counting. These data reveal distinct roles for different H3K9 methylation states in the generation of heterochromatin and loss of developmental plasticity by MET-2, and identify the cell cycle as a crucial parameter of MET-2 regulation.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Huei-Mei Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Silvia Gutnik
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
28
|
Theil K, Imami K, Rajewsky N. Identification of proteins and miRNAs that specifically bind an mRNA in vivo. Nat Commun 2019; 10:4205. [PMID: 31527589 PMCID: PMC6746756 DOI: 10.1038/s41467-019-12050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding regulation of an mRNA requires knowledge of its regulators. However, methods for reliable de-novo identification of proteins binding to a particular RNA are scarce and were thus far only successfully applied to abundant noncoding RNAs in cell culture. Here, we present vIPR, an RNA-protein crosslink, RNA pulldown, and shotgun proteomics approach to identify proteins bound to selected mRNAs in C. elegans. Applying vIPR to the germline-specific transcript gld-1 led to enrichment of known and novel interactors. By comparing enrichment upon gld-1 and lin-41 pulldown, we demonstrate that vIPR recovers both common and specific RNA-binding proteins, and we validate DAZ-1 as a specific gld-1 regulator. Finally, combining vIPR with small RNA sequencing, we recover known and biologically important transcript-specific miRNA interactions, and we identify miR-84 as a specific interactor of the gld-1 transcript. We envision that vIPR will provide a platform for investigating RNA in vivo regulation in diverse biological systems.
Collapse
Affiliation(s)
- Kathrin Theil
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Laboratory of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| |
Collapse
|
29
|
Welte T, Tuck AC, Papasaikas P, Carl SH, Flemr M, Knuckles P, Rankova A, Bühler M, Großhans H. The RNA hairpin binder TRIM71 modulates alternative splicing by repressing MBNL1. Genes Dev 2019; 33:1221-1235. [PMID: 31371437 PMCID: PMC6719626 DOI: 10.1101/gad.328492.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 01/19/2023]
Abstract
In this study, Welte et al. investigated the dual roles of mammalian TRIM71, a phylogenetically conserved regulator of development, in the control of stem cell fate. They demonstrate that TRIM71 shapes the transcriptome of mESCs predominantly through its RNA-binding activity and identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1/Muscleblind. TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3′ untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.
Collapse
Affiliation(s)
- Thomas Welte
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Alex C Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,These authors contributed equally to this work
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,These authors contributed equally to this work
| | - Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Philip Knuckles
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Aneliya Rankova
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
30
|
Carranza-García E, Navarro RE. Apoptosis contributes to protect germ cells from the oogenic germline starvation response but is not essential for the gonad shrinking or recovery observed during adult reproductive diapause in C. elegans. PLoS One 2019; 14:e0218265. [PMID: 31194813 PMCID: PMC6564024 DOI: 10.1371/journal.pone.0218265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
When C. elegans hermaphrodites are deprived of food during the mid-L4 larval stage and throughout adulthood, they enter an alternative stage termed "adult reproductive diapause (ARD)" in which they halt reproduction and extend their lifespan. During ARD, germ cell proliferation stops; oogenesis is slowed; and the gonad shrinks progressively, which has been described as the "oogenic germline starvation response". Upon refeeding, the shrunken gonad is regenerated, and animals recover fertility and live out their remaining lifespan. Little is known about the effects of ARD on oocyte quality after ARD. Thus, the aim of this study was to determine how oocyte quality is affected after ARD by measuring brood size and embryonic lethality as a reflection of defective oocyte production. We found that ARD affects reproductive capacity. The oogenic germline starvation response protects oogenic germ cells by slowing oogenesis to prevent prolonged arrest in diakinesis. In contrast to a previous report, we found that germ cell apoptosis is not the cause of gonad shrinkage; instead, we propose that ovulation contributes to gonad shrinkage during the oogenic germline starvation response. We show that germ cell apoptosis increases and continues during ARD via lin-35/Rb and an unknown mechanism. Although apoptosis contributes to maintain germ cell quality during ARD, we demonstrated that apoptosis is not essential to preserve animal fertility. Finally, we show that IIS signaling inactivation partially participates in the oogenic germline starvation response.
Collapse
Affiliation(s)
- E. Carranza-García
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - R. E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
31
|
E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis. Cells 2019; 8:cells8050510. [PMID: 31137886 PMCID: PMC6562728 DOI: 10.3390/cells8050510] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
The cell cycle is a series of events by which cellular components are accurately segregated into daughter cells, principally controlled by the oscillating activities of cyclin-dependent kinases (CDKs) and their co-activators. In eukaryotes, DNA replication is confined to a discrete synthesis phase while chromosome segregation occurs during mitosis. During mitosis, the chromosomes are pulled into each of the two daughter cells by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units tie chromosomes to the microtubules, send signals to the cells when the attachment is completed and the division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. Protein ubiquitination is a post-translational modification that plays a central role in cellular homeostasis. E3 ubiquitin ligases mediate the transfer of ubiquitin to substrate proteins determining their fate. One of the largest subfamilies of E3 ubiquitin ligases is the family of the tripartite motif (TRIM) proteins, whose dysregulation is associated with a variety of cellular processes and directly involved in human diseases and cancer. In this review we summarize the current knowledge and emerging concepts about TRIMs and their contribution to the correct regulation of cell cycle, describing how TRIMs control the cell cycle transition phases and their involvement in the different functional units of the mitotic process, along with implications in cancer progression.
Collapse
|
32
|
Developmental Control of the Cell Cycle: Insights from Caenorhabditis elegans. Genetics 2019; 211:797-829. [PMID: 30846544 PMCID: PMC6404260 DOI: 10.1534/genetics.118.301643] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
During animal development, a single fertilized egg forms a complete organism with tens to trillions of cells that encompass a large variety of cell types. Cell cycle regulation is therefore at the center of development and needs to be carried out in close coordination with cell differentiation, migration, and death, as well as tissue formation, morphogenesis, and homeostasis. The timing and frequency of cell divisions are controlled by complex combinations of external and cell-intrinsic signals that vary throughout development. Insight into how such controls determine in vivo cell division patterns has come from studies in various genetic model systems. The nematode Caenorhabditis elegans has only about 1000 somatic cells and approximately twice as many germ cells in the adult hermaphrodite. Despite the relatively small number of cells, C. elegans has diverse tissues, including intestine, nerves, striated and smooth muscle, and skin. C. elegans is unique as a model organism for studies of the cell cycle because the somatic cell lineage is invariant. Somatic cells divide at set times during development to produce daughter cells that adopt reproducible developmental fates. Studies in C. elegans have allowed the identification of conserved cell cycle regulators and provided insights into how cell cycle regulation varies between tissues. In this review, we focus on the regulation of the cell cycle in the context of C. elegans development, with reference to other systems, with the goal of better understanding how cell cycle regulation is linked to animal development in general.
Collapse
|
33
|
Zhao L, Dong S, Zhao Y, Shao H, Krasteva N, Wu Q, Wang D. Dysregulation of let-7 by PEG modified graphene oxide in nematodes with deficit in epidermal barrier. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:1-7. [PMID: 30412893 DOI: 10.1016/j.ecoenv.2018.10.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
In nematode Caenorhabditis elegans, epidermal RNA interference (RNAi) knockdown of bli-1 encoding a cuticular collagen caused the toxicity induction of GO-PEG (PEG surface modified graphene oxide). In this study, we further found that epidermal RNAi knockdown of bli-1 increased expression of a microRNA let-7, and let-7 mutation suppressed the susceptibility of bli-1(RNAi) nematodes to GO-PEG toxicity. let-7 regulated the toxicity induction of GO-PEG by suppressing expression and function of its direct targets (HBL-1 and LIN-41). Like the nematodes with epidermal RNAi knockdown of bli-1, epidermal RNAi knockdown of hbl-1 or lin-41 also induced functional abnormality in epidermal barrier. Therefore, a signaling cascade of BLI-1-let-7-HBL-1/LIN-41 was raised to be involved in GO-PEG toxicity induction. Our data imply the dysregulation of let-7-mediated molecular machinery for developmental timing control by GO-PEG in nematodes with deficit in epidermal barrier caused by bli-1(RNAi).
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Shuangshuang Dong
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yunli Zhao
- Department of Preventive Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Huimin Shao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Sofia 1113, Bulgaria
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
34
|
Keiper BD. Cap-Independent mRNA Translation in Germ Cells. Int J Mol Sci 2019; 20:ijms20010173. [PMID: 30621249 PMCID: PMC6337596 DOI: 10.3390/ijms20010173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular mRNAs in plants and animals have a 5'-cap structure that is accepted as the recognition point to initiate translation by ribosomes. Consequently, it was long assumed that the translation initiation apparatus was built solely for a cap-dependent (CD) mechanism. Exceptions that emerged invoke structural damage (proteolytic cleavage) to eukaryotic initiation factor 4 (eIF4) factors that disable cap recognition. The residual eIF4 complex is thought to be crippled, but capable of cap-independent (CI) translation to recruit viral or death-associated mRNAs begrudgingly when cells are in great distress. However, situations where CI translation coexists with CD translation are now known. In such cases, CI translation is still a minor mechanism in the major background of CD synthesis. In this review, I propose that germ cells do not fit this mold. Using observations from various animal models of oogenesis and spermatogenesis, I suggest that CI translation is a robust partner to CD translation to carry out the translational control that is so prevalent in germ cell development. Evidence suggests that CI translation provides surveillance of germ cell homeostasis, while CD translation governs the regulated protein synthesis that ushers these meiotic cells through the remarkable steps in sperm/oocyte differentiation.
Collapse
Affiliation(s)
- Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
35
|
3′-UTRs and the Control of Protein Expression in Space and Time. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:133-148. [DOI: 10.1007/978-3-030-31434-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Pereira L, Aeschimann F, Wang C, Lawson H, Serrano-Saiz E, Portman DS, Großhans H, Hobert O. Timing mechanism of sexually dimorphic nervous system differentiation. eLife 2019; 8:e42078. [PMID: 30599092 PMCID: PMC6312707 DOI: 10.7554/elife.42078] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
The molecular mechanisms that control the timing of sexual differentiation in the brain are poorly understood. We found that the timing of sexually dimorphic differentiation of postmitotic, sex-shared neurons in the nervous system of the Caenorhabditis elegans male is controlled by the temporally regulated miRNA let-7 and its target lin-41, a translational regulator. lin-41 acts through lin-29a, an isoform of a conserved Zn finger transcription factor, expressed in a subset of sex-shared neurons only in the male. Ectopic lin-29a is sufficient to impose male-specific features at earlier stages of development and in the opposite sex. The temporal, sexual and spatial specificity of lin-29a expression is controlled intersectionally through the lin-28/let-7/lin-41 heterochronic pathway, sex chromosome configuration and neuron-type-specific terminal selector transcription factors. Two Doublesex-like transcription factors represent additional sex- and neuron-type specific targets of LIN-41 and are regulated in a similar intersectional manner.
Collapse
Affiliation(s)
- Laura Pereira
- Department of Biological Sciences, Howard Hughes Medical InstituteColumbia UniversityNew YorkUnited States
| | - Florian Aeschimann
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Chen Wang
- Department of Biological Sciences, Howard Hughes Medical InstituteColumbia UniversityNew YorkUnited States
| | - Hannah Lawson
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - Esther Serrano-Saiz
- Department of Biological Sciences, Howard Hughes Medical InstituteColumbia UniversityNew YorkUnited States
| | - Douglas S Portman
- Department of BiologyUniversity of RochesterRochesterUnited States
- DelMonte Institute for Neuroscience, Department of Biomedical GeneticsUniversity of RochesterNew YorkUnited States
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical InstituteColumbia UniversityNew YorkUnited States
| |
Collapse
|
37
|
Davis GM, Tu S, Anderson JW, Colson RN, Gunzburg MJ, Francisco MA, Ray D, Shrubsole SP, Sobotka JA, Seroussi U, Lao RX, Maity T, Wu MZ, McJunkin K, Morris QD, Hughes TR, Wilce JA, Claycomb JM, Weng Z, Boag PR. The TRIM-NHL protein NHL-2 is a co-factor in the nuclear and somatic RNAi pathways in C. e legans. eLife 2018; 7:35478. [PMID: 30575518 PMCID: PMC6351104 DOI: 10.7554/elife.35478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
Proper regulation of germline gene expression is essential for fertility and maintaining species integrity. In the C. elegans germline, a diverse repertoire of regulatory pathways promote the expression of endogenous germline genes and limit the expression of deleterious transcripts to maintain genome homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in the C. elegans germline, modulating germline chromatin and meiotic chromosome organization. We uncover a role for NHL-2 as a co-factor in both positively (CSR-1) and negatively (HRDE-1) acting germline 22G-small RNA pathways and the somatic nuclear RNAi pathway. Furthermore, we demonstrate that NHL-2 is a bona fide RNA binding protein and, along with RNA-seq data point to a small RNA independent role for NHL-2 in regulating transcripts at the level of RNA stability. Collectively, our data implicate NHL-2 as an essential hub of gene regulatory activity in both the germline and soma.
Collapse
Affiliation(s)
- Gregory M Davis
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,School of Health and Life Sciences, Federation University, Victoria, Australia
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Joshua Wt Anderson
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Rhys N Colson
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Menachem J Gunzburg
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | | | - Debashish Ray
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sean P Shrubsole
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Julia A Sobotka
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Uri Seroussi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert X Lao
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Tuhin Maity
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Monica Z Wu
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Quaid D Morris
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jacqueline A Wilce
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Peter R Boag
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| |
Collapse
|
38
|
Poush JA, Blouin NA, Di Bona KR, Lažetić V, Fay DS. Regulation of germ cell development by ARI1 family ubiquitin ligases in C. elegans. Sci Rep 2018; 8:17737. [PMID: 30531803 PMCID: PMC6288150 DOI: 10.1038/s41598-018-35691-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/09/2018] [Indexed: 11/25/2022] Open
Abstract
RING-between-RING (RBR) E3 ubiquitin ligases are implicated in various developmental processes, and mutations in genes encoding RBR proteins HHARI/ARIH1 and Parkin are associated with human diseases. Here we show by phylogenetic analysis that the ARI1 family has undergone a dramatic expansion within the Caenorhabditis clade in recent history, a characteristic shared by some genes involved in germline development. We then examined the effects of deleting all ARI1 family members in the nematode Caenorhabditis elegans, which to our knowledge represents the first complete knockout of ARI1 function in a metazoan. Hermaphrodites that lacked or had strongly reduced ARI1 activity had low fecundity and were partially defective in initiation of oocyte differentiation. We provide evidence that the C. elegans ARI1s likely function downstream or in parallel to FBF-1 and FBF-2, two closely related RNA-binding proteins that are required for the switch from spermatogenesis to oogenesis during late larval development. Previous studies have shown that the E2 enzymes UBC-18/UBCH7 and UBC-3/CDC34 can functionally collaborate with ARI1 family members. Our data indicated that UBC-18, but not UBC-3, specifically cooperates with the ARI1s in germline development. These findings provide new insights into the functions of RING-between-RING proteins and Ariadne E3s during development.
Collapse
Affiliation(s)
- Julian A Poush
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Nicolas A Blouin
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
- Wyoming INBRE Bioinformatics Core, Laramie, USA
| | - Kristin R Di Bona
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
39
|
Liu Y, Qi B, Xie J, Wu X, Ling Y, Cao X, Kong F, Xin J, Jiang X, Wu Q, Wang W, Li Q, Zhang S, Wu F, Zhang D, Wang R, Zhang X, Li W. Filtered reproductive long non-coding RNAs by genome-wide analyses of goat ovary at different estrus periods. BMC Genomics 2018; 19:866. [PMID: 30509164 PMCID: PMC6278114 DOI: 10.1186/s12864-018-5268-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Background The goat is an important farm animal. Reproduction is an important process of goat farming. The ovary is the most important reproductive organ for goats. In recent years, an increasing number of long non-coding RNAs (lncRNAs) have been implicated in the regulation of mammal reproduction. However, there are few studies on the function of lncRNAs in reproduction, particularly lncRNAs in the ovary. Results The sequencing of goat ovaries generated 1,122,014,112 clean reads, and 4926 lncRNAs and 1454 TUCPs (transcripts of uncertain coding potential) were identified for further analysis by using the coding potential analysis software, CNCI, CPC and Pfam-sca. There were 115 /22 differential lncRNAs /TUCPs transcripts between the ovaries of the luteal phase and the follicular phase. We predicted the related genes of lncRNA /TUCP based on co-expression and co-localization methods. In total, 2584 /904 genes were predicted by co-expression, and 326/73 genes were predicted by co-localization. The functions of these genes were further analyzed with GO and KEGG analysis. The results showed that lncRNAs /TUCPs, which are highly expressed in goat ovaries in the luteal phase, are mainly associated with the synthesis of progesterone, and we filtered the lncRNAs /TUCPs, such as XR_001918177.1 and TUCP_001362, which may regulate the synthesis of progesterone; lncRNAs /TUCPs, which are highly expressed in goat ovaries in the follicular phase, are mainly associated with oogenesis and the maturation of oocytes, and we filtered the lncRNAs /TUCPs that may regulate the oogenesis and maturation of oocyte, such as XR_001917388.1 and TUCP_000849. Conclusion The present study provided the genome expression profile of lncRNAs /TUCPs in goat ovaries at different estrus periods and filtered the potential lncRNAs /TUCPs associated with goat reproduction. These results are helpful to further study the molecular mechanisms of goat reproduction. Electronic supplementary material The online version of this article (10.1186/s12864-018-5268-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Bing Qi
- School of Life Sciences, Taishan Medical University, Taian, 271016, Shandong, China
| | - Juan Xie
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaoqing Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xinyan Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No.4899 Juye Street, Jingyue District, Changchun, 130112, China
| | - Feng Kong
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Jing Xin
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xin Jiang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Qiaoqin Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Wenying Wang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Qingmei Li
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Shengnan Zhang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Fengrui Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Di Zhang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Rong Wang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaorong Zhang
- School of Life Sciences, Taishan Medical University, Taian, 271016, Shandong, China
| | - Wenyong Li
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China.
| |
Collapse
|
40
|
Huelgas-Morales G, Greenstein D. Control of oocyte meiotic maturation in C. elegans. Semin Cell Dev Biol 2018; 84:90-99. [PMID: 29242146 PMCID: PMC6019635 DOI: 10.1016/j.semcdb.2017.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/25/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
In virtually all sexually reproducing animals, oocytes arrest in meiotic prophase and resume meiosis in a conserved biological process called meiotic maturation. Meiotic arrest enables oocytes, which are amongst the largest cells in an organism, to grow and accumulate the necessary cellular constituents required to support embryonic development. Oocyte arrest can be maintained for a prolonged period, up to 50 years in humans, and defects in the meiotic maturation process interfere with the faithful segregation of meiotic chromosomes, representing the leading cause of human birth defects and female infertility. Hormonal signaling and interactions with somatic cells of the gonad control the timing of oocyte meiotic maturation. Signaling activates the CDK1/cyclin B kinase, which plays a central role in regulating the nuclear and cytoplasmic events of meiotic maturation. Nuclear maturation encompasses nuclear envelope breakdown, meiotic spindle assembly, and chromosome segregation whereas cytoplasmic maturation involves major changes in oocyte protein translation and cytoplasmic organelles and is less well understood. Classically, meiotic maturation has been studied in organisms with large oocytes to facilitate biochemical analysis. Recently, the nematode Caenorhabditis elegans is emerging as a genetic paradigm for studying the regulation of oocyte meiotic maturation. Studies in this system have revealed conceptual, anatomical, and molecular links to oocytes in all animals including humans. This review focuses on the signaling mechanisms required to control oocyte growth and meiotic maturation in C. elegans and discusses how the downstream regulation of protein translation coordinates the completion of meiosis and the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Gabriela Huelgas-Morales
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
41
|
Day NJ, Ellenbecker M, Voronina E. Caenorhabditis elegans DLC-1 associates with ribonucleoprotein complexes to promote mRNA regulation. FEBS Lett 2018; 592:3683-3695. [PMID: 30264890 PMCID: PMC6263831 DOI: 10.1002/1873-3468.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Ribonucleoprotein complexes, which contain mRNAs and their regulator proteins, carry out post-transcriptional control of gene expression. The function of many RNA-binding proteins depends on their association with cofactors. Here, we use a genomic approach to identify transcripts associated with DLC-1, a protein previously identified as a cofactor of two unrelated RNA-binding proteins that act in the Caenorhabditis elegans germline. Among the 2732 potential DLC-1 targets, most are germline mRNAs associated with oogenesis. Removal of DLC-1 affects expression of its targets expressed in the oocytes, meg-1 and meg-3. We propose that DLC-1 acts as a cofactor for multiple ribonucleoprotein complexes, including the ones regulating gene expression during oogenesis.
Collapse
Affiliation(s)
- Nicholas J Day
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
42
|
Spike CA, Huelgas-Morales G, Tsukamoto T, Greenstein D. Multiple Mechanisms Inactivate the LIN-41 RNA-Binding Protein To Ensure a Robust Oocyte-to-Embryo Transition in Caenorhabditis elegans. Genetics 2018; 210:1011-1037. [PMID: 30206186 PMCID: PMC6218228 DOI: 10.1534/genetics.118.301421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022] Open
Abstract
In the nematode Caenorhabditis elegans, the conserved LIN-41 RNA-binding protein is a translational repressor that coordinately controls oocyte growth and meiotic maturation. LIN-41 exerts these effects, at least in part, by preventing the premature activation of the cyclin-dependent kinase CDK-1 Here we investigate the mechanism by which LIN-41 is rapidly eliminated upon the onset of meiotic maturation. Elimination of LIN-41 requires the activities of CDK-1 and multiple SCF (Skp1, Cul1, and F-box protein)-type E3 ubiquitin ligase subunits, including the conserved substrate adaptor protein SEL-10/Fbw7/Cdc4, suggesting that LIN-41 is a target of ubiquitin-mediated protein degradation. Within the LIN-41 protein, two nonoverlapping regions, Deg-A and Deg-B, are individually necessary for LIN-41 degradation; both contain several potential phosphodegron sequences, and at least one of these sequences is required for LIN-41 degradation. Finally, Deg-A and Deg-B are sufficient, in combination, to mediate SEL-10-dependent degradation when transplanted into a different oocyte protein. Although LIN-41 is a potent inhibitor of protein translation and M phase entry, the failure to eliminate LIN-41 from early embryos does not result in the continued translational repression of LIN-41 oocyte messenger RNA targets. Based on these observations, we propose a model for the elimination of LIN-41 by the SEL-10 E3 ubiquitin ligase and suggest that LIN-41 is inactivated before it is degraded. Furthermore, we provide evidence that another RNA-binding protein, the GLD-1 tumor suppressor, is regulated similarly. Redundant mechanisms to extinguish translational repression by RNA-binding proteins may both control and provide robustness to irreversible developmental transitions, including meiotic maturation and the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gabriela Huelgas-Morales
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Tatsuya Tsukamoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
43
|
Tzur YB, Winter E, Gao J, Hashimshony T, Yanai I, Colaiácovo MP. Spatiotemporal Gene Expression Analysis of the Caenorhabditis elegans Germline Uncovers a Syncytial Expression Switch. Genetics 2018; 210:587-605. [PMID: 30093412 PMCID: PMC6216576 DOI: 10.1534/genetics.118.301315] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/03/2018] [Indexed: 11/18/2022] Open
Abstract
Developmental programs are executed by tightly controlled gene regulatory pathways. Here, we combined the unique sample retrieval capacity afforded by laser capture microscopy with analysis of mRNA abundance by CEL-Seq (cell expression by linear amplification and sequencing) to generate a spatiotemporal gene expression map of the Caenorhabditis elegans syncytial germline from adult hermaphrodites and males. We found that over 6000 genes exhibit spatiotemporally dynamic expression patterns throughout the hermaphrodite germline, with two dominant groups of genes exhibiting reciprocal shifts in expression at late pachytene during meiotic prophase I. We found a strong correlation between restricted spatiotemporal expression and known developmental and cellular processes, indicating that these gene expression changes may be an important driver of germ cell progression. Analysis of the male gonad revealed a shift in gene expression at early pachytene and upregulation of subsets of genes following the meiotic divisions, specifically in early and late spermatids, mostly transcribed from the X chromosome. We observed that while the X chromosome is silenced throughout the first half of the gonad, some genes escape this control and are highly expressed throughout the germline. Although we found a strong correlation between the expression of genes corresponding to CSR-1-interacting 22G-RNAs during germ cell progression, we also found that a large fraction of genes may bypass the need for CSR-1-mediated germline licensing. Taken together, these findings suggest the existence of mechanisms that enable a shift in gene expression during prophase I to promote germ cell progression.
Collapse
Affiliation(s)
- Yonatan B Tzur
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem 91904, Israel
| | - Eitan Winter
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Jinmin Gao
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Tamar Hashimshony
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Itai Yanai
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
44
|
Bioinformat-Eggs: An Educational Primer for Use with "LIN-41 and OMA Ribonucleoprotein Complexes Mediate a Translational Repression-to-Activation Switch Controlling Oocyte Meiotic Maturation and the Oocyte-to-Embryo Transition in Caenorhabditis elegans". Genetics 2018; 209:675-683. [PMID: 29967060 DOI: 10.1534/genetics.118.301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 11/18/2022] Open
Abstract
High-throughput sequencing and bioinformatic techniques have enhanced classical genetic analysis and are essential methods for geneticists. Tsukamoto and colleagues use numerous genomic and bioinformatics methods to explore the role of ribonucleoprotein complexes in regulating oocyte meiotic maturation, which is the transition between diakinesis and metaphase of meiosis I. This primer provides guidance for both educators and students as they read "LIN-41 and OMA Ribonucleoprotein Complexes Mediate a Translational Repression-to-Activation Switch Controlling Oocyte Meiotic Maturation and the Oocyte-to-Embryo Transition in Caenorhabditis elegans" The primer provides background information on the utility of the C. elegans germ line as a model for meiotic regulation, and further describes methods of bioinformatic analysis used to study translational and post-translational gene regulation. Additionally, the primer provides discussion questions and an active learning exercise designed to enhance student learning of critical genetic concepts.
Collapse
|
45
|
Kumari P, Aeschimann F, Gaidatzis D, Keusch JJ, Ghosh P, Neagu A, Pachulska-Wieczorek K, Bujnicki JM, Gut H, Großhans H, Ciosk R. Evolutionary plasticity of the NHL domain underlies distinct solutions to RNA recognition. Nat Commun 2018; 9:1549. [PMID: 29674686 PMCID: PMC5908797 DOI: 10.1038/s41467-018-03920-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/21/2018] [Indexed: 11/28/2022] Open
Abstract
RNA-binding proteins regulate all aspects of RNA metabolism. Their association with RNA is mediated by RNA-binding domains, of which many remain uncharacterized. A recently reported example is the NHL domain, found in prominent regulators of cellular plasticity like the C. elegans LIN-41. Here we employ an integrative approach to dissect the RNA specificity of LIN-41. Using computational analysis, structural biology, and in vivo studies in worms and human cells, we find that a positively charged pocket, specific to the NHL domain of LIN-41 and its homologs (collectively LIN41), recognizes a stem-loop RNA element, whose shape determines the binding specificity. Surprisingly, the mechanism of RNA recognition by LIN41 is drastically different from that of its more distant relative, the fly Brat. Our phylogenetic analysis suggests that this reflects a rapid evolution of the domain, presenting an interesting example of a conserved protein fold that acquired completely different solutions to RNA recognition. The C. elegans LIN-41 and its homologs, including human TRIM71/LIN41, contain the RNA binding NHL domain. Here the authors combine computational analysis, structural biology and in vivo studies, to explain how these proteins bind RNA and how rapid evolution of NHL domains resulted in different solutions to RNA recognition.
Collapse
Affiliation(s)
- Pooja Kumari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Florian Aeschimann
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058, Basel, Switzerland
| | - Jeremy J Keusch
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Pritha Ghosh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | | | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland.,Faculty of Biology, Institute of Biotechnology and Moleular Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland.
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland. .,Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
46
|
Fassnacht C, Tocchini C, Kumari P, Gaidatzis D, Stadler MB, Ciosk R. The CSR-1 endogenous RNAi pathway ensures accurate transcriptional reprogramming during the oocyte-to-embryo transition in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007252. [PMID: 29579041 PMCID: PMC5886687 DOI: 10.1371/journal.pgen.1007252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/05/2018] [Accepted: 02/13/2018] [Indexed: 12/30/2022] Open
Abstract
Endogenous RNAi (endoRNAi) is a conserved mechanism for fine-tuning gene expression. In the nematode Caenorhabditis elegans, several endoRNAi pathways are required for the successful development of reproductive cells. The CSR-1 endoRNAi pathway promotes germ cell development, primarily by facilitating the expression of germline genes. In this study, we report a novel function for the CSR-1 pathway in preventing premature activation of embryonic transcription in the developing oocytes, which is accompanied by a general Pol II activation. This CSR-1 function requires its RNase activity, suggesting that, by controlling the levels of maternal mRNAs, CSR-1-dependent endoRNAi contributes to an orderly reprogramming of transcription during the oocyte-to-embryo transition. During the oocyte-to-embryo transition, the control of development is transferred from the mother to the embryo. A key event during this transition is the transcriptional activation of the embryonic genome, which is tightly controlled. Here, by using the nematode C. elegans, we uncover a role for endogenous RNA interference in this process. We demonstrate that a specific endoRNAi pathway, employing the Argonaute protein CSR-1, functions as a break on gene-specific, and potentially global, activation of embryonic transcription in the developing oocytes. Our findings reveal a new layer of control over the transcriptional reprogramming during the oocyte-to-embryo transition, raising questions about its potential conservation in mammalian development.
Collapse
Affiliation(s)
- Christina Fassnacht
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Cristina Tocchini
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pooja Kumari
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- * E-mail: ,
| |
Collapse
|
47
|
Lee CYS, Lu T, Seydoux G. Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B. eLife 2017; 6:30201. [PMID: 29111977 PMCID: PMC5734877 DOI: 10.7554/elife.30201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
Nanos RNA-binding proteins are required for germline development in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of primordial germ cells (PGCs) lacking the nanos homologs nos-1 and nos-2 in C. elegans. nos-1nos-2 PGCs fail to silence hundreds of transcripts normally expressed in oocytes. We find that this misregulation is due to both delayed turnover of maternal transcripts and inappropriate transcriptional activation. The latter appears to be an indirect consequence of delayed turnover of the maternally-inherited transcription factor LIN-15B, a synMuvB class transcription factor known to antagonize PRC2 activity. PRC2 is required for chromatin reprogramming in the germline, and the transcriptome of PGCs lacking PRC2 resembles that of nos-1nos-2 PGCs. Loss of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These findings suggest that Nanos promotes germ cell fate by downregulating maternal RNAs and proteins that would otherwise interfere with PRC2-dependent reprogramming of PGC chromatin.
Collapse
Affiliation(s)
- Chih-Yung Sean Lee
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Tu Lu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
48
|
Ren H, Xu Y, Wang Q, Jiang J, Wudumuli, Hui L, Zhang Q, Zhang X, Wang E, Sun L, Qiu X. E3 ubiquitin ligase tripartite motif-containing 71 promotes the proliferation of non-small cell lung cancer through the inhibitor of kappaB-α/nuclear factor kappaB pathway. Oncotarget 2017. [PMID: 29541383 PMCID: PMC5834285 DOI: 10.18632/oncotarget.19075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tripartite motif-containing (TRIM) 71 belongs to the TRIM protein family. Many studies have shown that TRIM71 plays conserved roles in stem cell proliferation, differentiation, and embryonic development; however, the relationship between TRIM71 and tumorigenesis is not clear. In this study, we demonstrate that TRIM71 expression in non-small cell lung cancer (NSCLC) is associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis. We found that TRIM71 was highly expressed in NSCLC cell lines compared with that in human normal bronchial epithelial cells. Moreover, by altering the expression of TRIM71 in selected cell lines, we found that TRIM71 promoted the proliferation of NSCLC cells through activation of the inhibitor of kappaB/nuclear factor kappaB pathway. These results suggested that TRIM71 plays a role in promoting the development of NSCLC.
Collapse
Affiliation(s)
- Hongjiu Ren
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yitong Xu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qiongzi Wang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jun Jiang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Wudumuli
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Linping Hui
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China.,Fouth Affiliated Hospital, China Medical University, Shenyang, China
| | - Qingfu Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Limei Sun
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
49
|
Sung M, Kawasaki I, Shim YH. Depletion of cdc-25.3, a Caenorhabditis elegans orthologue of cdc25, increases physiological germline apoptosis. FEBS Lett 2017. [PMID: 28627101 DOI: 10.1002/1873-3468.12717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In Caenorhabditis elegans hermaphrodites, physiological germline apoptosis is higher in cdc-25.3 mutants than in wild-type. The elevated germline apoptosis in cdc-25.3 mutants seems to be induced by accumulation of double-stranded DNA breaks (DSBs). Both DNA damage and synapsis checkpoint genes are required to increase the germline apoptosis. Notably, the number of germ cells that lose P-granule components, PGL-1 and PGL-3, increase in cdc-25.3 mutants, and the increase in germline apoptosis requires the activity of SIR-2.1, a Sirtuin orthologue. These results suggest that elevation of germline apoptosis in cdc-25.3 mutants is induced by accumulation of DSBs, leading to a loss of PGL-1 and PGL-3 in germ cells, which promotes cytoplasmic translocation of SIR-2.1, and finally activates the core apoptotic machinery.
Collapse
Affiliation(s)
- Minhee Sung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
50
|
Tang H, Han M. Fatty Acids Regulate Germline Sex Determination through ACS-4-Dependent Myristoylation. Cell 2017; 169:457-469.e13. [PMID: 28431246 DOI: 10.1016/j.cell.2017.03.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/03/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
Abstract
Fat metabolism has been linked to fertility and reproductive adaptation in animals and humans, and environmental sex determination potentially plays a role in the process. To investigate the impact of fatty acids (FA) on sex determination and reproductive development, we examined and observed an impact of FA synthesis and mobilization by lipolysis in somatic tissues on oocyte fate in Caenorhabditis elegans. The subsequent genetic analysis identified ACS-4, an acyl-CoA synthetase and its FA-CoA product, as key germline factors that mediate the role of FA in promoting oocyte fate through protein myristoylation. Further tests indicated that ACS-4-dependent protein myristoylation perceives and translates the FA level into regulatory cues that modulate the activities of MPK-1/MAPK and key factors in the germline sex-determination pathway. These findings, including a similar role of ACS-4 in a male/female species, uncover a likely conserved mechanism by which FA, an environmental factor, regulates sex determination and reproductive development.
Collapse
Affiliation(s)
- Hongyun Tang
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|