1
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
2
|
Kamei T, Tamada A, Kimura T, Kakizuka A, Asai A, Muguruma K. Survival and process outgrowth of human iPSC-derived cells expressing Purkinje cell markers in a mouse model for spinocerebellar degenerative disease. Exp Neurol 2023; 369:114511. [PMID: 37634697 DOI: 10.1016/j.expneurol.2023.114511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Purkinje cells are the sole output neurons of the cerebellar cortex and play central roles in the integration of cerebellum-related motor coordination and memory. The loss or dysfunction of Purkinje cells due to cerebellar atrophy leads to severe ataxia. Here we used in vivo transplantation to examine the function of human iPS cell-derived cerebellar progenitors in adult transgenic mice in which Purkinje-specific cell death occurs due to cytotoxicity of polyglutamines. Transplantation using cerebellar organoids (42-48 days in culture), which are rich in neural progenitors, showed a viability of >50% 4 weeks after transplantation. STEM121+ grafted cells extended their processes toward the deep cerebellar nuclei, superior cerebellar peduncle, and vestibulocerebellar nuclei. The transplanted cells were mostly located in the white matter, and they were not found in the Purkinje cell layer. MAP2-positive fibers seen in the molecular layer of cerebellar cortex received VGluT2 inputs from climbing fibers. Transplanted neural progenitors overgrew in the host cerebellum but were suppressed by pretreatment with the γ-secretase inhibitor DAPT. Hyperproliferation was also suppressed by transplantation with more differentiated organoids (86 days in culture) or KIRREL2-positive cells purified by FACS sorting. Transplanted cells expressed Purkinje cell markers, GABA, CALB1 and L7, though they did not show fan-shaped morphology. We attempted to improve neuronal integration of stem cell-derived cerebellar progenitors by transplantation into the adult mouse, but this was not successfully achieved. Our findings in the present study contribute to regenerative medical application for cerebellar degeneration and provide new insights into cerebellar development in future.
Collapse
Affiliation(s)
- Takamasa Kamei
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; Department of Neurosurgery, Kansai Medical University, Osaka, Japan
| | - Atsushi Tamada
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Toshiya Kimura
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University, Osaka, Japan
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| |
Collapse
|
3
|
Huang T, Suzuki K, Kunitomo H, Tomioka M, Iino Y. Multiple p38/JNK mitogen-activated protein kinase (MAPK) signaling pathways mediate salt chemotaxis learning in C. elegans. G3 (BETHESDA, MD.) 2023; 13:jkad129. [PMID: 37310929 PMCID: PMC10468299 DOI: 10.1093/g3journal/jkad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/15/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Animals are able to adapt their behaviors to the environment. In order to achieve this, the nervous system plays integrative roles, such as perception of external signals, sensory processing, and behavioral regulations via various signal transduction pathways. Here genetic analyses of Caenorhabditis elegans (C. elegans) found that mutants of components of JNK and p38 mitogen-activated protein kinase (MAPK) signaling pathways, also known as stress-activated protein kinase (SAPK) signaling pathways, exhibit various types of defects in the learning of salt chemotaxis. C. elegans homologs of JNK MAPKKK and MAPKK, MLK-1 and MEK-1, respectively, are required for avoidance of salt concentrations experienced during starvation. In contrast, homologs of p38 MAPKKK and MAPKK, NSY-1 and SEK-1, respectively, are required for high-salt chemotaxis after conditioning. Genetic interaction analyses suggest that a JNK family MAPK, KGB-1, functions downstream of both signaling pathways to regulate salt chemotaxis learning. Furthermore, we found that the NSY-1/SEK-1 pathway functions in sensory neurons, ASH, ADF, and ASER, to regulate the learned high-salt chemotaxis. A neuropeptide, NLP-3, expressed in ASH, ADF, and ASER neurons, and a neuropeptide receptor, NPR-15, expressed in AIA interneurons that receive synaptic input from these sensory neurons, function in the same genetic pathway as NSY-1/SEK-1 signaling. These findings suggest that this MAPK pathway may affect neuropeptide signaling between sensory neurons and interneurons, thus promoting high-salt chemotaxis after conditioning.
Collapse
Affiliation(s)
- Taoruo Huang
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kota Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hirofumi Kunitomo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Desbois M, Opperman KJ, Amezquita J, Gaglio G, Crawley O, Grill B. Ubiquitin ligase activity inhibits Cdk5 to control axon termination. PLoS Genet 2022; 18:e1010152. [PMID: 35421092 PMCID: PMC9041834 DOI: 10.1371/journal.pgen.1010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 01/29/2023] Open
Abstract
The Cdk5 kinase plays prominent roles in nervous system development, plasticity, behavior and disease. It also has important, non-neuronal functions in cancer, the immune system and insulin secretion. At present, we do not fully understand negative regulatory mechanisms that restrict Cdk5. Here, we use Caenorhabditis elegans to show that CDK-5 is inhibited by the RPM-1/FSN-1 ubiquitin ligase complex. This atypical RING ubiquitin ligase is conserved from C. elegans through mammals. Our finding originated from unbiased, in vivo affinity purification proteomics, which identified CDK-5 as a putative RPM-1 substrate. CRISPR-based, native biochemistry showed that CDK-5 interacts with the RPM-1/FSN-1 ubiquitin ligase complex. A CRISPR engineered RPM-1 substrate ‘trap’ enriched CDK-5 binding, which was mediated by the FSN-1 substrate recognition module. To test the functional genetic relationship between the RPM-1/FSN-1 ubiquitin ligase complex and CDK-5, we evaluated axon termination in mechanosensory neurons and motor neurons. Our results indicate that RPM-1/FSN-1 ubiquitin ligase activity restricts CDK-5 to control axon termination. Collectively, these proteomic, biochemical and genetic results increase our understanding of mechanisms that restrain Cdk5 in the nervous system. Cdk5 is an atypical cyclin dependent kinase and an important player in nervous system development, plasticity, and disease. Decades of research has focused on understanding how Cdk5 is activated. In contrast, we know much less about the genetic and molecular mechanisms that restrict Cdk5 activity. Here, we examined how Cdk5 is inhibited in the nervous system using the model organism C. elegans. Our results indicate that the RPM-1/FSN-1 E3 ubiquitin ligase complex inhibits Cdk5 to control termination of axon growth. Our finding that ubiquitin ligase activity restricts Cdk5 in the nervous system in vivo now opens up the interesting possibility that ubiquitin ligase activity might regulate Cdk5 in other cellular contexts and disease settings.
Collapse
Affiliation(s)
- Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Gabriel Gaglio
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Oliver Crawley
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington M1-A303/305 Behnke Conference Room, Arnold building, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
5
|
Historical perspective and progress on protein ubiquitination at glutamatergic synapses. Neuropharmacology 2021; 196:108690. [PMID: 34197891 DOI: 10.1016/j.neuropharm.2021.108690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Transcription-translation coupling leads to the production of proteins that are key for controlling essential neuronal processes that include neuronal development and changes in synaptic strength. Although these events have been a prevailing theme in neuroscience, the regulation of proteins via posttranslational signaling pathways are equally relevant for these neuronal processes. Ubiquitin is one type of posttranslational modification that covalently attaches to its targets/substrates. Ubiquitination of proteins play a key role in multiple signaling pathways, the predominant being removal of its substrates by a large molecular machine called the proteasome. Here, I review 40 years of progress on ubiquitination in the nervous system at glutamatergic synapses focusing on axon pathfinding, synapse formation, presynaptic release, dendritic spine formation, and regulation of postsynaptic glutamate receptors. Finally, I elucidate emerging themes in ubiquitin biology that may challenge our current understanding of ubiquitin signaling in the nervous system.
Collapse
|
6
|
Crawley O, Giles AC, Desbois M, Kashyap S, Birnbaum R, Grill B. A MIG-15/JNK-1 MAP kinase cascade opposes RPM-1 signaling in synapse formation and learning. PLoS Genet 2017; 13:e1007095. [PMID: 29228003 PMCID: PMC5754208 DOI: 10.1371/journal.pgen.1007095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 01/04/2018] [Accepted: 11/01/2017] [Indexed: 12/18/2022] Open
Abstract
The Pam/Highwire/RPM-1 (PHR) proteins are conserved intracellular signaling hubs that regulate synapse formation and axon termination. The C. elegans PHR protein, called RPM-1, acts as a ubiquitin ligase to inhibit the DLK-1 and MLK-1 MAP kinase pathways. We have identified several kinases that are likely to form a new MAP kinase pathway that suppresses synapse formation defects, but not axon termination defects, in the mechanosensory neurons of rpm-1 mutants. This pathway includes: MIG-15 (MAP4K), NSY-1 (MAP3K), JKK-1 (MAP2K) and JNK-1 (MAPK). Transgenic overexpression of kinases in the MIG-15/JNK-1 pathway is sufficient to impair synapse formation in wild-type animals. The MIG-15/JNK-1 pathway functions cell autonomously in the mechanosensory neurons, and these kinases localize to presynaptic terminals providing further evidence of a role in synapse development. Loss of MIG-15/JNK-1 signaling also suppresses defects in habituation to repeated mechanical stimuli in rpm-1 mutants, a behavioral deficit that is likely to arise from impaired glutamatergic synapse formation. Interestingly, habituation results are consistent with the MIG-15/JNK-1 pathway functioning as a parallel opposing pathway to RPM-1. These findings indicate the MIG-15/JNK-1 pathway can restrict both glutamatergic synapse formation and short-term learning.
Collapse
Affiliation(s)
- Oliver Crawley
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Andrew C. Giles
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Muriel Desbois
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Sudhanva Kashyap
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Rayna Birnbaum
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
7
|
Ivakhnitskaia E, Lin RW, Hamada K, Chang C. Timing of neuronal plasticity in development and aging. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29139210 DOI: 10.1002/wdev.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/21/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023]
Abstract
Molecular oscillators are well known for their roles in temporal control of some biological processes like cell proliferation, but molecular mechanisms that provide temporal control of differentiation and postdifferentiation events in cells are less understood. In the nervous system, establishment of neuronal connectivity during development and decline in neuronal plasticity during aging are regulated with temporal precision, but the timing mechanisms are largely unknown. Caenorhabditis elegans has been a preferred model for aging research and recently emerges as a new model for the study of developmental and postdevelopmental plasticity in neurons. In this review we discuss the emerging mechanisms in timing of developmental lineage progression, axon growth and pathfinding, synapse formation, and reorganization, and neuronal plasticity in development and aging. We also provide a current view on the conserved core axon regeneration molecules with the intention to point out potential regulatory points of temporal controls. We highlight recent progress in understanding timing mechanisms that regulate decline in regenerative capacity, including progressive changes of intrinsic timers and co-opting the aging pathway molecules. WIREs Dev Biol 2018, 7:e305. doi: 10.1002/wdev.305 This article is categorized under: Invertebrate Organogenesis > Worms Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Nervous System Development > Worms Gene Expression and Transcriptional Hierarchies > Regulatory RNA.
Collapse
Affiliation(s)
- Evguenia Ivakhnitskaia
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan Weihsiang Lin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kana Hamada
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Chieh Chang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Borgen MA, Wang D, Grill B. RPM-1 regulates axon termination by affecting growth cone collapse and microtubule stability. Development 2017; 144:4658-4672. [PMID: 29084805 DOI: 10.1242/dev.154187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/21/2017] [Indexed: 12/14/2022]
Abstract
Axon termination is essential for efficient and accurate nervous system construction. At present, relatively little is known about how growth cone collapse occurs prior to axon termination in vivo Using the mechanosensory neurons of C. elegans, we found collapse prior to axon termination is protracted, with the growth cone transitioning from a dynamic to a static state. Growth cone collapse prior to termination is facilitated by the signaling hub RPM-1. Given the prominence of the cytoskeleton in growth cone collapse, we assessed the relationship between RPM-1 and regulators of actin dynamics and microtubule stability. Our results reveal several important findings about how axon termination is orchestrated: (1) RPM-1 functions in parallel to RHO-1 and CRMP/UNC-33, but is suppressed by the Rac isoform MIG-2; (2) RPM-1 opposes the function of microtubule stabilizers, including tubulin acetyltransferases; and (3) genetic epistasis suggests the microtubule-stabilizing protein Tau/PTL-1 potentially inhibits RPM-1. These findings provide insight into how growth cone collapse is regulated during axon termination in vivo, and suggest that RPM-1 signaling destabilizes microtubules to facilitate growth cone collapse and axon termination.
Collapse
Affiliation(s)
- Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| |
Collapse
|
9
|
Baker ST, Grill B. Defining Minimal Binding Regions in Regulator of Presynaptic Morphology 1 (RPM-1) Using Caenorhabditis elegans Neurons Reveals Differential Signaling Complexes. J Biol Chem 2016; 292:2519-2530. [PMID: 27979965 DOI: 10.1074/jbc.m116.748004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/14/2016] [Indexed: 12/22/2022] Open
Abstract
The intracellular signaling protein regulator of presynaptic morphology 1 (RPM-1) is a conserved regulator of synapse formation and axon termination in Caenorhabditis elegans RPM-1 functions in a ubiquitin ligase complex with the F-box protein FSN-1 and functions through the microtubule binding protein RAE-1. Using a structure-function approach and positive selection for transgenic C. elegans, we explored the biochemical relationship between RPM-1, FSN-1, and RAE-1. This led to the identification of two new domains in RPM-1 that are sufficient for binding to FSN-1, called FSN-1 binding domain 2 (FBD2) and FBD3. Furthermore, we map the RAE-1 binding domain to a much smaller region of RPM-1. Point mutations in RPM-1 that reduce binding to RAE-1 did not affect FSN-1 binding, indicating that RPM-1 utilizes different biochemical mechanisms to bind these molecules. Analysis of RPM-1 protein complexes in the neurons of C. elegans elucidated two further discoveries: FSN-1 binds to RAE-1, and this interaction is not mediated by RPM-1, and RPM-1 binding to FSN-1 and RAE-1 reduces FSN-1·RAE-1 complex formation. These results indicate that RPM-1 uses different mechanisms to recruit FSN-1 and RAE-1 into independent signaling complexes in neurons.
Collapse
Affiliation(s)
- Scott T Baker
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - Brock Grill
- From the Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| |
Collapse
|
10
|
Grill B, Murphey RK, Borgen MA. The PHR proteins: intracellular signaling hubs in neuronal development and axon degeneration. Neural Dev 2016; 11:8. [PMID: 27008623 PMCID: PMC4806438 DOI: 10.1186/s13064-016-0063-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
During development, a coordinated and integrated series of events must be accomplished in order to generate functional neural circuits. Axons must navigate toward target cells, build synaptic connections, and terminate outgrowth. The PHR proteins (consisting of mammalian Phr1/MYCBP2, Drosophila Highwire and C. elegans RPM-1) function in each of these events in development. Here, we review PHR function across species, as well as the myriad of signaling pathways PHR proteins regulate. These findings collectively suggest that the PHR proteins are intracellular signaling hubs, a concept we explore in depth. Consistent with prominent developmental functions, genetic links have begun to emerge between PHR signaling networks and neurodevelopmental disorders, such as autism, schizophrenia and intellectual disability. Finally, we discuss the recent and important finding that PHR proteins regulate axon degeneration, which has further heightened interest in this fascinating group of molecules.
Collapse
Affiliation(s)
- Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, 33458, USA.
| | - Rodney K Murphey
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, 33458, USA
| |
Collapse
|
11
|
Giles AC, Opperman KJ, Rankin CH, Grill B. Developmental Function of the PHR Protein RPM-1 Is Required for Learning in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2015; 5:2745-57. [PMID: 26464359 PMCID: PMC4683646 DOI: 10.1534/g3.115.021410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022]
Abstract
The PAM/Highwire/RPM-1 (PHR) proteins are signaling hubs that function as important regulators of neural development. Loss of function in Caenorhabditis elegans rpm-1 and Drosophila Highwire results in failed axon termination, inappropriate axon targeting, and abnormal synapse formation. Despite broad expression in the nervous system and relatively dramatic defects in synapse formation and axon development, very mild abnormalities in behavior have been found in animals lacking PHR protein function. Therefore, we hypothesized that large defects in behavior might only be detected in scenarios in which evoked, prolonged circuit function is required, or in which behavioral plasticity occurs. Using quantitative approaches in C. elegans, we found that rpm-1 loss-of-function mutants have relatively mild abnormalities in exploratory locomotion, but have large defects in evoked responses to harsh touch and learning associated with tap habituation. We explored the nature of the severe habituation defects in rpm-1 mutants further. To address what part of the habituation circuit was impaired in rpm-1 mutants, we performed rescue analysis with promoters for different neurons. Our findings indicate that RPM-1 function in the mechanosensory neurons affects habituation. Transgenic expression of RPM-1 in adult animals failed to rescue habituation defects, consistent with developmental defects in rpm-1 mutants resulting in impaired habituation. Genetic analysis showed that other regulators of neuronal development that function in the rpm-1 pathway (including glo-4, fsn-1, and dlk-1) also affected habituation. Overall, our findings suggest that developmental defects in rpm-1 mutants manifest most prominently in behaviors that require protracted or plastic circuit function, such as learning.
Collapse
Affiliation(s)
- Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - Karla J Opperman
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - Catharine H Rankin
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| |
Collapse
|