1
|
Dong X, Song S, Li Y, Fan Y, Wang L, Wang R, Huo L, Scott A, Xu Y, Pizzi MP, Ma L, Wang Y, Jin J, Zhao W, Yao X, Johnson R, Wang L, Wang Z, Peng G, Ajani JA. Loss of ARID1A activates mTOR signaling and SOX9 in gastric adenocarcinoma-rationale for targeting ARID1A deficiency. Gut 2022; 71:467-478. [PMID: 33785559 PMCID: PMC9724309 DOI: 10.1136/gutjnl-2020-322660] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Gastric adenocarcinoma (GAC) is a lethal disease with limited therapeutic options. Genetic alterations in chromatin remodelling gene AT-rich interactive domain 1A (ARID1A) and mTOR pathway activation occur frequently in GAC. Targeting the mechanistic target of rapamycin (mTOR) pathway in unselected patients has failed to show survival benefit. A deeper understanding of GAC might identify a subset that can benefit from mTOR inhibition. METHODS Genomic alterations in ARID1A were analysed in GAC. Mouse gastric epithelial cells from CK19-Cre-Arid1Afl/fl and wild-type mice were used to determine the activation of oncogenic genes due to loss of Arid1A. Functional studies were performed to determine the significance of loss of ARID1A and the sensitivity of ARID1A-deficient cancer cells to mTOR inhibition in GAC. RESULTS More than 30% of GAC cases had alterations (mutations or deletions) of ARID1A and ARID1A expression was negatively associated with phosphorylation of S6 and SOX9 in GAC tissues and patient-derived xenografts (PDXs). Activation of mTOR signalling (increased pS6) and SOX9 nuclear expression were strongly increased in Arid1A-/- mouse gastric tissues which could be curtailed by RAD001, an mTOR inhibitor. Knockdown of ARID1A in GAC cell lines increased pS6 and nuclear SOX9 and increased sensitivity to an mTOR inhibitor which was further amplified by its combination with fluorouracil both in vitro and in vivo in PDXs. CONCLUSIONS The loss of ARID1A activates pS6 and SOX9 in GAC, which can be effectively targeted by an mTOR inhibitor. Therefore, our studies suggest a new therapeutic strategy of clinically targeting the mTOR pathway in patients with GAC with ARID1A deficiency.
Collapse
Affiliation(s)
- Xiaochuan Dong
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030;,Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030;,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, P.R. China
| | - Yibo Fan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Lulu Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Ruiping Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Longfei Huo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Ailing Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Yan Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030;,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, P.R. China
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Lang Ma
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Ying Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Wei Zhao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Xiaodan Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Randy Johnson
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Linghua Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, P.R. China
| | - Guang Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030;,Corresponding authors: Shumei Song, MD, Ph.D, Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009; phone: 713-834-6144; fax: 713-745-1163; . Jaffer A. Ajani, MD, Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009; phone: 713-792-3685; fax: 713-792-8864;
| |
Collapse
|
2
|
Sameh R, Mostafa N, Ramadan M, AbdelRaouf S, Abdelwahab K. Prognostic significance of EZH2 and ARID1A expression in urothelial carcinoma: an immunohistochemical study. J Histotechnol 2021; 45:21-28. [PMID: 34493171 DOI: 10.1080/01478885.2021.1973309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) and AT-rich interactive domain 1A (ARID1A) expression in urothelial carcinoma (UC) has not been well studied. ARID1A is a novel tumor suppressor gene coding for a chromatin remodeling protein that is mutated in urinary bladder cancer. The enhancer of zeste homolog 2 (EZH2) is a transcriptional repressor involved in gene silencing. Amplification of EZH2 has been reported in several malignancies. This study analyzed the immunohistochemical expression of EZH2 and ARID1A in 56 cases of UC that included (n = 21) cases of radical cystectomy and (n = 35) cases of transurethral resections of bladder tumor (TURBT) with muscle fibers and immunotherapy with adjuvant intravesical bacillus Calmette-Guerin (BCG). The predicting role of both markers for tumor recurrence and recurrence-free survival (RFS) was also analyzed. High EZH2 marker expression was observed in 75% of cases while 78.6% of cases had low ARID1A marker expression. There was a significant negative correlation between the two markers where high EZH2 and low ARID1A expression was significantly associated with higher tumor grade, stage, presence of muscle invasion, lymph node metastasis, presence of concomitant carcinoma in situ (CIS) and higher incidence of recurrence with shorter RFS rate. It was concluded that EZH2 and ARID1A play a role in tumor carcinogenesis and differentiation and could be considered as independent prognostic factors in UC and for use as a potential therapeutic target.
Collapse
Affiliation(s)
- Reham Sameh
- Pathology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa Mostafa
- Pathology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Ramadan
- Pathology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Samar AbdelRaouf
- Pathology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Khaled Abdelwahab
- Urology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Zou J, Qin W, Yang L, Wang L, Wang Y, Shen J, Xiong W, Yu S, Song S, Ajani JA, Lin SY, Mills GB, Yuan X, Chen J, Peng G. Genetic alterations and expression characteristics of ARID1A impact tumor immune contexture and survival in early-onset gastric cancer. Am J Cancer Res 2020; 10:3947-3972. [PMID: 33294279 PMCID: PMC7716160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023] Open
Abstract
The AT-rich Interactive Domain 1A (ARID1A) is one of the most frequently mutated genes in gastric cancer. Here, we found that genetic variants in noncoding regions of ARID1A associated with altered protein levels by target sequencing. Notably, tumors with ARID1A variants in the 3'untranslated region (3'UTR) exhibited remarkably increased heterogeneity of ARID1A protein. In general, genetic variants and protein deficiency of ARID1A in tumors were associated with a better survival. Strikingly, altered patterns and heterogeneity of ARID1A protein expression were observed in peritumor tissues and carried significant implications in defining tumor immune contexture by multiplex immunohistochemistry. By analyzing the spatial distribution of TILs, we showed that reduced ARID1A protein levels in both tumor and peritumor tissues were significantly correlated with increased density and proximity of TILs to tumor cells. In contrast, high heterogeneity of ARID1A expression was associated with increased TIL density, but reduced proximity of TILs to tumor cells. Collectively, our study characterized ARID1A genetic alterations and its protein expression patterns in EOGC, demonstrating new strategies for clinically assessing its molecular impact on tumor onset and progression, tumor immune response, and patient survival.
Collapse
Affiliation(s)
- Jun Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Lulu Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Yu Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200025, China
| | - Wei Xiong
- Department of Oncology, Second Hospital of Wuhan Iron and Steel (Group) Corp.Wuhan 430080, China
| | - Shiying Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Gordon B Mills
- Department of Cell, Development & Cancer Biology, Oregon Health and Science University Knight Cancer InstitutePortland, Oregon, USA
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jianying Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| |
Collapse
|
4
|
Inactivation of Arid1a in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogramming. Nat Commun 2020; 11:2717. [PMID: 32483112 PMCID: PMC7264300 DOI: 10.1038/s41467-020-16416-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Somatic inactivating mutations of ARID1A, a SWI/SNF chromatin remodeling gene, are prevalent in human endometrium-related malignancies. To elucidate the mechanisms underlying how ARID1A deleterious mutation contributes to tumorigenesis, we establish genetically engineered murine models with Arid1a and/or Pten conditional deletion in the endometrium. Transcriptomic analyses on endometrial cancers and precursors derived from these mouse models show a close resemblance to human uterine endometrioid carcinomas. We identify transcriptional networks that are controlled by Arid1a and have an impact on endometrial tumor development. To verify findings from the murine models, we analyze ARID1AWT and ARID1AKO human endometrial epithelial cells. Using a system biology approach and functional studies, we demonstrate that ARID1A-deficiency lead to loss of TGF-β tumor suppressive function and that inactivation of ARID1A/TGF-β axis promotes migration and invasion of PTEN-deleted endometrial tumor cells. These findings provide molecular insights into how ARID1A inactivation accelerates endometrial tumor progression and dissemination, the major causes of cancer mortality. ARID1A, which is often mutated in human endometrial cancer, is a component of the SWI/SNF chromatin remodelling complex. Here, the authors show that Arid1a mutations in the mouse endometrium and primary human endometrial epithelial cells cause widespread reprogramming of gene transcription and result in a loss of response to TGFβ.
Collapse
|
5
|
ARID1A suppresses malignant transformation of human pancreatic cells via mediating senescence-associated miR-503/CDKN2A regulatory axis. Biochem Biophys Res Commun 2017; 493:1018-1025. [DOI: 10.1016/j.bbrc.2017.09.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 01/04/2023]
|
6
|
Shima N, Pederson KD. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. DNA Repair (Amst) 2017; 56:166-173. [PMID: 28641940 PMCID: PMC5547906 DOI: 10.1016/j.dnarep.2017.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this perspective, we will first provide an overview of the fundamental processes eukaryotic cells have developed to regulate origin licensing and firing. With a special focus on mammalian systems, we will then highlight the role of dormant origins in preventing replication-associated genome instability and their functional interplay with proteins involved in the DNA damage repair response for tumor suppression. Lastly, deficiencies in the origin licensing machinery will be discussed in relation to their influence on stem cell maintenance and human diseases.
Collapse
Affiliation(s)
- Naoko Shima
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States.
| | - Kayla D Pederson
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States
| |
Collapse
|
7
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|