1
|
Sachan N, Sharma V, Mutsuddi M, Mukherjee A. Notch signalling: multifaceted role in development and disease. FEBS J 2024; 291:3030-3059. [PMID: 37166442 DOI: 10.1111/febs.16815] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Notch pathway is an evolutionarily conserved signalling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. Notch signalling plays important roles in many developmental processes, making it difficult to name a tissue or a developing organ that does not depend on Notch function at one stage or another. Thus, dysregulation of Notch signalling is associated with many developmental defects and various pathological conditions, including cancer. Although many recent advances have been made to reveal different aspects of the Notch signalling mechanism and its intricate regulation, there are still many unanswered questions related to how the Notch signalling pathway functions in so many developmental events. The same pathway can be deployed in numerous cellular contexts to play varied and critical roles in an organism's development and this is only possible because of the complex regulatory mechanisms of the pathway. In this review, we provide an overview of the mechanism and regulation of the Notch signalling pathway along with its multifaceted functions in different aspects of development and disease.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Sharma V, Sachan N, Sarkar B, Mutsuddi M, Mukherjee A. E3 ubiquitin ligase Deltex facilitates the expansion of Wingless gradient and antagonizes Wingless signaling through a conserved mechanism of transcriptional effector Armadillo/β-catenin degradation. eLife 2024; 12:RP88466. [PMID: 38900140 PMCID: PMC11189633 DOI: 10.7554/elife.88466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The Wnt/Wg pathway controls myriads of biological phenomena throughout the development and adult life of all organisms across the phyla. Thus, an aberrant Wnt signaling is associated with a wide range of pathologies in humans. Tight regulation of Wnt/Wg signaling is required to maintain proper cellular homeostasis. Here, we report a novel role of E3 ubiquitin ligase Deltex in Wg signaling regulation. Drosophila dx genetically interacts with wg and its pathway components. Furthermore, Dx LOF results in a reduced spreading of Wg while its over-expression expands the diffusion gradient of the morphogen. We attribute this change in Wg gradient to the endocytosis of Wg through Dx which directly affects the short- and long-range Wg targets. We also demonstrate the role of Dx in regulating Wg effector Armadillo where Dx down-regulates Arm through proteasomal degradation. We also showed the conservation of Dx function in the mammalian system where DTX1 is shown to bind with β-catenin and facilitates its proteolytic degradation, spotlighting a novel step that potentially modulates Wnt/Wg signaling cascade.
Collapse
Affiliation(s)
- Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
- Department of Integrative Biology and Physiology, University of California Los AngelesLos AngelesUnited States
| | - Nalani Sachan
- Department of Cell Biology, NYU Langone Medical CenterNew YorkUnited States
| | - Bappi Sarkar
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu UniversityVaranasiIndia
| |
Collapse
|
3
|
Urban JM, Bateman JR, Garza KR, Borden J, Jain J, Brown A, Thach BJ, Bliss JE, Gerbi SA. Bradysia (Sciara) coprophila larvae up-regulate DNA repair pathways and down-regulate developmental regulators in response to ionizing radiation. Genetics 2024; 226:iyad208. [PMID: 38066617 PMCID: PMC10917502 DOI: 10.1093/genetics/iyad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
The level of resistance to radiation and the developmental and molecular responses can vary between species, and even between developmental stages of one species. For flies (order: Diptera), prior studies concluded that the fungus gnat Bradysia (Sciara) coprophila (sub-order: Nematocera) is more resistant to irradiation-induced mutations that cause visible phenotypes than the fruit fly Drosophila melanogaster (sub-order: Brachycera). Therefore, we characterized the effects of and level of resistance to ionizing radiation on B. coprophila throughout its life cycle. Our data show that B. coprophila embryos are highly sensitive to even low doses of gamma-irradiation, whereas late-stage larvae can tolerate up to 80 Gy (compared to 40 Gy for D. melanogaster) and still retain their ability to develop to adulthood, though with a developmental delay. To survey the genes involved in the early transcriptional response to irradiation of B. coprophila larvae, we compared larval RNA-seq profiles with and without radiation treatment. The up-regulated genes were enriched for DNA damage response genes, including those involved in DNA repair, cell cycle arrest, and apoptosis, whereas the down-regulated genes were enriched for developmental regulators, consistent with the developmental delay of irradiated larvae. Interestingly, members of the PARP and AGO families were highly up-regulated in the B. coprophila radiation response. We compared the transcriptome responses in B. coprophila to the transcriptome responses in D. melanogaster from 3 previous studies: whereas pathway responses are highly conserved, specific gene responses are less so. Our study lays the groundwork for future work on the radiation responses in Diptera.
Collapse
Affiliation(s)
- John M Urban
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
- Department of Embryology, Carnegie Institution for Science, Howard Hughes Medical Institute Research Laboratories, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Kodie R Garza
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Julia Borden
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| | - Jaison Jain
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| | - Alexia Brown
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Bethany J Thach
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jacob E Bliss
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| | - Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| |
Collapse
|
4
|
Dutta D, Kanca O, Byeon SK, Marcogliese PC, Zuo Z, Shridharan RV, Park JH, Lin G, Ge M, Heimer G, Kohler JN, Wheeler MT, Kaipparettu BA, Pandey A, Bellen HJ. A defect in mitochondrial fatty acid synthesis impairs iron metabolism and causes elevated ceramide levels. Nat Metab 2023; 5:1595-1614. [PMID: 37653044 PMCID: PMC11151872 DOI: 10.1038/s42255-023-00873-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration. We observe a defect in Fe-S cluster biogenesis and increased iron levels in flies lacking mecr, leading to elevated ceramide levels. Reducing the levels of either iron or ceramide suppresses the neurodegenerative phenotypes, indicating an interplay between ceramide and iron metabolism. Mutations in human MECR cause pediatric-onset neurodegeneration, and we show that human-derived fibroblasts display similar elevated ceramide levels and impaired iron homeostasis. In summary, this study identifies a role of mecr/MECR in ceramide and iron metabolism, providing a mechanistic link between mtFAS and neurodegeneration.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rishi V Shridharan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ming Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Gali Heimer
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benny A Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, India
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
5
|
Mo D, Liu C, Chen Y, Cheng X, Shen J, Zhao L, Zhang J. The mitochondrial ribosomal protein mRpL4 regulates Notch signaling. EMBO Rep 2023; 24:e55764. [PMID: 37009823 PMCID: PMC10240210 DOI: 10.15252/embr.202255764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 04/04/2023] Open
Abstract
Mitochondrial ribosomal proteins (MRPs) assemble as specialized ribosome to synthesize mtDNA-encoded proteins, which are essential for mitochondrial bioenergetic and metabolic processes. MRPs are required for fundamental cellular activities during animal development, but their roles beyond mitochondrial protein translation are poorly understood. Here, we report a conserved role of the mitochondrial ribosomal protein L4 (mRpL4) in Notch signaling. Genetic analyses demonstrate that mRpL4 is required in the Notch signal-receiving cells to permit target gene transcription during Drosophila wing development. We find that mRpL4 physically and genetically interacts with the WD40 repeat protein wap and activates the transcription of Notch signaling targets. We show that human mRpL4 is capable of replacing fly mRpL4 during wing development. Furthermore, knockout of mRpL4 in zebrafish leads to downregulated expression of Notch signaling components. Thus, we have discovered a previously unknown function of mRpL4 during animal development.
Collapse
Affiliation(s)
- Dongqing Mo
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Chenglin Liu
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of FisheriesOcean University of ChinaQingdaoChina
- Key Laboratory of Mariculture (OUC)Ministry of EducationQingdaoChina
| | - Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Xinkai Cheng
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of FisheriesOcean University of ChinaQingdaoChina
- Key Laboratory of Mariculture (OUC)Ministry of EducationQingdaoChina
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Long Zhao
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
- College of FisheriesOcean University of ChinaQingdaoChina
- Key Laboratory of Mariculture (OUC)Ministry of EducationQingdaoChina
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
6
|
Sharma V, Sarkar B, Mutsuddi M, Mukherjee A. Deltex modulates Dpp morphogen gradient formation and affects the Dpp signaling in Drosophila. J Cell Sci 2022; 135:276290. [PMID: 35950520 DOI: 10.1242/jcs.259658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
Deltex (Dx) is a context-dependent regulator of Notch signaling and regulates Notch signaling in a non-canonical fashion by facilitating the endocytosis of its receptor. In an RNAi- based modifier screen of kinases and phosphatases Thickveins (Tkv), the receptor of Decapentaplegic (Dpp), was identified as one of the interactors of Dx. Dpp, a Drosophila TGF-β/Bone Morphogenetic Protein homolog acts as a morphogen to specify cell fate along the anterior-posterior axis of the wing. Tight regulation of Dpp signaling is thus indispensable for its proper functioning. Here we present Dx as a novel modulator of Dpp signaling. We show evidence for the very first time that dx genetically interacts with dpp and its pathway components. Immunocytochemical analysis shows that Dx co-localizes with Dpp and its receptor Tkv in the Drosophila third instar larval tissues. Further, Dx is also seen to modulate the expression of dpp and its target genes. Here, we attribute this modulation to the endocytosis and trafficking of Dpp through Dx. This study thus presents a whole new avenue of Dpp signaling regulation via the cytoplasmic protein Dx.
Collapse
Affiliation(s)
- Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Bappi Sarkar
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Marcogliese PC, Dutta D, Ray SS, Dang NDP, Zuo Z, Wang Y, Lu D, Fazal F, Ravenscroft TA, Chung H, Kanca O, Wan J, Douine ED, Network UD, Pena LDM, Yamamoto S, Nelson SF, Might M, Meyer KC, Yeo NC, Bellen HJ. Loss of IRF2BPL impairs neuronal maintenance through excess Wnt signaling. SCIENCE ADVANCES 2022; 8:eabl5613. [PMID: 35044823 PMCID: PMC8769555 DOI: 10.1126/sciadv.abl5613] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/30/2021] [Indexed: 05/12/2023]
Abstract
De novo truncations in Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) lead to severe childhood-onset neurodegenerative disorders. To determine how loss of IRF2BPL causes neural dysfunction, we examined its function in Drosophila and zebrafish. Overexpression of either IRF2BPL or Pits, the Drosophila ortholog, represses Wnt transcription in flies. In contrast, neuronal depletion of Pits leads to increased wingless (wg) levels in the brain and is associated with axonal loss, whereas inhibition of Wg signaling is neuroprotective. Moreover, increased neuronal expression of wg in flies is sufficient to cause age-dependent axonal loss, similar to reduction of Pits. Loss of irf2bpl in zebrafish also causes neurological defects with an associated increase in wnt1 transcription and downstream signaling. WNT1 is also increased in patient-derived astrocytes, and pharmacological inhibition of Wnt suppresses the neurological phenotypes. Last, IRF2BPL and the Wnt antagonist, CKIα, physically and genetically interact, showing that IRF2BPL and CkIα antagonize Wnt transcription and signaling.
Collapse
Affiliation(s)
- Paul C. Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shrestha Sinha Ray
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Nghi D. P. Dang
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL 35294, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Yuchun Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Di Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Fatima Fazal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Thomas A. Ravenscroft
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hyunglok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - JiJun Wan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Emilie D. Douine
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Undiagnosed Diseases Network
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL 35294, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Precision Medicine Institute, University of Alabama, Birmingham, AL 35294, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Loren D. M. Pena
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Matthew Might
- Precision Medicine Institute, University of Alabama, Birmingham, AL 35294, USA
| | - Kathrin C. Meyer
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Nan Cher Yeo
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL 35294, USA
- Precision Medicine Institute, University of Alabama, Birmingham, AL 35294, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Zhang F, Chen Y, Shen J, Zhang J. The Ubiquitin Conjugating Enzyme UbcD1 is Required for Notch Signaling Activation During Drosophila Wing Development. Front Genet 2021; 12:770853. [PMID: 34712275 PMCID: PMC8546230 DOI: 10.3389/fgene.2021.770853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Notch signaling pathway plays crucial roles in animal development. Protein ubiquitination contributes to Notch signaling regulation by governing the stability and activity of major signaling components. Studies in Drosophila have identified multiple ubiquitin ligases and deubiquitinating enzymes that modify Notch ligand and receptor proteins. The fate of ubiquitinated substrates depend on topologies of the attached ubiquitin chains, which are determined by the ubiquitin conjugating enzymes (E2 enzymes). However, which E2 enzymes participate in Notch signal transduction remain elusive. Here, we report that the E2 enzyme UbcD1 is required for Notch signaling activation during Drosophila wing development. Mutations of UbcD1 lead to marginal nicks in the adult wing and reduction of Notch signaling targets expression in the wing imaginal disc. Genetic analysis reveal that UbcD1 functions in the signaling receiving cells prior to cleavage of the Notch protein. We provide further evidence suggesting that UbcD1 is likely involved in endocytic trafficking of Notch protein. Our results demonstrate that UbcD1 positively regulates Notch signaling and thus reveal a novel role of UbcD1 in development.
Collapse
Affiliation(s)
- Fengchao Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yao Chen
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junzheng Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Wang L, Sun X, He J, Liu Z. Functions and Molecular Mechanisms of Deltex Family Ubiquitin E3 Ligases in Development and Disease. Front Cell Dev Biol 2021; 9:706997. [PMID: 34513839 PMCID: PMC8424196 DOI: 10.3389/fcell.2021.706997] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a posttranslational modification of proteins that significantly affects protein stability and function. The specificity of substrate recognition is determined by ubiquitin E3 ligase during ubiquitination. Human Deltex (DTX) protein family, which functions as ubiquitin E3 ligases, comprises five members, namely, DTX1, DTX2, DTX3, DTX3L, and DTX4. The characteristics and functional diversity of the DTX family proteins have attracted significant attention over the last decade. DTX proteins have several physiological and pathological roles and are closely associated with cell signal transduction, growth, differentiation, and apoptosis, as well as the occurrence and development of various tumors. Although they have been extensively studied in various species, data on structural features, biological functions, and potential mechanisms of action of the DTX family proteins remain limited. In this review, recent research progress on each member of the DTX family is summarized, providing insights into future research directions and potential strategies in disease diagnosis and therapy.
Collapse
Affiliation(s)
- Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Sun
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Interplay between sex determination cascade and major signaling pathways during Drosophila eye development: Perspectives for future research. Dev Biol 2021; 476:41-52. [PMID: 33745943 DOI: 10.1016/j.ydbio.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Understanding molecular mechanisms of sexually dimorphic organ growth is a fundamental problem of developmental biology. Recent quantitative studies showed that the Drosophila compound eye is a convenient model to study the determination of the final organ size. In Drosophila, females have larger eyes than males and this is evident even after correction for the larger body size. Moreover, female eyes include more ommatidia (photosensitive units) than male eyes and this difference is specified at the third larval instar in the eye primordia called eye imaginal discs. This may result in different visual capabilities between the two sexes and have behavioral consequences. Despite growing evidence on the genetic bases of eye size variation between different Drosophila species and strains, mechanisms responsible for within-species sexual dimorphism still remain elusive. Here, we discuss a presumptive crosstalk between the sex determination cascade and major signaling pathways during dimorphic eye development. Male- and female-specific isoforms of Doublesex (Dsx) protein are known to control sex-specific differentiation in the somatic tissues. However, no data on Dsx function during eye disc growth and patterning are currently available. Remarkably, Sex lethal (Sxl), the sex determination switch protein, was shown to directly affect Hedgehog (Hh) and Notch (N) signaling in the Drosophila wing disc. The similarity of signaling pathways involved in the wing and eye disc growth suggests that Sxl might be integrated into regulation of eye development. Dsx role in the eye disc requires further investigation. We discuss currently available data on sex-biased gene expression in the Drosophila eye and highlight perspectives for future studies.
Collapse
|
11
|
Dutta D, Sharma V, Mutsuddi M, Mukherjee A. Regulation of Notch signaling by E3 ubiquitin ligases. FEBS J 2021; 289:937-954. [PMID: 33644958 DOI: 10.1111/febs.15792] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway that is widely used for multiple cellular events during development. Activation of the Notch pathway occurs when the ligand from a neighboring cell binds to the Notch receptor and induces cleavage of the intracellular domain of Notch, which further translocates into the nucleus to activate its downstream genes. The involvement of the Notch pathway in diverse biological events is possible due to the complexity in its regulation. In order to maintain tight spatiotemporal regulation, the Notch receptor, as well as its ligand, undergoes a series of physical and biochemical modifications that, in turn, helps in proper maintenance and fine-tuning of the signaling outcome. Ubiquitination is the post-translational addition of a ubiquitin molecule to a substrate protein, and the process is regulated by E3 ubiquitin ligases. The present review describes the involvement of different E3 ubiquitin ligases that play an important role in the regulation and maintenance of proper Notch signaling and how perturbation in ubiquitination results in abnormal Notch signaling leading to a number of human diseases.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Sharma V, Mutsuddi M, Mukherjee A. Deltex positively regulates Toll signaling in a JNK independent manner in Drosophila. Genes Cells 2021; 26:254-263. [PMID: 33555648 DOI: 10.1111/gtc.12837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/31/2022]
Abstract
Toll pathway is the center for the function of immune system in both Drosophila and mammals. Toll pathway in Drosophila gets activated upon binding of the ligand Spätzle to the receptor, Toll, triggering a series of proteolytic cascade culminating into the activation of the NF-κB factors Dorsal and/or Dif (Dorsal-related immunity factor). Inappropriate activation of the Toll pathway is often associated with systemic inflammation phenotype in the absence of infection, and thus, it is important to understand the regulation of Toll signaling. Deltex (Dx) is a context-dependent regulator of Notch signaling and has been linked with cell-mediated immunity in the mammalian system lately. However, the unambiguous role of Dx in humoral and cell-mediated immunity is yet to be explored. Our study unravels the novel role of Dx in Toll pathway activation. Gain of function of dx in Drosophila larvae results in increased melanotic mass formation and increased lamellocyte production. Our results also reveal the nuclear accumulation of transcription factors Dorsal and Dif and expression of Toll-associated antimicrobial peptides (AMP) in Dx over-expression background. Further, we also tried to elucidate the role of Dx in JNK-independent Toll activation. Here we present Dx as a novel candidate in the regulation of Toll pathway.
Collapse
Affiliation(s)
- Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Sharma V, Mutsuddi M, Mukherjee A. Deltex cooperates with TRAF6 to promote apoptosis and cell migration through Eiger-independent JNK activation in Drosophila. Cell Biol Int 2020; 45:686-700. [PMID: 33300258 DOI: 10.1002/cbin.11521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022]
Abstract
JNK signaling is a highly conserved signaling pathway that regulates a broad spectrum of cellular processes including cell proliferation, migration, and apoptosis. In Drosophila, JNK signaling is activated by binding of the tumor necrosis factor (TNF) Eiger to its receptor Wengen, and a conserved signaling cascade operates that culminates into activation of dual phosphatase Puckered thereby triggering apoptosis. The tumor necrosis factor receptor (TNFR) associated factor 6 (TRAF6) is an adaptor protein, which transduces the signal from TNFRs and Toll-like receptor/interleukin-1 receptor superfamily to induce a wide spectrum of cellular responses. TRAF6 also acts as the adaptor protein that mediates Eiger/JNK signaling in Drosophila. In a genetic interaction study, deltex (Dx) was identified as a novel interactor of TRAF6. Dx is well known to regulate Notch signaling in a context-dependent manner. Our data suggest that combinatorial action of Dx and TRAF6 enhances the Dx-induced wing nicking phenotype by inducing caspase-mediated cell death. Co-expression of Dx and TRAF6 also results in enhanced invasive behavior and perturbs the normal morphology of cells. The cooperative action of Dx and TRAF6 is attributed to JNK activation, which also leads to ectopic wingless (Wg) and decapentaplegic (Dpp) expression. Our results also reveal that the endocytic pathway component Rab7 may play a pivotal role in the regulation of Dx-TRAF6-mediated activation of JNK signaling. Here, we present the fact that Dx and TRAF6 together activate JNK signaling in an Eiger-independent mechanism.
Collapse
Affiliation(s)
- Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
14
|
Bhogal JK, Kanaskie JM, DiAngelo JR. The role of the heterogeneous nuclear ribonucleoprotein (hnRNP) Hrb27C in regulating lipid storage in the Drosophila fat body. Biochem Biophys Res Commun 2020; 524:178-183. [PMID: 31982137 DOI: 10.1016/j.bbrc.2020.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/11/2020] [Indexed: 11/26/2022]
Abstract
The storage of excess nutrients as triglycerides is essential for all organisms to survive when food is scarce; however, the mechanisms by which triglycerides are stored are not completely understood. Genome-wide RNAi screens in Drosophila cells have identified genes involved in mRNA splicing that are important in the regulation of triglyceride storage. Our lab has identified a number of splicing factors important for regulating lipid metabolism; however, the full complement of splicing proteins involved in achieving metabolic homeostasis is unknown. Heterogeneous nuclear ribonucleoproteins (hnRNPs), RNA binding proteins that inhibit the splicing of introns by preventing the assembly of splicing complexes, have no established metabolic functions. To assess any metabolic functions of hnRNPs, we used the GAL4/UAS system to induce RNAi to six hnRNP's: hnRNP-K, rumpelstiltskin (rump), smooth (sm), Hrb27C (also referred to as Hrp48), Hrb98DE, and Hrb87F in the Drosophila fat body. Decreasing the levels of hnRNP-K and rump resulted in a decrease in triglyceride storage, whereas decreasing the levels of sm, Hrb27C, and Hrb98DE resulted in an increase in triglyceride storage. The excess triglyceride phenotype in Hrb27C-RNAi flies resulted from both an increase in the number of fat body cells and the amount of fat stored per cell. In addition, both the splicing of the β-oxidation gene, CPT1, and the expression of the lipase brummer (bmm) was altered in flies with decreased Hrb27C, providing insight into the lipid storage phenotype in these flies. Together, these results suggest that the hnRNP family of splicing factors have varying metabolic functions and may act on specific metabolic genes to control their expression and processing.
Collapse
|
15
|
Regulation of Notch Signaling in Drosophila melanogaster: The Role of the Heterogeneous Nuclear Ribonucleoprotein Hrp48 and Deltex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:95-105. [DOI: 10.1007/978-3-030-36422-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Dutta D, Mutsuddi M, Mukherjee A. Synergistic interaction of Deltex and Hrp48 leads to JNK activation. Cell Biol Int 2019; 43:350-357. [PMID: 30597717 DOI: 10.1002/cbin.11089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/23/2018] [Indexed: 01/10/2023]
Abstract
The communication among the cells plays a seminal role in metazoan development by coordinating multiple cellular processes that, in turn, helps in the maintenance of biological homeostasis. Our previous study demonstrated that Dx and Hrp48 together downregulate Notch signaling and induce cell death in Drosophila. To understand the signaling events behind the Dx and Hrp48-induced cell death in a greater detail, we performed a set of genetic experiments followed by immunocytochemical analyses. Our data revealed that Dx along with Hrp48 induced JNK activation and consequently cell death in the eye tissue. Additionally, using genetic and molecular approaches, we identified the domain of Dx protein responsible for its synergistic activity with Hrp48. Altogether, our analyses suggest that coexpression of Dx and Hrp48 activates JNK pathway to induce cell death in eye disc of Drosophila melanogaster.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
17
|
Modulation of the Hippo pathway and organ growth by RNA processing proteins. Proc Natl Acad Sci U S A 2018; 115:10684-10689. [PMID: 30257938 DOI: 10.1073/pnas.1807325115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Hippo tumor-suppressor pathway regulates organ growth, cell proliferation, and stem cell biology. Defects in Hippo signaling and hyperactivation of its downstream effectors-Yorkie (Yki) in Drosophila and YAP/TAZ in mammals-result in progenitor cell expansion and overgrowth of multiple organs and contribute to cancer development. Deciphering the mechanisms that regulate the activity of the Hippo pathway is key to understanding its function and for therapeutic targeting. However, although the Hippo kinase cascade and several other upstream inputs have been identified, the mechanisms that regulate Yki/YAP/TAZ activity are still incompletely understood. To identify new regulators of Yki activity, we screened in Drosophila for suppressors of tissue overgrowth and Yki activation caused by overexpression of atypical protein kinase C (aPKC), a member of the apical cell polarity complex. In this screen, we identified mutations in the heterogeneous nuclear ribonucleoprotein Hrb27C that strongly suppressed the tissue defects induced by ectopic expression of aPKC. Hrb27C was required for aPKC-induced tissue growth and Yki target gene expression but did not affect general gene expression. Genetic and biochemical experiments showed that Hrb27C affects Yki phosphorylation. Other RNA-binding proteins known to interact with Hrb27C for mRNA transport in oocytes were also required for normal Yki activity, although they suppressed Yki output. Based on the known functions of Hrb27C, we conclude that Hrb27C-mediated control of mRNA splicing, localization, or translation is essential for coordinated activity of the Hippo pathway.
Collapse
|
18
|
A genetic mosaic screen identifies genes modulating Notch signaling in Drosophila. PLoS One 2018; 13:e0203781. [PMID: 30235233 PMCID: PMC6147428 DOI: 10.1371/journal.pone.0203781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Notch signaling is conserved in most multicellular organisms and plays critical roles during animal development. The core components and major signal transduction mechanism of Notch signaling have been extensively studied. However, our understanding of how Notch signaling activity is regulated in diverse developmental processes still remains incomplete. Here, we report a genetic mosaic screen in Drosophila melanogaster that leads to identification of Notch signali ng modulators during wing development. We discovered a group of genes required for the formation of the fly wing margin, a developmental process that is strictly dependent on the balanced Notch signaling activity. These genes encode transcription factors, protein phosphatases, vacuolar ATPases and factors required for RNA transport, stability, and translation. Our data support the view that Notch signaling is controlled through a wide range of molecular processes. These results also provide foundations for further study by showing that Me31B and Wdr62 function as two novel modulators of Notch signaling activity.
Collapse
|
19
|
Dutta D, Singh A, Paul MS, Sharma V, Mutsuddi M, Mukherjee A. Deltex interacts with Eiger and consequently influences the cell death in Drosophila melanogaster. Cell Signal 2018; 49:17-29. [DOI: 10.1016/j.cellsig.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/25/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
|