1
|
Durkin SM, Nachman MW. Intraspecific gene regulation in cis- and trans. Evolution 2025; 79:499-509. [PMID: 39866040 PMCID: PMC11965609 DOI: 10.1093/evolut/qpaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
Changes in gene expression underlie much of evolution and occur via either cis-acting mutations, which lie near the affected gene and act in a context-specific manner, or trans-acting mutations, which may be far from the affected gene and act through diffusible molecules such as transcription factors. A commonly held view is that most expression variation within species is controlled in trans- while expression differences between species are largely controlled in cis-. Here, we summarize recent intraspecific gene regulation studies and find, contrary to this widely held view, that many studies in diverse taxa have revealed a large role for cis-acting mutations underlying expression variation within species. A review of the existing literature also shows that preparations using whole organisms rather than individual tissues may be biased toward identifying trans-regulation. Moreover, we note several examples of predominantly cis-acting regulation in recently diverged populations adapted to different environments. We highlight the challenges of drawing general conclusions from comparisons among studies that use different methodologies and we offer suggestions for studies that will address outstanding questions concerning the evolution of gene regulation.
Collapse
Affiliation(s)
- Sylvia M Durkin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
2
|
Du M, Wang C, Jiang Z, Cong R, Li A, Wang W, Zhang G, Li L. Genotype-by-Environment Effects of Cis-Variations in the Atgl Promoter Mediate the Divergent Pattern of Phenotypic Plasticity for Temperature Adaptation in Two Congeneric Oyster Species. Mol Ecol 2025; 34:e17623. [PMID: 39718158 DOI: 10.1111/mec.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
Phenotypic plasticity plays an essential role in adaptive evolution. However, the molecular mechanisms of how genotype-by-environment interaction (G × E) effects shape phenotypic plasticity in marine organisms remain poorly understood. The crucial temperature-responsive trait triacylglycerol (TAG) content and its major gene adipose triglyceride lipase (Atgl) expression have divergent plastic patterns in two congeneric oyster species (Crassostrea gigas and Crassostrea angulata) to adapt to relative-cold/northern and relative-warm/southern habitats, respectively. In this study, eight putative loci were identified in the Atgl promoter region (cis-variations) between wild C. gigas and C. angulata that exhibited differential environmental responsiveness (G × E). The G and G × E effects of each locus were further dissected by measuring the Atgl gene expression of different genotypes in response to temperature changes at the cellular and organismal levels. Two transcription factors, non-environmentally responsive non-POU domain-containing octamer-binding protein (Nono) and environmentally responsive heterogeneous nuclear ribonucleoprotein K (Hnrnpk), were screened for binding to g.-1804 (G locus) and g.-1919 (G + G × E locus), respectively. The specificity of Nono binding to the C. angulata allele mediated the G effects of g.-1804, and the lower environmental sensitivity of Hnrnpk in C. angulata mediated the G × E effects of g.-1919, jointly regulating the trade-offs between higher constitutive and lower plastic expression of Atgl gene expression in C. angulata. This study served as an experimental case to reveal how the genetic variations with G and (or) G × E effects propagate into the divergent pattern of plasticity in environmental adaptive traits, which provides new insights into predicting the adaptability of marine organisms to future climate changes.
Collapse
Affiliation(s)
- Mingyang Du
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaogang Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Ao Li
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
3
|
Mishra P, Barrera TS, Grieshop K, Agrawal AF. Cis-regulatory Variation in Relation to Sex and Sexual Dimorphism in Drosophila melanogaster. Genome Biol Evol 2024; 16:evae234. [PMID: 39613311 DOI: 10.1093/gbe/evae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 12/01/2024] Open
Abstract
Much of sexual dimorphism is likely due to sex-biased gene expression, which results from differential regulation of a genome that is largely shared between males and females. Here, we use allele-specific expression to explore cis-regulatory variation in Drosophila melanogaster in relation to sex. We develop a Bayesian framework to infer the transcriptome-wide joint distribution of cis-regulatory effects across the sexes. We also examine patterns of cis-regulatory variation with respect to two other levels of variation in sexual dimorphism: (i) across genes that vary in their degree of sex-biased expression and (ii) among tissues that vary in their degree of dimorphism (e.g. relatively low dimorphism in heads vs. high dimorphism in gonads). We uncover evidence of widespread cis-regulatory variation in all tissues examined, with female-biased genes being especially enriched for this variation. A sizeable proportion of cis-regulatory variation is inferred to have sex-specific effects, with sex-dependent cis effects being much more frequent in gonads than in heads. Finally, we find some genes where 1 allele contributes to more than 50% of a gene's expression in heterozygous males but <50% of its expression in heterozygous females. Such variants could provide a mechanism for sex-specific dominance reversals, a phenomenon important for sexually antagonistic balancing selection. However, tissue differences in allelic imbalance are approximately as frequent as sex differences, perhaps suggesting that sexual conflict may not be particularly unique in shaping patterns of expression variation.
Collapse
Affiliation(s)
- Prashastha Mishra
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Tania S Barrera
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Karl Grieshop
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm SE-10691, Sweden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| |
Collapse
|
4
|
Janko K, Eisner J, Cigler P, Tichopád T. Unifying framework explaining how parental regulatory divergence can drive gene expression in hybrids and allopolyploids. Nat Commun 2024; 15:8714. [PMID: 39379366 PMCID: PMC11461870 DOI: 10.1038/s41467-024-52546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Hybridization and polyploidy are powerful evolutionary forces, inducing a range of phenotypic outcomes, including non-additive expression, subgenome dominance, deviations in genomic dosage, and transcriptome downsizing. The reasons for these patterns and whether they are universal adaptive responses to genome merging and doubling remain debated. To address this, we develop a thermodynamic model of gene expression based on transcription factor (TF)-promoter binding. Applied to hybridization between species with divergent gene expression levels, cell volumes, or euchromatic ratios, this model distinguishes the effects of hybridization from those of polyploidy. Our results align with empirical observations, suggesting that gene regulation patterns in hybrids and polyploids often stem from the constrained interplay between inherited diverged regulatory networks rather than from subsequent adaptive evolution. In addition, occurrence of certain phenotypic traits depend on specific assumptions about promoter-TF coevolution and their distribution within the hybrid's nucleoplasm, offering new research avenues to understand the underlying mechanisms. In summary, our model explains how the legacy of divergent species directly influences the phenotypic traits of hybrids and allopolyploids.
Collapse
Affiliation(s)
- Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the Czech Aacademy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic.
| | - Jan Eisner
- Department of Mathematics, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Chittussiho 10, Ostrava, Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, 166 10, Prague, Czech Republic.
| | - Tomáš Tichopád
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Chittussiho 10, Ostrava, Czech Republic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
5
|
Glaser-Schmitt A, Lemoine M, Kaltenpoth M, Parsch J. Pervasive tissue-, genetic background-, and allele-specific gene expression effects in Drosophila melanogaster. PLoS Genet 2024; 20:e1011257. [PMID: 39178312 PMCID: PMC11376557 DOI: 10.1371/journal.pgen.1011257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/05/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
The pervasiveness of gene expression variation and its contribution to phenotypic variation and evolution is well known. This gene expression variation is context dependent, with differences in regulatory architecture often associated with intrinsic and environmental factors, and is modulated by regulatory elements that can act in cis (linked) or in trans (unlinked) relative to the genes they affect. So far, little is known about how this genetic variation affects the evolution of regulatory architecture among closely related tissues during population divergence. To address this question, we analyzed gene expression in the midgut, hindgut, and Malpighian tubule as well as microbiome composition in the two gut tissues in four Drosophila melanogaster strains and their F1 hybrids from two divergent populations: one from the derived, European range and one from the ancestral, African range. In both the transcriptome and microbiome data, we detected extensive tissue- and genetic background-specific effects, including effects of genetic background on overall tissue specificity. Tissue-specific effects were typically stronger than genetic background-specific effects, although the two gut tissues were not more similar to each other than to the Malpighian tubules. An examination of allele specific expression revealed that, while both cis and trans effects were more tissue-specific in genes expressed differentially between populations than genes with conserved expression, trans effects were more tissue-specific than cis effects. Despite there being highly variable regulatory architecture, this observation was robust across tissues and genetic backgrounds, suggesting that the expression of trans variation can be spatially fine-tuned as well as or better than cis variation during population divergence and yielding new insights into cis and trans regulatory evolution.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marion Lemoine
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
6
|
Bylino OV, Ogienko AA, Batin MA, Georgiev PG, Omelina ES. Genetic, Environmental, and Stochastic Components of Lifespan Variability: The Drosophila Paradigm. Int J Mol Sci 2024; 25:4482. [PMID: 38674068 PMCID: PMC11050664 DOI: 10.3390/ijms25084482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Lifespan is a complex quantitative trait involving genetic and non-genetic factors as well as the peculiarities of ontogenesis. As with all quantitative traits, lifespan shows considerable variation within populations and between individuals. Drosophila, a favourite object of geneticists, has greatly advanced our understanding of how different forms of variability affect lifespan. This review considers the role of heritable genetic variability, phenotypic plasticity and stochastic variability in controlling lifespan in Drosophila melanogaster. We discuss the major historical milestones in the development of the genetic approach to study lifespan, the breeding of long-lived lines, advances in lifespan QTL mapping, the environmental factors that have the greatest influence on lifespan in laboratory maintained flies, and the mechanisms, by which individual development affects longevity. The interplay between approaches to study ageing and lifespan limitation will also be discussed. Particular attention will be paid to the interaction of different types of variability in the control of lifespan.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Department of Regulation of Genetic Processes, Laboratory of Molecular Organization of the Genome, Institute of Gene Biology RAS, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Department of Regulation of Genetic Processes, Laboratory of Molecular Organization of the Genome, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Dennis MY. Transforming our understanding of species-specific gene regulation. CELL GENOMICS 2024; 4:100540. [PMID: 38604125 PMCID: PMC11019355 DOI: 10.1016/j.xgen.2024.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Mechanisms underlying phenotypic divergence across species remain unresolved. In this issue of Cell Genomics, Hansen, Fong, et al.1 systematically dissect human and rhesus macaque gene expression divergence by screening tens of thousands of orthologous elements for enhancer activity in lymphoblastoid cell lines, revealing a much greater role for trans divergence at levels equal to those of cis effects, counter to the prevailing consensus in the field.
Collapse
Affiliation(s)
- Megan Y Dennis
- Department of Biochemistry & Molecular Medicine, Genome Center, and MIND Institute, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Hansen TJ, Fong SL, Day JK, Capra JA, Hodges E. Human gene regulatory evolution is driven by the divergence of regulatory element function in both cis and trans. CELL GENOMICS 2024; 4:100536. [PMID: 38604126 PMCID: PMC11019363 DOI: 10.1016/j.xgen.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/03/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using assay for transposase-accessible chromatin coupled to self-transcribing active regulatory region (ATAC-STARR) sequencing. In addition to thousands of cis changes, we discover an unexpected number (∼10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie ∼37% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-in regulatory differences between species.
Collapse
Affiliation(s)
- Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah L Fong
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica K Day
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA.
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Durkin SM, Ballinger MA, Nachman MW. Tissue-specific and cis-regulatory changes underlie parallel, adaptive gene expression evolution in house mice. PLoS Genet 2024; 20:e1010892. [PMID: 38306396 PMCID: PMC10866503 DOI: 10.1371/journal.pgen.1010892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/14/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Changes in gene regulation have long been appreciated as a driving force of adaptive evolution, however the relative contributions of cis- and trans-acting changes to gene regulation over short evolutionary timescales remain unclear. Instances of recent, parallel phenotypic evolution provide an opportunity to assess whether parallel patterns are seen at the level of gene expression, and to assess the relative contribution of cis- and trans- changes to gene regulation in the early stages of divergence. Here, we studied gene expression in liver and brown adipose tissue in two wild-derived strains of house mice that independently adapted to cold, northern environments, and we compared them to a strain of house mice from a warm, tropical environment. To investigate gene regulatory evolution, we studied expression in parents and allele-specific expression in F1 hybrids of crosses between warm-adapted and cold-adapted strains. First, we found that the different cold-adapted mice showed both unique and shared changes in expression, but that the proportion of shared changes (i.e. parallelism) was greater than expected by chance. Second, we discovered that expression evolution occurred largely at tissue-specific and cis-regulated genes, and that these genes were over-represented in parallel cases of evolution. Finally, we integrated the expression data with scans for selection in natural populations and found substantial parallelism in the two northern populations for genes under selection. Furthermore, selection outliers were associated with cis-regulated genes more than expected by chance; cis-regulated genes under selection influenced phenotypes such as body size, immune functioning, and activity level. These results demonstrate that parallel patterns of gene expression in mice that have independently adapted to cold environments are driven largely by tissue-specific and cis-regulatory changes, providing insight into the mechanisms of adaptive gene regulatory evolution at the earliest stages of divergence.
Collapse
Affiliation(s)
- Sylvia M. Durkin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Mallory A. Ballinger
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael W. Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
10
|
Abraham LN, Croll D. Genome-wide expression QTL mapping reveals the highly dynamic regulatory landscape of a major wheat pathogen. BMC Biol 2023; 21:263. [PMID: 37981685 PMCID: PMC10658818 DOI: 10.1186/s12915-023-01763-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND In agricultural ecosystems, outbreaks of diseases are frequent and pose a significant threat to food security. A successful pathogen undergoes a complex and well-timed sequence of regulatory changes to avoid detection by the host immune system; hence, well-tuned gene regulation is essential for survival. However, the extent to which the regulatory polymorphisms in a pathogen population provide an adaptive advantage is poorly understood. RESULTS We used Zymoseptoria tritici, one of the most important pathogens of wheat, to generate a genome-wide map of regulatory polymorphism governing gene expression. We investigated genome-wide transcription levels of 146 strains grown under nutrient starvation and performed expression quantitative trait loci (eQTL) mapping. We identified cis-eQTLs for 65.3% of all genes and the majority of all eQTL loci are within 2kb upstream and downstream of the transcription start site (TSS). We also show that polymorphism in different gene elements contributes disproportionally to gene expression variation. Investigating regulatory polymorphism in gene categories, we found an enrichment of regulatory variants for genes predicted to be important for fungal pathogenesis but with comparatively low effect size, suggesting a separate layer of gene regulation involving epigenetics. We also show that previously reported trait-associated SNPs in pathogen populations are frequently cis-regulatory variants of neighboring genes with implications for the trait architecture. CONCLUSIONS Overall, our study provides extensive evidence that single populations segregate large-scale regulatory variation and are likely to fuel rapid adaptation to resistant hosts and environmental change.
Collapse
Affiliation(s)
- Leen Nanchira Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
- Present address: Institute of Plant Sciences, University of Cologne, Cologne, Germany
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
11
|
Fablet M, Salces-Ortiz J, Jacquet A, Menezes BF, Dechaud C, Veber P, Rebollo R, Vieira C. A Quantitative, Genome-Wide Analysis in Drosophila Reveals Transposable Elements' Influence on Gene Expression Is Species-Specific. Genome Biol Evol 2023; 15:evad160. [PMID: 37652057 PMCID: PMC10492446 DOI: 10.1093/gbe/evad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
Transposable elements (TEs) are parasite DNA sequences that are able to move and multiply along the chromosomes of all genomes. They can be controlled by the host through the targeting of silencing epigenetic marks, which may affect the chromatin structure of neighboring sequences, including genes. In this study, we used transcriptomic and epigenomic high-throughput data produced from ovarian samples of several Drosophila melanogaster and Drosophila simulans wild-type strains, in order to finely quantify the influence of TE insertions on gene RNA levels and histone marks (H3K9me3 and H3K4me3). Our results reveal a stronger epigenetic effect of TEs on ortholog genes in D. simulans compared with D. melanogaster. At the same time, we uncover a larger contribution of TEs to gene H3K9me3 variance within genomes in D. melanogaster, which is evidenced by a stronger correlation of TE numbers around genes with the levels of this chromatin mark in D. melanogaster. Overall, this work contributes to the understanding of species-specific influence of TEs within genomes. It provides a new light on the considerable natural variability provided by TEs, which may be associated with contrasted adaptive and evolutionary potentials.
Collapse
Affiliation(s)
- Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Judit Salces-Ortiz
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Angelo Jacquet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Bianca F Menezes
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe Veber
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| |
Collapse
|
12
|
Mahmud M, Bekele M, Behera N. A computational investigation of cis-gene regulation in evolution. Theory Biosci 2023; 142:151-165. [PMID: 37041403 DOI: 10.1007/s12064-023-00391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
In biological processes involving gene networks, genes regulate other genes that determine the phenotypic traits. Gene regulation plays an important role in evolutionary dynamics. In a genetic algorithm, a trans-gene regulatory mechanism was shown to speed up adaptation and evolution. Here, we examine the effect of cis-gene regulation on an adaptive system. The model is haploid. A chromosome is partitioned into regulatory loci and structural loci. The regulatory genes regulate the expression and functioning of structural genes via the cis-elements in a probabilistic manner. In the simulation, the change in the allele frequency, the mean population fitness and the efficiency of phenotypic selection are monitored. Cis-gene regulation increases adaption and accelerates the evolutionary process in comparison with the case involving absence of gene regulation. Some special features of the simulation results are as follows. A low ratio of regulatory loci and structural loci gives higher adaptation for fixed total number of loci. Plasticity is advantageous beyond a threshold value. Adaptation is better for large number of total loci when the ratio of regulatory loci to structural loci is one. However, it reaches a saturation beyond which the increase in the total loci is not advantageous. Efficiency of the phenotypic selection is higher for larger value of the initial plasticity.
Collapse
Affiliation(s)
- Mohammed Mahmud
- Department of Physics, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Mulugeta Bekele
- Department of Physics, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Narayan Behera
- Department of Applied Physics, Adama Science and Technology University, P. O. Box 1888, Adama, Ethiopia.
- Division of Physical Science, SVYASA University, Eknath Bhavan, Kempegowda Nagar, Bengaluru, 560019, India.
| |
Collapse
|
13
|
Hansen T, Fong S, Capra JA, Hodges E. Human gene regulatory evolution is driven by the divergence of regulatory element function in both cis and trans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528376. [PMID: 36824965 PMCID: PMC9949080 DOI: 10.1101/2023.02.14.528376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using ATAC-STARR-seq. In addition to thousands of cis changes, we discover an unexpected number (~10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie >50% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-to regulatory differences between species.
Collapse
Affiliation(s)
- Tyler Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Sarah Fong
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Lead contact
| |
Collapse
|
14
|
Wang C, Li A, Cong R, Qi H, Wang W, Zhang G, Li L. Cis- and Trans-variations of Stearoyl-CoA Desaturase Provide New Insights into the Mechanisms of Diverged Pattern of Phenotypic Plasticity for Temperature Adaptation in Two Congeneric Oyster Species. Mol Biol Evol 2023; 40:6994358. [PMID: 36661848 PMCID: PMC9949715 DOI: 10.1093/molbev/msad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The evolution of phenotypic plasticity plays an essential role in adaptive responses to climate change; however, its regulatory mechanisms in marine organisms which exhibit high phenotypic plasticity still remain poorly understood. The temperature-responsive trait oleic acid content and its major gene stearoyl-CoA desaturase (Scd) expression have diverged in two allopatric congeneric oyster species, cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. In this study, genetic and molecular methods were used to characterize fatty acid desaturation and membrane fluidity regulated by oyster Scd. Sixteen causative single-nucleotide polymorphisms (SNPs) were identified in the promoter/cis-region of the Scd between wild C. gigas and C. angulata. Further functional experiments showed that an SNP (g.-333C [C. gigas allele] >T [C. angulata allele]) may influence Scd transcription by creating/disrupting the binding motif of the positive trans-factor Y-box factor in C. gigas/C. angulata, which mediates the higher/lower constitutive expression of Scd in C. gigas/C. angulata. Additionally, the positive trans-factor sterol-regulatory element-binding proteins (Srebp) were identified to specifically bind to the promoter of Scd in both species, and were downregulated during cold stress in C. gigas compared to upregulated in C. angulata. This partly explains the relatively lower environmental sensitivity (plasticity) of Scd in C. gigas. This study serves as an experimental case to reveal that both cis- and trans-variations shape the diverged pattern of phenotypic plasticity, which provides new insights into the formation of adaptive traits and the prediction of the adaptive potential of marine organisms to future climate change.
Collapse
Affiliation(s)
- Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,University of Chinese Academy of Sciences, Beijing, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Haigang Qi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Corresponding author: E-mail:
| |
Collapse
|
15
|
Liu M, Liu X, Zhou P, Jiang S, Huang JG, Dong Z. Environmental factors have a major effect in shaping the gene expression of Siberian larch in the Altai Mountains of China. THE PLANT GENOME 2022; 15:e20240. [PMID: 35818680 DOI: 10.1002/tpg2.20240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The differentiation of gene expression is an important link between genotype and phenotype and has important contributions to species adaptation and ecosystem evolution. As a major component of the world's forests, boreal forests play an important role in regulating the global climate, and the phenology of tree species has been and is undergoing changes during global warming. Here, to understand the impact of global warming on gene expression in boreal forest species, we used PacBio and Illumina sequencing methods to study the transcriptome of natural populations of Siberian larch (Larix sibirica Ledeb.) from the Altai Mountains in Xinjiang, China. We found that populations in this area had low genetic differentiation, but individuals were genetically clustered together when they had close geographic distance. Environmental factors, especially temperature, dominated differential gene expression of Siberian larch, while the contribution of genetic variation is relatively small. We speculate that Siberian larch adapts to changes in temperature and precipitation by altering its own gene expression. These results not only predict the tolerance of boreal forests to higher temperatures in the future, but also inform forest management strategies under global climate change.
Collapse
Affiliation(s)
- Min Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Univ., Guangzhou, 510006, China
| | - Xiaobin Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Univ., Guangzhou, 510006, China
| | - Peng Zhou
- South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Guangzhou, 510650, China
| | - Shaowei Jiang
- South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Guangzhou, 510650, China
| | - Jian-Guo Huang
- South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Guangzhou, 510650, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Univ., Guangzhou, 510006, China
| |
Collapse
|
16
|
Ereful NC, Lalusin AG, Laurena AC. Assessing Loss of Regulatory Divergence, Genome-Transcriptome Incongruence, and Preferential Expression Switching in Abaca × Banana Backcrosses. Genes (Basel) 2022; 13:1396. [PMID: 36011307 PMCID: PMC9407414 DOI: 10.3390/genes13081396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The Musa textilis var. Abuab has high fiber quality (FQ) but is susceptible to abaca bunchy top virus (AbBTV); the Musa balbisiana var. Pacol has low FQ but is resistant against AbBTV. Their backcrosses (BC2 and BC3) possess both desirable traits. Analysis using RNA-seq showed that the regulatory divergence of Abuab and Pacol is largely explained by cis differences with 27.4% and 22.3% if we are to assess it using BC2 and BC3, respectively. Cis differences between the two genotypes are significantly reduced from BC2 to BC3 due to changes in genomic constitution. Trans, on the other hand, is robust to changes in allelic composition. All these are attributed to the loss of heterozygosity in BC3 relative to BC2. Further analysis showed that both backcrosses exhibited genome-wide preferential expression of Pacol- over Abuab-specific alleles, despite the wider genetic presence of the latter in the hybrids. The ratio of the two genotype-specific expressed transcripts and the ratio of their corresponding genetic make-up are significantly disproportionate, a phenomenon that we refer to here as "genome-transcriptome incongruence". We also observed preferential expression switching in which several genes prefer the Abuab- (or Pacol-) specific allele in BC2 but switched to the Pacol- (or Abuab-) specific allele in the BC3 genome.
Collapse
Affiliation(s)
- Nelzo C. Ereful
- Biochemistry Laboratory–Plant Physiology Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna 4031, Philippines
- Philippine Genome Center for Agriculture, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Antonio G. Lalusin
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Antonio C. Laurena
- Philippine Genome Center for Agriculture, University of the Philippines Los Baños, Laguna 4031, Philippines
| |
Collapse
|
17
|
Quan C, Chen G, Li S, Jia Z, Yu P, Tu J, Shen J, Yi B, Fu T, Dai C, Ma C. Transcriptome shock in interspecific F1 allotriploid hybrids between Brassica species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2336-2353. [PMID: 35139197 DOI: 10.1093/jxb/erac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Interspecific hybridization drives the evolution of angiosperms and can be used to introduce novel alleles for important traits or to activate heterosis in crop breeding. Hybridization brings together gene expression networks from two different species, potentially causing global alterations of gene expression in the F1 plants which is called 'transcriptome shock'. Here, we explored such a transcriptome shock in allotriploid Brassica hybrids. We generated interspecific F1 allotriploid hybrids between the allotetraploid species Brassica napus and three accessions of the diploid species Brassica rapa. RNA-seq of the F1 hybrids and the parental plants revealed that 26.34-30.89% of genes were differentially expressed between the parents. We also analyzed expression level dominance and homoeolog expression bias between the parents and the F1 hybrids. The expression-level dominance biases of the Ar, An, and Cn subgenomes was genotype and stage dependent, whereas significant homoeolog expression bias was observed among three subgenomes from different parents. Furthermore, more genes were involved in trans regulation than in cis regulation in allotriploid F1 hybrids. Our findings provide new insights into the transcriptomic responses of cross-species hybrids and hybrids showing heterosis, as well as a new method for promoting the breeding of desirable traits in polyploid Brassica species.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Guoting Chen
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Pugang Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
18
|
Steward RA, de Jong MA, Oostra V, Wheat CW. Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change. Nat Commun 2022; 13:755. [PMID: 35136048 PMCID: PMC8825856 DOI: 10.1038/s41467-022-28306-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Seasonal plasticity is accomplished via tightly regulated developmental cascades that translate environmental cues into trait changes. Little is known about how alternative splicing and other posttranscriptional molecular mechanisms contribute to plasticity or how these mechanisms impact how plasticity evolves. Here, we use transcriptomic and genomic data from the butterfly Bicyclus anynana, a model system for seasonal plasticity, to compare the extent of differential expression and splicing and test how these axes of transcriptional plasticity differ in their potential for evolutionary change. Between seasonal morphs, we find that differential splicing affects a smaller but functionally unique set of genes compared to differential expression. Further, we find strong support for the novel hypothesis that spliced genes are more susceptible than differentially expressed genes to erosion of genetic variation due to selection on seasonal plasticity. Our results suggest that splicing plasticity is especially likely to experience genetic constraints that could affect the potential of wild populations to respond to rapidly changing environments.
Collapse
Affiliation(s)
| | | | - Vicencio Oostra
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
19
|
Heinen T, Xie C, Keshavarz M, Stappert D, Künzel S, Tautz D. Evolution of a New Testis-Specific Functional Promoter Within the Highly Conserved Map2k7 Gene of the Mouse. Front Genet 2022; 12:812139. [PMID: 35069705 PMCID: PMC8766832 DOI: 10.3389/fgene.2021.812139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
Map2k7 (synonym Mkk7) is a conserved regulatory kinase gene and a central component of the JNK signaling cascade with key functions during cellular differentiation. It shows complex transcription patterns, and different transcript isoforms are known in the mouse (Mus musculus). We have previously identified a newly evolved testis-specific transcript for the Map2k7 gene in the subspecies M. m. domesticus. Here, we identify the new promoter that drives this transcript and find that it codes for an open reading frame (ORF) of 50 amino acids. The new promoter was gained in the stem lineage of closely related mouse species but was secondarily lost in the subspecies M. m. musculus and M. m. castaneus. A single mutation can be correlated with its transcriptional activity in M. m. domesticus, and cell culture assays demonstrate the capability of this mutation to drive expression. A mouse knockout line in which the promoter region of the new transcript is deleted reveals a functional contribution of the newly evolved promoter to sperm motility and the spermatid transcriptome. Our data show that a new functional transcript (and possibly protein) can evolve within an otherwise highly conserved gene, supporting the notion of regulatory changes contributing to the emergence of evolutionary novelties.
Collapse
Affiliation(s)
| | - Chen Xie
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| | - Maryam Keshavarz
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Bonn, Germany
| | - Dominik Stappert
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Bonn, Germany
| | - Sven Künzel
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
20
|
Brown KE, Kelly JK. Genome-wide association mapping of transcriptome variation in Mimulus guttatus indicates differing patterns of selection on cis- versus trans-acting mutations. Genetics 2022; 220:iyab189. [PMID: 34791192 PMCID: PMC8733635 DOI: 10.1093/genetics/iyab189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
We measured the floral bud transcriptome of 151 fully sequenced lines of Mimulus guttatus from one natural population. Thousands of single nucleotide polymorphisms (SNPs) are implicated as transcription regulators, but there is a striking difference in the allele frequency spectrum of cis-acting and trans-acting mutations. Cis-SNPs have intermediate frequencies (consistent with balancing selection) while trans-SNPs exhibit a rare-alleles model (consistent with purifying selection). This pattern only becomes clear when transcript variation is normalized on a gene-to-gene basis. If a global normalization is applied, as is typically in RNAseq experiments, asymmetric transcript distributions combined with "rarity disequilibrium" produce a superabundance of false positives for trans-acting SNPs. To explore the cause of purifying selection on trans-acting mutations, we identified gene expression modules as sets of coexpressed genes. The extent to which trans-acting mutations influence modules is a strong predictor of allele frequency. Mutations altering expression of genes with high "connectedness" (those that are highly predictive of the representative module expression value) have the lowest allele frequency. The expression modules can also predict whole-plant traits such as flower size. We find that a substantial portion of the genetic (co)variance among traits can be described as an emergent property of genetic effects on expression modules.
Collapse
Affiliation(s)
- Keely E Brown
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
21
|
Ullastres A, Merenciano M, González J. Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biol 2021; 22:265. [PMID: 34521452 PMCID: PMC8439047 DOI: 10.1186/s13059-021-02471-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Background Variation in gene expression underlies interindividual variability in relevant traits including immune response. However, the genetic variation responsible for these gene expression changes remains largely unknown. Among the non-coding variants that could be relevant, transposable element insertions are promising candidates as they have been shown to be a rich and diverse source of cis-regulatory elements. Results In this work, we use a population genetics approach to identify transposable element insertions likely to increase the tolerance of Drosophila melanogaster to bacterial infection by affecting the expression of immune-related genes. We identify 12 insertions associated with allele-specific expression changes in immune-related genes. We experimentally validate three of these insertions including one likely to be acting as a silencer, one as an enhancer, and one with a dual role as enhancer and promoter. The direction in the change of gene expression associated with the presence of several of these insertions is consistent with an increased survival to infection. Indeed, for one of the insertions, we show that this is the case by analyzing both natural populations and CRISPR/Cas9 mutants in which the insertion is deleted from its native genomic context. Conclusions We show that transposable elements contribute to gene expression variation in response to infection in D. melanogaster and that this variation is likely to affect their survival capacity. Because the role of transposable elements as regulatory elements is not restricted to Drosophila, transposable elements are likely to play a role in immune response in other organisms as well. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02471-3.
Collapse
Affiliation(s)
- Anna Ullastres
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
22
|
Benowitz KM, Coleman JM, Allan CW, Matzkin LM. Contributions of cis- and trans-Regulatory Evolution to Transcriptomic Divergence across Populations in the Drosophila mojavensis Larval Brain. Genome Biol Evol 2021; 12:1407-1418. [PMID: 32653899 PMCID: PMC7495911 DOI: 10.1093/gbe/evaa145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Natural selection on gene expression was originally predicted to result primarily in cis- rather than trans-regulatory evolution, due to the expectation of reduced pleiotropy. Despite this, numerous studies have ascribed recent evolutionary divergence in gene expression predominantly to trans-regulation. Performing RNA-seq on single isofemale lines from genetically distinct populations of the cactophilic fly Drosophila mojavensis and their F1 hybrids, we recapitulated this pattern in both larval brains and whole bodies. However, we demonstrate that improving the measurement of brain expression divergence between populations by using seven additional genotypes considerably reduces the estimate of trans-regulatory contributions to expression evolution. We argue that the finding of trans-regulatory predominance can result from biases due to environmental variation in expression or other sources of noise, and that cis-regulation is likely a greater contributor to transcriptional evolution across D. mojavensis populations. Lastly, we merge these lines of data to identify several previously hypothesized and intriguing novel candidate genes, and suggest that the integration of regulatory and population-level transcriptomic data can provide useful filters for the identification of potentially adaptive genes.
Collapse
Affiliation(s)
| | - Joshua M Coleman
- Department of Entomology, University of Arizona.,Department of Biological Sciences, University of Alabama in Huntsville
| | | | - Luciano M Matzkin
- Department of Entomology, University of Arizona.,Department of Ecology and Evolutionary Biology, University of Arizona.,BIO5 Institute, University of Arizona
| |
Collapse
|
23
|
Unraveling regulatory divergence, heterotic malleability, and allelic imbalance switching in rice due to drought stress. Sci Rep 2021; 11:13489. [PMID: 34188147 PMCID: PMC8241847 DOI: 10.1038/s41598-021-92938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/17/2021] [Indexed: 01/10/2023] Open
Abstract
The indica ecotypes, IR64, an elite drought-susceptible variety adapted to irrigated ecosystem, and Apo (IR55423-01 or NSIC RC9), a moderate drought-tolerant upland genotype together with their hybrid (IR64 × Apo) were exposed to non- and water-stress conditions. By sequencing (RNA-seq) these genotypes, we were able to map genes diverging in cis and/or trans factors. Under non-stress condition, cis dominantly explains (11.2%) regulatory differences, followed by trans (8.9%). Further analysis showed that water-limiting condition largely affects trans and cis + trans factors. On the molecular level, cis and/or trans regulatory divergence explains their genotypic differences and differential drought response. Between the two parental genotypes, Apo appears to exhibit more photosynthetic efficiency even under water-limiting condition and is ascribed to trans. Statistical analyses showed that regulatory divergence is significantly influenced by environmental conditions. Likewise, the mode of parental expression inheritance which drives heterosis (HET) is significantly affected by environmental conditions indicating the malleability of heterosis to external factors. Further analysis revealed that the HET class, dominance, was significantly enriched under water-stress condition. We also identified allelic imbalance switching in which several genes prefer IR64- (or Apo-) specific allele under non-stress condition but switched to Apo- (or IR64-) specific allele when exposed to water-stress condition.
Collapse
|
24
|
Ramirez-Corona BA, Fruth S, Ofoegbu O, Wunderlich Z. The mode of expression divergence in Drosophila fat body is infection-specific. Genome Res 2021; 31:1024-1034. [PMID: 33858842 PMCID: PMC8168590 DOI: 10.1101/gr.269597.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Transcription is controlled by interactions of cis-acting DNA elements with diffusible trans-acting factors. Changes in cis or trans factors can drive expression divergence within and between species, and their relative prevalence can reveal the evolutionary history and pressures that drive expression variation. Previous work delineating the mode of expression divergence in animals has largely used whole-body expression measurements in one condition. Because cis-acting elements often drive expression in a subset of cell types or conditions, these measurements may not capture the complete contribution of cis-acting changes. Here, we quantify the mode of expression divergence in the Drosophila fat body, the primary immune organ, in several conditions, using two geographically distinct lines of D. melanogaster and their F1 hybrids. We measured expression in the absence of infection and in infections with Gram-negative S. marcescens or Gram-positive E. faecalis bacteria, which trigger the two primary signaling pathways in the Drosophila innate immune response. The mode of expression divergence strongly depends on the condition, with trans-acting effects dominating in response to Gram-negative infection and cis-acting effects dominating in Gram-positive and preinfection conditions. Expression divergence in several receptor proteins may underlie the infection-specific trans effects. Before infection, when the fat body has a metabolic role, there are many compensatory effects, changes in cis and trans that counteract each other to maintain expression levels. This work shows that within a single tissue, the mode of expression divergence varies between conditions and suggests that these differences reflect the diverse evolutionary histories of host-pathogen interactions.
Collapse
Affiliation(s)
- Bryan A Ramirez-Corona
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| | - Stephanie Fruth
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| | - Oluchi Ofoegbu
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| |
Collapse
|
25
|
Huang Y, Lack JB, Hoppel GT, Pool JE. Parallel and Population-specific Gene Regulatory Evolution in Cold-Adapted Fly Populations. Genetics 2021; 218:6275754. [PMID: 33989401 PMCID: PMC8864734 DOI: 10.1093/genetics/iyab077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/10/2021] [Indexed: 11/15/2022] Open
Abstract
Changes in gene regulation at multiple levels may comprise an important share of the molecular changes underlying adaptive evolution in nature. However, few studies have assayed within- and between-population variation in gene regulatory traits at a transcriptomic scale, and therefore inferences about the characteristics of adaptive regulatory changes have been elusive. Here, we assess quantitative trait differentiation in gene expression levels and alternative splicing (intron usage) between three closely related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. The cold-adapted populations were known to show population genetic evidence for parallel evolution at the SNP level, and here we find evidence for parallel expression evolution between them, with stronger parallelism at larval and adult stages than for pupae. We also implement a flexible method to estimate cis- vs trans-encoded contributions to expression or splicing differences at the adult stage. The apparent contributions of cis- vs trans-regulation to adaptive evolution vary substantially among population pairs. While two of three population pairs show a greater enrichment of cis-regulatory differences among adaptation candidates, trans-regulatory differences are more likely to be implicated in parallel expression changes between population pairs. Genes with significant cis-effects are enriched for signals of elevated genetic differentiation between cold- and warm-adapted populations, suggesting that they are potential targets of local adaptation. These findings expand our knowledge of adaptive gene regulatory evolution and our ability to make inferences about this important and widespread process.
Collapse
Affiliation(s)
- Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Grant T Hoppel
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Hu J, Wuitchik SJS, Barry TN, Jamniczky HA, Rogers SM, Barrett RDH. Heritability of DNA methylation in threespine stickleback (Gasterosteus aculeatus). Genetics 2021; 217:1-15. [PMID: 33683369 PMCID: PMC8045681 DOI: 10.1093/genetics/iyab001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24-35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.
Collapse
Affiliation(s)
- Juntao Hu
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
- Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 0C4, Canada
| | - Sara J S Wuitchik
- Informatics Group, Harvard University, Cambridge, MA 02138, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tegan N Barry
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 0C4, Canada
| |
Collapse
|
27
|
Yang Z, Zhang Q, Yu H, Du H, Li L, He Y, Zhu S, Li C, Zhang S, Luo B, Gao Y. Genetic association study of a novel indel polymorphism in HSPA1B with the risk of sudden cardiac death in the Chinese populations. Forensic Sci Int 2020; 318:110637. [PMID: 33309992 DOI: 10.1016/j.forsciint.2020.110637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Sudden cardiac death (SCD) has become a global problem due to its high mortality in the general population. Identification of genetic factors predisposed to SCD is significant since it enables genetic testing that would contribute to molecular diagnosis and risk stratification of SCD. It has been reported that HSPA1B gene mutations might be related with SCD. In this study, based on candidate-gene-based approach and systematic screening strategy, a 5-base pair insertion/deletion (Indel) polymorphism (rs3036297) in the 3'UTR of HSPA1B gene was selected to perform a case-control study aiming to investigate its association with SCD susceptibility in Chinese populations. Logistic regression analysis showed that the insertion allele of rs3036297 was correlated with a comparatively lower risk for SCD [OR=0.58, 95%CI=0.43-0.77, P=1.28×10-4] compared with the deletion allele. Luciferase activity assay indicated that HSPA1B expression could be regulated by rs3036297 through interfering binding with miR-134-5p. Furthermore, analysis of database from Haploreg and GTEx revealed that the rs3036297 variant was involved in potential cis-regulatory element with the promoter of HLA-DRB5 through a long-range interaction and the deletion allele of rs3036297 increased HLA-DRB5 expression. In conclusion, the rs3036297 variant may regulate HSPA1B expression via a mechanism of miRNA binding and HLA-DRB5 expression via a long-range promoter interaction through which contributed to SCD susceptibility. Therefore, rs3036297 would be a potential marker for molecular diagnosis and genetic counseling of SCD.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China; Institute of Forensic Sciences, Henan University of Economics and Law, Zhengzhou, China
| | - Qing Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Huan Yu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Hailin Du
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yan He
- Department of Epidemiology, Medical College of Soochow University, Suzhou, China
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Bin Luo
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
28
|
Duan X, Zhao C, Jiang Y, Zhang R, Shan H, Kong H. Parallel evolution of apetalous lineages within the buttercup family (Ranunculaceae): outward expansion of AGAMOUS1, rather than disruption of APETALA3-3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1169-1181. [PMID: 32891067 DOI: 10.1111/tpj.14985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Complete loss of petals, or becoming apetalous, has occurred independently in many flowering plant lineages. However, the mechanisms underlying the parallel evolution of naturally occurring apetalous lineages remain largely unclear. Here, by sampling representatives of all nine apetalous genera/tribes of the family Ranunculaceae and conducting detailed morphological, expression, molecular evolutionary and functional studies, we investigate the mechanisms underlying parallel petal losses. We found that while non-expression/downregulation of the petal identity gene APETALA3-3 (AP3-3) is tightly associated with complete petal losses, disruptions of the AP3-3 orthologs were unlikely to be the real causes for the parallel evolution of apetalous lineages. We also found that, compared with their close petalous relatives, naturally occurring apetalous taxa usually bear slightly larger numbers of stamens, whereas the number of sepals remains largely unchanged, suggestive of petal-to-stamen rather than petal-to-sepal transformations. In addition, in the recently originated apetalous genus Enemion, the petal-to-stamen transformations have likely been caused by the mutations that led to the elevation and outward expansion of the expression of the C-function gene, AGAMOUS1 (AG1). Our results not only provide a general picture of parallel petal losses within the Ranunculaceae but also help understand the mechanisms underlying the independent originations of other apetalous lineages.
Collapse
Affiliation(s)
- Xiaoshan Duan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Caiyao Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongchao Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Kelley JL, Desvignes T, McGowan KL, Perez M, Rodriguez LA, Brown AP, Culumber Z, Tobler M. microRNA expression variation as a potential molecular mechanism contributing to adaptation to hydrogen sulphide. J Evol Biol 2020; 34:977-988. [PMID: 33124163 DOI: 10.1111/jeb.13727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022]
Abstract
microRNAs (miRNAs) are post-transcriptional regulators of gene expression and can play an important role in modulating organismal development and physiology in response to environmental stress. However, the role of miRNAs in mediating adaptation to diverse environments in natural study systems remains largely unexplored. Here, we characterized miRNAs and their expression in Poecilia mexicana, a species of small fish that inhabits both normal streams and extreme environments in the form of springs rich in toxic hydrogen sulphide (H2 S). We found that P. mexicana has a similar number of miRNA genes as other teleosts. In addition, we identified a large population of mature miRNAs that were differentially expressed between locally adapted populations in contrasting habitats, indicating that miRNAs may contribute to P. mexicana adaptation to sulphidic environments. In silico identification of differentially expressed miRNA-mRNA pairs revealed, in the sulphidic environment, the downregulation of miRNAs predicted to target mRNAs involved in sulphide detoxification and cellular homeostasis, which are pathways essential for life in H2 S-rich springs. In addition, we found that predicted targets of upregulated miRNAs act in the mitochondria (16.6% of predicted annotated targets), which is the main site of H2 S toxicity and detoxification, possibly modulating mitochondrial function. Together, the differential regulation of miRNAs between these natural populations suggests that miRNAs may be involved in H2 S adaptation by promoting functions needed for survival and reducing functions affected by H2 S. This study lays the groundwork for further research to directly demonstrate the role of miRNAs in adaptation to H2 S. Overall, this study provides a critical stepping-stone towards a comprehensive understanding of the regulatory mechanisms underlying the adaptive variation in gene expression in a natural system.
Collapse
Affiliation(s)
- Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Kerry L McGowan
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Marcos Perez
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, México
| | - Anthony P Brown
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Zach Culumber
- Biological Sciences Department, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
30
|
Jallet AJ, Le Rouzic A, Genissel A. Evolution and Plasticity of the Transcriptome Under Temperature Fluctuations in the Fungal Plant Pathogen Zymoseptoria tritici. Front Microbiol 2020; 11:573829. [PMID: 33042084 PMCID: PMC7517895 DOI: 10.3389/fmicb.2020.573829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022] Open
Abstract
Most species live in a variable environment in nature. Yet understanding the evolutionary processes underlying molecular adaptation to fluctuations remains a challenge. In this study we investigate the transcriptome of the fungal wheat pathogen Zymoseptoria tritici after experimental evolution under stable or fluctuating temperature, by comparing ancestral and evolved populations simultaneously. We found that temperature regimes could have a large and pervasive effect on the transcriptome evolution, with as much as 38% of the genes being differentially expressed between selection regimes. Although evolved lineages showed different changes of gene expression based on ancestral genotypes, we identified a set of genes responding specifically to fluctuation. We found that transcriptome evolution in fluctuating conditions was repeatable between parallel lineages initiated from the same genotype for about 60% of the differentially expressed genes. Further, we detected several hotspots of significantly differentially expressed genes in the genome, in regions known to be enriched in repetitive elements, including accessory chromosomes. Our findings also evidenced gene expression evolution toward a gain of robustness (loss of phenotypic plasticity) associated with the fluctuating regime, suggesting robustness is adaptive in changing environment. This work provides valuable insight into the role of transcriptional rewiring for rapid adaptation to abiotic changes in filamentous plant pathogens.
Collapse
Affiliation(s)
- Arthur J. Jallet
- UMR BIOGER, Université Paris Saclay – INRAE – AgroParisTech, Thiverval-Grignon, France
| | - Arnaud Le Rouzic
- UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay – CNRS – IRD, Gif-sur-Yvette, France
| | - Anne Genissel
- UMR BIOGER, Université Paris Saclay – INRAE – AgroParisTech, Thiverval-Grignon, France
| |
Collapse
|
31
|
Cridland JM, Majane AC, Sheehy HK, Begun DJ. Polymorphism and Divergence of Novel Gene Expression Patterns in Drosophila melanogaster. Genetics 2020; 216:79-93. [PMID: 32737121 PMCID: PMC7463294 DOI: 10.1534/genetics.120.303515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Transcriptomes may evolve by multiple mechanisms, including the evolution of novel genes, the evolution of transcript abundance, and the evolution of cell, tissue, or organ expression patterns. Here, we focus on the last of these mechanisms in an investigation of tissue and organ shifts in gene expression in Drosophila melanogaster. In contrast to most investigations of expression evolution, we seek to provide a framework for understanding the mechanisms of novel expression patterns on a short population genetic timescale. To do so, we generated population samples of D. melanogaster transcriptomes from five tissues: accessory gland, testis, larval salivary gland, female head, and first-instar larva. We combined these data with comparable data from two outgroups to characterize gains and losses of expression, both polymorphic and fixed, in D. melanogaster We observed a large number of gain- or loss-of-expression phenotypes, most of which were polymorphic within D. melanogaster Several polymorphic, novel expression phenotypes were strongly influenced by segregating cis-acting variants. In support of previous literature on the evolution of novelties functioning in male reproduction, we observed many more novel expression phenotypes in the testis and accessory gland than in other tissues. Additionally, genes showing novel expression phenotypes tend to exhibit greater tissue-specific expression. Finally, in addition to qualitatively novel expression phenotypes, we identified genes exhibiting major quantitative expression divergence in the D. melanogaster lineage.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Hayley K Sheehy
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
32
|
Mattioli K, Oliveros W, Gerhardinger C, Andergassen D, Maass PG, Rinn JL, Melé M. Cis and trans effects differentially contribute to the evolution of promoters and enhancers. Genome Biol 2020; 21:210. [PMID: 32819422 PMCID: PMC7439725 DOI: 10.1186/s13059-020-02110-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gene expression differences between species are driven by both cis and trans effects. Whereas cis effects are caused by genetic variants located on the same DNA molecule as the target gene, trans effects are due to genetic variants that affect diffusible elements. Previous studies have mostly assessed the impact of cis and trans effects at the gene level. However, how cis and trans effects differentially impact regulatory elements such as enhancers and promoters remains poorly understood. Here, we use massively parallel reporter assays to directly measure the transcriptional outputs of thousands of individual regulatory elements in embryonic stem cells and measure cis and trans effects between human and mouse. RESULTS Our approach reveals that cis effects are widespread across transcribed regulatory elements, and the strongest cis effects are associated with the disruption of motifs recognized by strong transcriptional activators. Conversely, we find that trans effects are rare but stronger in enhancers than promoters and are associated with a subset of transcription factors that are differentially expressed between human and mouse. While we find that cis-trans compensation is common within promoters, we do not see evidence of widespread cis-trans compensation at enhancers. Cis-trans compensation is inversely correlated with enhancer redundancy, suggesting that such compensation may often occur across multiple enhancers. CONCLUSIONS Our results highlight differences in the mode of evolution between promoters and enhancers in complex mammalian genomes and indicate that studying the evolution of individual regulatory elements is pivotal to understand the tempo and mode of gene expression evolution.
Collapse
Affiliation(s)
- Kaia Mattioli
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Winona Oliveros
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Chiara Gerhardinger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Daniel Andergassen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Philipp G Maass
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - John L Rinn
- Department of Biochemistry, University of Colorado, BioFrontiers Institute, Boulder, CO, 80301, USA
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain.
| |
Collapse
|
33
|
Abstract
It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms' differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| |
Collapse
|
34
|
Haas M, Himmelbach A, Mascher M. The contribution of cis- and trans-acting variants to gene regulation in wild and domesticated barley under cold stress and control conditions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2573-2584. [PMID: 31989179 PMCID: PMC7210754 DOI: 10.1093/jxb/eraa036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/27/2020] [Indexed: 05/16/2023]
Abstract
Barley, like other crops, has experienced a series of genetic changes that have impacted its architecture and growth habit to suit the needs of humans, termed the domestication syndrome. Domestication also resulted in a concomitant bottleneck that reduced sequence diversity in genes and regulatory regions. Little is known about regulatory changes resulting from domestication in barley. We used RNA sequencing to examine allele-specific expression in hybrids between wild and domesticated barley. Our results show that most genes have conserved regulation. In contrast to studies of allele-specific expression in interspecific hybrids, we find almost a complete absence of trans effects. We also find that cis regulation is largely stable in response to short-term cold stress. Our study has practical implications for crop improvement using wild relatives. Genes regulated in cis are more likely to be expressed in a new genetic background at the same level as in their native background.
Collapse
Affiliation(s)
- Matthew Haas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
- Correspondence: or Present address: University of Minnesota, Department of Agronomy and Plant Genetics, Saint Paul, MN 55108, USA
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
- Correspondence: or Present address: University of Minnesota, Department of Agronomy and Plant Genetics, Saint Paul, MN 55108, USA
| |
Collapse
|
35
|
Foria S, Copetti D, Eisenmann B, Magris G, Vidotto M, Scalabrin S, Testolin R, Cipriani G, Wiedemann-Merdinoglu S, Bogs J, Di Gaspero G, Morgante M. Gene duplication and transposition of mobile elements drive evolution of the Rpv3 resistance locus in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 99:895-909. [PMID: 31571285 DOI: 10.1111/tpj.14370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/19/2019] [Accepted: 03/19/2019] [Indexed: 05/17/2023]
Abstract
A wild grape haplotype (Rpv3-1) confers resistance to Plasmopara viticola. We mapped the causal factor for resistance to an interval containing a TIR-NB-LRR (TNL) gene pair that originated 1.6-2.6 million years ago by a tandem segmental duplication. Transient coexpression of the TNL pair in Vitis vinifera leaves activated pathogen-induced necrosis and reduced sporulation compared with control leaves. Even though transcripts of the TNL pair from the wild haplotype appear to be partially subject to nonsense-mediated mRNA decay, mature mRNA levels in a homozygous resistant genotype were individually higher than the mRNA trace levels observed for the orthologous single-copy TNL in sensitive genotypes. Allelic expression imbalance in a resistant heterozygote confirmed that cis-acting regulatory variation promotes expression in the wild haplotype. The movement of transposable elements had a major impact on the generation of haplotype diversity, altering the DNA context around similar TNL coding sequences and the GC-content in their proximal 5'-intergenic regions. The wild and domesticated haplotypes also diverged in conserved single-copy intergenic DNA, but the highest divergence was observed in intraspecific and not in interspecific comparisons. In this case, introgression breeding did not transgress the genetic boundaries of the domesticated species, because haplotypes present in modern varieties sometimes predate speciation events between wild and cultivated species.
Collapse
Affiliation(s)
- Serena Foria
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Dario Copetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Birgit Eisenmann
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Breitenweg 71, 67435, Neustadt an der Weinstraße, Germany
- Centre for Organismal Studies Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
| | - Gabriele Magris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Michele Vidotto
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Simone Scalabrin
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | | | - Jochen Bogs
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Breitenweg 71, 67435, Neustadt an der Weinstraße, Germany
- Technische Hochschule Bingen, 55411, Bingen am Rhein, Germany
| | | | - Michele Morgante
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| |
Collapse
|
36
|
Buchberger E, Reis M, Lu TH, Posnien N. Cloudy with a Chance of Insights: Context Dependent Gene Regulation and Implications for Evolutionary Studies. Genes (Basel) 2019; 10:E492. [PMID: 31261769 PMCID: PMC6678813 DOI: 10.3390/genes10070492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
Research in various fields of evolutionary biology has shown that divergence in gene expression is a key driver for phenotypic evolution. An exceptional contribution of cis-regulatory divergence has been found to contribute to morphological diversification. In the light of these findings, the analysis of genome-wide expression data has become one of the central tools to link genotype and phenotype information on a more mechanistic level. However, in many studies, especially if general conclusions are drawn from such data, a key feature of gene regulation is often neglected. With our article, we want to raise awareness that gene regulation and thus gene expression is highly context dependent. Genes show tissue- and stage-specific expression. We argue that the regulatory context must be considered in comparative expression studies.
Collapse
Affiliation(s)
- Elisa Buchberger
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | - Micael Reis
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | - Ting-Hsuan Lu
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
- International Max Planck Research School for Genome Science, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Nico Posnien
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
37
|
Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. Proc Natl Acad Sci U S A 2019; 116:11851-11856. [PMID: 31127049 DOI: 10.1073/pnas.1819657116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
High-altitude environments present strong stresses for living organisms, which have driven striking phenotypic and genetic adaptations. While previous studies have revealed multiple genetic adaptations in high-altitude species, how evolutionary history (i.e., phylogenetic background) contributes to similarity in genetic adaptations to high-altitude environments is largely unknown, in particular in a group of birds. We explored this in 3 high-altitude passerine birds from the Qinghai-Tibet Plateau and their low-altitude relatives in lowland eastern China. We generated transcriptomic data for 5 tissues across these species and compared sequence changes and expression shifts between high- and low-altitude pairs. Sequence comparison revealed that similarity in all 3 high-altitude species was high for genes under positive selection (218 genes) but low in amino acid substitutions (only 4 genes sharing identical amino acid substitutions). Expression profiles for all genes identified a tissue-specific expression pattern (i.e., all species clustered by tissue). By contrast, an altitude-related pattern was observed in genes differentially expressed between all 3 species pairs and genes associated with altitude, suggesting that the high-altitude environment may drive similar expression shifts in the 3 high-altitude species. Gene expression level, gene connectivity, and the interactions of these 2 factors with altitude were correlated with evolutionary rates. Our results provide evidence for how gene sequence changes and expression shifts work in a concerted way in a group of high-altitude birds, leading to similar evolution routes in response to high-altitude environmental stresses.
Collapse
|
38
|
Hajheidari M, Koncz C, Bucher M. Chromatin Evolution-Key Innovations Underpinning Morphological Complexity. FRONTIERS IN PLANT SCIENCE 2019; 10:454. [PMID: 31031789 PMCID: PMC6474313 DOI: 10.3389/fpls.2019.00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
The history of life consists of a series of major evolutionary transitions, including emergence and radiation of complex multicellular eukaryotes from unicellular ancestors. The cells of multicellular organisms, with few exceptions, contain the same genome, however, their organs are composed of a variety of cell types that differ in both structure and function. This variation is largely due to the transcriptional activity of different sets of genes in different cell types. This indicates that complex transcriptional regulation played a key role in the evolution of complexity in eukaryotes. In this review, we summarize how gene duplication and subsequent evolutionary innovations, including the structural evolution of nucleosomes and chromatin-related factors, contributed to the complexity of the transcriptional system and provided a basis for morphological diversity.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Biological Research Center, Institute of Plant Biology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Shi J, Wang X, Zhu H, Jiang H, Wang D, Nesvizhskii A, Zhu HJ. Determining Allele-Specific Protein Expression (ASPE) Using a Novel Quantitative Concatamer Based Proteomics Method. J Proteome Res 2018; 17:3606-3612. [PMID: 30141943 DOI: 10.1021/acs.jproteome.8b00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Measuring allele-specific expression (ASE) is a powerful approach for identifying cis-regulatory genetic variants. Here, we developed a novel targeted proteomics method for the quantification of allele-specific protein expression (ASPE) based on scheduled parallel reaction monitoring (PRM) with a heavy stable isotope-labeled quantitative concatamer (QconCAT) internal protein standard. This strategy was applied to the determination of the ASPE of UGT2B15 in human livers using the common UGT2B15 nonsynonymous variant rs1902023 (i.e., Y85D) as the marker to differentiate expressions from the two alleles. The QconCAT standard contains both the wild-type tryptic peptide and the Y85D mutant peptide at a ratio of 1:1 to ensure accurate measurement of the ASPE of UGT2B15. The results from 18 UGT2B15 Y85D heterozygotes revealed that the ratios between the wild-type Y allele and the mutant D allele varied from 0.60 to 1.46, indicating the presence of cis-regulatory variants. In addition, we observed no significant correlations between the ASPE and mRNA ASE of UGT2B15, suggesting the involvement of different cis-acting variants in regulating the transcription and translation processes of the gene. This novel ASPE approach provides a powerful tool for capturing cis-genetic variants involved in post-transcription processes, an important yet understudied area of research.
Collapse
Affiliation(s)
- Jian Shi
- Department of Clinical Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xinwen Wang
- Department of Clinical Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Huaijun Zhu
- Department of Clinical Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Department of Pharmacy , Drum Tower Hospital Affiliated to Medical School of Nanjing University , Nanjing , Jiangsu , China
| | | | - Danxin Wang
- Department of Cancer Biology and Genetics, Center for Pharmacogenomics, School of Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | | | - Hao-Jie Zhu
- Department of Clinical Pharmacy , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
40
|
Gene Regulatory Variation in Drosophila melanogaster Renal Tissue. Genetics 2018; 210:287-301. [PMID: 29976765 DOI: 10.1534/genetics.118.301073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic variation influencing levels of gene expression is abundant in natural populations, and may exert its effects through complex mechanisms that depend on an organism's genetic background and the tissue in which expression is measured. We investigated natural variation in gene expression in the Malpighian tubules of three inbred Drosophila melanogaster strains and their F1 hybrids. One of the strains was from a population in the species' ancestral range (Zambia), while the other two were from a more recently derived population (Sweden). Although closely related, the two Swedish strains differed greatly in terms of their expression inheritance when hybridized with the Zambian strain, with one Swedish strain showing a large excess of genes with recessive expression inheritance, as well as a large number of genes with overdominant inheritance. Although most expression variation could be attributed to trans-regulation, there were ∼200 genes that showed allele-specific expression differences in each of the between-population hybrids, indicating that cis-regulation contributes as well. The cis-regulated genes were enriched with cytochrome P450 genes, and the upstream regions of six of these genes were incorporated into transgenic reporter gene constructs to test their effects on expression. Differential expression was observed for five of the six reporter genes in the Malpighian tubule, suggesting that a large proportion of cis-regulatory variation lies directly upstream of the affected gene. In most cases, the differential expression was specific to the Malpighian tubule or greater in this tissue than in the rest of the body, highlighting the importance of single-tissue studies of gene expression variation.
Collapse
|
41
|
Signor SA, Nuzhdin SV. The Evolution of Gene Expression in cis and trans. Trends Genet 2018; 34:532-544. [PMID: 29680748 PMCID: PMC6094946 DOI: 10.1016/j.tig.2018.03.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
There is abundant variation in gene expression between individuals, populations, and species. The evolution of gene regulation and expression within and between species is thought to frequently contribute to adaptation. Yet considerable evidence suggests that the primary evolutionary force acting on variation in gene expression is stabilizing selection. We review here the results of recent studies characterizing the evolution of gene expression occurring in cis (via linked polymorphisms) or in trans (through diffusible products of other genes) and their contribution to adaptation and response to the environment. We review the evidence for buffering of variation in gene expression at the level of both transcription and translation, and the possible mechanisms for this buffering. Lastly, we summarize unresolved questions about the evolution of gene regulation.
Collapse
Affiliation(s)
- Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
42
|
Hart JC, Ellis NA, Eisen MB, Miller CT. Convergent evolution of gene expression in two high-toothed stickleback populations. PLoS Genet 2018; 14:e1007443. [PMID: 29897962 PMCID: PMC6016950 DOI: 10.1371/journal.pgen.1007443] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/25/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022] Open
Abstract
Changes in developmental gene regulatory networks enable evolved changes in morphology. These changes can be in cis regulatory elements that act in an allele-specific manner, or changes to the overall trans regulatory environment that interacts with cis regulatory sequences. Here we address several questions about the evolution of gene expression accompanying a convergently evolved constructive morphological trait, increases in tooth number in two independently derived freshwater populations of threespine stickleback fish (Gasterosteus aculeatus). Are convergently evolved cis and/or trans changes in gene expression associated with convergently evolved morphological evolution? Do cis or trans regulatory changes contribute more to gene expression changes accompanying an evolved morphological gain trait? Transcriptome data from dental tissue of ancestral low-toothed and two independently derived high-toothed stickleback populations revealed significantly shared gene expression changes that have convergently evolved in the two high-toothed populations. Comparing cis and trans regulatory changes using phased gene expression data from F1 hybrids, we found that trans regulatory changes were predominant and more likely to be shared among both high-toothed populations. In contrast, while cis regulatory changes have evolved in both high-toothed populations, overall these changes were distinct and not shared among high-toothed populations. Together these data suggest that a convergently evolved trait can occur through genetically distinct regulatory changes that converge on similar trans regulatory environments.
Collapse
Affiliation(s)
- James C. Hart
- Department of Molecular and Cell Biology, University of California-Berkeley, CA, United States of America
| | - Nicholas A. Ellis
- Department of Molecular and Cell Biology, University of California-Berkeley, CA, United States of America
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California-Berkeley, CA, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, CA, United States of America
| | - Craig T. Miller
- Department of Molecular and Cell Biology, University of California-Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|