1
|
Graham EL, Fernandez J, Gandhi S, Choudhry I, Kellam N, LaRocque JR. The impact of developmental stage, tissue type, and sex on DNA double-strand break repair in Drosophila melanogaster. PLoS Genet 2024; 20:e1011250. [PMID: 38683763 PMCID: PMC11057719 DOI: 10.1371/journal.pgen.1011250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Accurate repair of DNA double-strand breaks (DSBs) is essential for the maintenance of genome integrity, as failure to repair DSBs can result in cell death. The cell has evolved two main mechanisms for DSB repair: non-homologous end-joining (NHEJ) and homology-directed repair (HDR), which includes single-strand annealing (SSA) and homologous recombination (HR). While certain factors like age and state of the chromatin are known to influence DSB repair pathway choice, the roles of developmental stage, tissue type, and sex have yet to be elucidated in multicellular organisms. To examine the influence of these factors, DSB repair in various embryonic developmental stages, larva, and adult tissues in Drosophila melanogaster was analyzed through molecular analysis of the DR-white assay using Tracking across Indels by DEcomposition (TIDE). The proportion of HR repair was highest in tissues that maintain the canonical (G1/S/G2/M) cell cycle and suppressed in both terminally differentiated and polyploid tissues. To determine the impact of sex on repair pathway choice, repair in different tissues in both males and females was analyzed. When molecularly examining tissues containing mostly somatic cells, males and females demonstrated similar proportions of HR and NHEJ. However, when DSB repair was analyzed in male and female premeiotic germline cells utilizing phenotypic analysis of the DR-white assay, there was a significant decrease in HR in females compared to males. This study describes the impact of development, tissue-specific cycling profile, and, in some cases, sex on DSB repair outcomes, underscoring the complexity of repair in multicellular organisms.
Collapse
Affiliation(s)
- Elizabeth L. Graham
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Joel Fernandez
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Shagun Gandhi
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Iqra Choudhry
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Natalia Kellam
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Jeannine R. LaRocque
- Department of Human Science, School of Health, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| |
Collapse
|
2
|
Gombás BG, Villányi Z. 1,6-Hexanediol Is Inducing Homologous Recombination by Releasing BLM from Assemblysomes in Drosophila melanogaster. Int J Mol Sci 2024; 25:1611. [PMID: 38338890 PMCID: PMC10855627 DOI: 10.3390/ijms25031611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
We recently demonstrated that 1,6-hexanediol inhibits the formation of assemblysomes. These membraneless cell organelles have important roles in co-translational protein complex assembly and also store halfway translated DNA damage response proteins for a timely stress response. Recognizing the therapeutic potential of 1,6-hexanediol in dismantling assemblysomes likely to be involved in chemo- or radiotherapy resistance of tumor cells, we initiated an investigation into the properties of 1,6-hexanediol. Our particular interest was to determine if this compound induces DNA double-strand breaks by releasing the BLM helicase. Its yeast ortholog Sgs1 was confirmed to be a component of assemblysomes. The BLM helicase induces DNA damage when overexpressed due to the DNA double-strand breaks it generates during its normal function to repair DNA damage sites. It is evident that storing Sgs1 helicase in assemblysomes is crucial to express the full-length functional protein only in the event of DNA damage. Alternatively, if we dissolve assemblysomes using 1,6-hexanediol, ribosome-nascent chain complexes might become targets of ribosome quality control. We explored these possibilities and found, through the Drosophila wing-spot test assay, that 1,6-hexanediol induces DNA double-strand breaks. Lethality connected to recombination events following 1,6-hexanediol treatment can be mitigated by inducing DNA double-strand breaks with X-ray. Additionally, we confirmed that SMC5 recruits DmBLM to DNA damage sites, as knocking it down abolishes the rescue effect of DNA double-strand breaks on 1,6-hexanediol-induced lethality in Drosophila melanogaster.
Collapse
Affiliation(s)
| | - Zoltán Villányi
- Department of Biochemistry and Molecular Biology, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Rawal CC, Butova NL, Mitra A, Chiolo I. An Expanding Toolkit for Heterochromatin Repair Studies. Genes (Basel) 2022; 13:genes13030529. [PMID: 35328082 PMCID: PMC8955653 DOI: 10.3390/genes13030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Pericentromeric heterochromatin is mostly composed of repetitive DNA sequences prone to aberrant recombination. Cells have developed highly specialized mechanisms to enable ‘safe’ homologous recombination (HR) repair while preventing aberrant recombination in this domain. Understanding heterochromatin repair responses is essential to understanding the critical mechanisms responsible for genome integrity and tumor suppression. Here, we review the tools, approaches, and methods currently available to investigate double-strand break (DSB) repair in pericentromeric regions, and also suggest how technologies recently developed for euchromatin repair studies can be adapted to characterize responses in heterochromatin. With this ever-growing toolkit, we are witnessing exciting progress in our understanding of how the ‘dark matter’ of the genome is repaired, greatly improving our understanding of genome stability mechanisms.
Collapse
|
4
|
Wang S, Li Y, Zhong L, Wu K, Zhang R, Kang T, Wu S, Wu Y. Efficient gene editing through an intronic selection marker in cells. Cell Mol Life Sci 2022; 79:111. [PMID: 35098362 PMCID: PMC8801403 DOI: 10.1007/s00018-022-04152-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Gene editing technology has provided researchers with the ability to modify genome sequences in almost all eukaryotes. Gene-edited cell lines are being used with increasing frequency in both bench research and targeted therapy. However, despite the great importance and universality of gene editing, the efficiency of homology-directed DNA repair (HDR) is too low, and base editors (BEs) cannot accomplish desired indel editing tasks. RESULTS AND DISCUSSION Our group has improved HDR gene editing technology to indicate DNA variation with an independent selection marker using an HDR strategy, which we named Gene Editing through an Intronic Selection marker (GEIS). GEIS uses a simple process to avoid nonhomologous end joining (NHEJ)-mediated false-positive effects and achieves a DsRed positive rate as high as 87.5% after two rounds of fluorescence-activated cell sorter (FACS) selection without disturbing endogenous gene splicing and expression. We re-examined the correlation of the conversion tract and efficiency, and our data suggest that GEIS has the potential to edit approximately 97% of gene editing targets in human and mouse cells. The results of further comprehensive analysis suggest that the strategy may be useful for introducing multiple DNA variations in cells.
Collapse
Affiliation(s)
- Shang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Yuqing Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, 515000, China
| | - Li Zhong
- Center of Digestive Diseases, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Kai Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China.
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, 515000, China.
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen, 518000, China.
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Yannuzzi I, Butler MA, Fernandez J, LaRocque JR. The Role of Drosophila CtIP in Homology-Directed Repair of DNA Double-Strand Breaks. Genes (Basel) 2021; 12:genes12091430. [PMID: 34573412 PMCID: PMC8468788 DOI: 10.3390/genes12091430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) are a particularly genotoxic type of DNA damage that can result in chromosomal aberrations. Thus, proper repair of DSBs is essential to maintaining genome integrity. DSBs can be repaired by non-homologous end joining (NHEJ), where ends are processed before joining through ligation. Alternatively, DSBs can be repaired through homology-directed repair, either by homologous recombination (HR) or single-strand annealing (SSA). Both types of homology-directed repair are initiated by DNA end resection. In cultured human cells, the protein CtIP has been shown to play a role in DNA end resection through its interactions with CDK, BRCA1, DNA2, and the MRN complex. To elucidate the role of CtIP in a multicellular context, CRISPR/Cas9 genome editing was used to create a DmCtIPΔ allele in Drosophila melanogaster. Using the DSB repair reporter assay direct repeat of white (DR-white), a two-fold decrease in HR in DmCtIPΔ/Δ mutants was observed when compared to heterozygous controls. However, analysis of HR gene conversion tracts (GCTs) suggests DmCtIP plays a minimal role in determining GCT length. To assess the function of DmCtIP on both short (~550 bp) and long (~3.6 kb) end resection, modified homology-directed SSA repair assays were implemented, resulting in a two-fold decrease in SSA repair in both short and extensive end resection requirements in the DmCtIPΔ/Δ mutants compared to heterozygote controls. Through these analyses, we affirmed the importance of end resection on DSB repair pathway choice in multicellular systems, described the function of DmCtIP in short and extensive DNA end resection, and determined the impact of end resection on GCT length during HR.
Collapse
Affiliation(s)
- Ian Yannuzzi
- Biology Department, Georgetown College, Georgetown University, Washington, DC 20057, USA;
| | - Margaret A. Butler
- Georgetown University Medical Center, Department of Human Science, Georgetown University, Washington, DC 20057, USA; (M.A.B.); (J.F.)
| | - Joel Fernandez
- Georgetown University Medical Center, Department of Human Science, Georgetown University, Washington, DC 20057, USA; (M.A.B.); (J.F.)
| | - Jeannine R. LaRocque
- Georgetown University Medical Center, Department of Human Science, Georgetown University, Washington, DC 20057, USA; (M.A.B.); (J.F.)
- Correspondence:
| |
Collapse
|
6
|
Kryczka J, Kryczka J, Czarnecka-Chrebelska KH, Brzeziańska-Lasota E. Molecular Mechanisms of Chemoresistance Induced by Cisplatin in NSCLC Cancer Therapy. Int J Mol Sci 2021; 22:8885. [PMID: 34445588 PMCID: PMC8396273 DOI: 10.3390/ijms22168885] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells utilise several mechanisms to increase their survival and progression as well as their resistance to anticancer therapy: deregulation of growth regulatory pathways by acquiring grow factor independence, immune system suppression, reducing the expression of antigens activating T lymphocyte cells (mimicry), induction of anti-apoptotic signals to counter the action of drugs, activation of several DNA repair mechanisms and driving the active efflux of drugs from the cell cytoplasm, and epigenetic regulation by microRNAs (miRNAs). Because it is commonly diagnosed late, lung cancer remains a major malignancy with a low five-year survival rate; when diagnosed, the cancer is often highly advanced, and the cancer cells may have acquired drug resistance. This review summarises the main mechanisms involved in cisplatin resistance and interactions between cisplatin-resistant cancer cells and the tumour microenvironment. It also analyses changes in the gene expression profile of cisplatin sensitive vs. cisplatin-resistant non-small cell lung cancer (NSCLC) cellular model using the GSE108214 Gene Expression Omnibus database. It describes a protein-protein interaction network that indicates highly dysregulated TP53, MDM2, and CDKN1A genes as they encode the top networking proteins that may be involved in cisplatin tolerance, these all being upregulated in cisplatin-resistant cells. Furthermore, it illustrates the multifactorial nature of cisplatin resistance by examining the diversity of dysregulated pathways present in cisplatin-resistant NSCLC cells based on KEGG pathway analysis.
Collapse
Affiliation(s)
- Jolanta Kryczka
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (K.H.C.-C.); (E.B.-L.)
| | - Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | | | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (K.H.C.-C.); (E.B.-L.)
| |
Collapse
|
7
|
Wilde JJ, Aida T, Del Rosario RCH, Kaiser T, Qi P, Wienisch M, Zhang Q, Colvin S, Feng G. Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair. Cell 2021; 184:3267-3280.e18. [PMID: 34043941 PMCID: PMC8240950 DOI: 10.1016/j.cell.2021.04.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 03/03/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Searching for factors to improve knockin efficiency for therapeutic applications, biotechnology, and generation of non-human primate models of disease, we found that the strand exchange protein RAD51 can significantly increase Cas9-mediated homozygous knockin in mouse embryos through an interhomolog repair (IHR) mechanism. IHR is a hallmark of meiosis but only occurs at low frequencies in somatic cells, and its occurrence in zygotes is controversial. Using multiple approaches, we provide evidence for an endogenous IHR mechanism in the early embryo that can be enhanced by RAD51. This process can be harnessed to generate homozygotes from wild-type zygotes using exogenous donors and to convert heterozygous alleles into homozygous alleles without exogenous templates. Furthermore, we identify additional IHR-promoting factors and describe features of IHR events. Together, our findings show conclusive evidence for IHR in mouse embryos and describe an efficient method for enhanced gene conversion.
Collapse
Affiliation(s)
- Jonathan J Wilde
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Tomomi Aida
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Ricardo C H Del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tobias Kaiser
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Peimin Qi
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Martin Wienisch
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Qiangge Zhang
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Steven Colvin
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Guoping Feng
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Li Z, Marcel N, Devkota S, Auradkar A, Hedrick SM, Gantz VM, Bier E. CopyCatchers are versatile active genetic elements that detect and quantify inter-homolog somatic gene conversion. Nat Commun 2021; 12:2625. [PMID: 33976171 PMCID: PMC8113449 DOI: 10.1038/s41467-021-22927-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/01/2021] [Indexed: 11/08/2022] Open
Abstract
CRISPR-based active genetic elements, or gene-drives, copied via homology-directed repair (HDR) in the germline, are transmitted to progeny at super-Mendelian frequencies. Active genetic elements also can generate widespread somatic mutations, but the genetic basis for such phenotypes remains uncertain. It is generally assumed that such somatic mutations are generated by non-homologous end-joining (NHEJ), the predominant double stranded break repair pathway active in somatic cells. Here, we develop CopyCatcher systems in Drosophila to detect and quantify somatic gene conversion (SGC) events. CopyCatchers inserted into two independent genetic loci reveal unexpectedly high rates of SGC in the Drosophila eye and thoracic epidermis. Focused RNAi-based genetic screens identify several unanticipated loci altering SGC efficiency, one of which (c-MYC), when downregulated, promotes SGC mediated by both plasmid and homologous chromosome-templates in human HEK293T cells. Collectively, these studies suggest that CopyCatchers can serve as effective discovery platforms to inform potential gene therapy strategies.
Collapse
Affiliation(s)
- Zhiqian Li
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Nimi Marcel
- Section of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sushil Devkota
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Stephen M Hedrick
- Section of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
- Tata Institute for Genetics and Society-UCSD, La Jolla, CA, USA.
| |
Collapse
|
9
|
Toraason E, Horacek A, Clark C, Glover ML, Adler VL, Premkumar T, Salagean A, Cole F, Libuda DE. Meiotic DNA break repair can utilize homolog-independent chromatid templates in C. elegans. Curr Biol 2021; 31:1508-1514.e5. [PMID: 33740427 DOI: 10.1016/j.cub.2021.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
During meiosis, the maintenance of genome integrity is critical for generating viable haploid gametes.1 In meiotic prophase I, double-strand DNA breaks (DSBs) are induced and a subset of these DSBs are repaired as interhomolog crossovers to ensure proper chromosome segregation. DSBs not resolved as crossovers with the homolog must be repaired by other pathways to ensure genome integrity.2 To determine if alternative repair templates can be engaged for meiotic DSB repair during oogenesis, we developed an assay to detect sister and/or intra-chromatid repair events at a defined DSB site during Caenorhabditis elegans meiosis. Using this assay, we directly demonstrate that the sister chromatid or the same DNA molecule can be engaged as a meiotic repair template for both crossover and noncrossover recombination, with noncrossover events being the predominant recombination outcome. We additionally find that the sister or intra-chromatid substrate is available as a recombination partner for DSBs induced throughout meiotic prophase I, including late prophase when the homolog is unavailable. Analysis of noncrossover conversion tract sequences reveals that DSBs are processed similarly throughout prophase I. We further present data indicating that the XPF-1 nuclease functions in late prophase to promote sister or intra-chromatid repair at steps of recombination following joint molecule processing. Despite its function in sister or intra-chromatid repair, we find that xpf-1 mutants do not exhibit severe defects in progeny viability following exposure to ionizing radiation. Overall, we propose that C. elegans XPF-1 may assist as an intersister or intrachromatid resolvase only in late prophase I.
Collapse
Affiliation(s)
- Erik Toraason
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Anna Horacek
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Cordell Clark
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Marissa L Glover
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Victoria L Adler
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Tolkappiyan Premkumar
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Alina Salagean
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA
| | - Francesca Cole
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Boulevard, Eugene, OR 97403, USA.
| |
Collapse
|
10
|
Cox RL, Hofley CM, Tatapudy P, Patel RK, Dayani Y, Betcher M, LaRocque JR. Functional conservation of RecQ helicase BLM between humans and Drosophila melanogaster. Sci Rep 2019; 9:17527. [PMID: 31772289 PMCID: PMC6879748 DOI: 10.1038/s41598-019-54101-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/09/2019] [Indexed: 12/02/2022] Open
Abstract
RecQ helicases are a family of proteins involved in maintaining genome integrity with functions in DNA repair, recombination, and replication. The human RecQ helicase family consists of five helicases: BLM, WRN, RECQL, RECQL4, and RECQL5. Inherited mutations in RecQ helicases result in Bloom Syndrome (BLM mutation), Werner Syndrome (WRN mutation), Rothmund-Thomson Syndrome (RECQL4 mutation), and other genetic diseases, including cancer. The RecQ helicase family is evolutionarily conserved, as Drosophila melanogaster have three family members: DmBlm, DmRecQL4, and DmRecQL5 and DmWRNexo, which contains a conserved exonuclease domain. DmBlm has functional similarities to human BLM (hBLM) as mutants demonstrate increased sensitivity to ionizing radiation (IR) and a decrease in DNA double-strand break (DSB) repair. To determine the extent of functional conservation of RecQ helicases, hBLM was expressed in Drosophila using the GAL4 > UASp system to determine if GAL4 > UASp::hBLM can rescue DmBlm mutant sensitivity to IR. hBLM was able to rescue female DmBlm mutant sensitivity to IR, supporting functional conservation. This functional conservation is specific to BLM, as human GAL4 > UASp::RECQL was not able to rescue DmBlm mutant sensitivity to IR. These results demonstrate the conserved role of BLM in maintaining the genome while reinforcing the applicability of using Drosophila as a model system to study Bloom Syndrome.
Collapse
Affiliation(s)
- Rebecca L Cox
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Carolyn M Hofley
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Pallavi Tatapudy
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Romil K Patel
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Yaron Dayani
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Madison Betcher
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Jeannine R LaRocque
- Department of Human Science, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
11
|
Chromosome Preference During Homologous Recombination Repair of DNA Double-Strand Breaks in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:3773-3780. [PMID: 31519746 PMCID: PMC6829126 DOI: 10.1534/g3.119.400607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks (DSBs) are especially toxic DNA lesions that, if left unrepaired, can lead to wide-ranging genomic instability. Of the pathways available to repair DSBs, the most accurate is homologous recombination (HR), where a homologous sequence is used as a donor template to restore genetic information at the break site. While much of the biochemical aspects of HR repair have been characterized, how the repair machinery locates and discriminates between potential homologous donor templates throughout the genome remains elusive. We use Drosophila melanogaster to investigate whether there is a preference between intrachromosomal and interhomolog donor sequences in mitotically dividing cells. Our results demonstrate that, although interhomolog HR is possible and frequent if another donor template is not available, intrachromosomal donor templates are highly preferred. This is true even if the interhomolog donor template is less diverged than the intrachromosomal donor template. Thus, despite the stringent requirements for homology, the chromosomal location of the donor template plays a more significant role in donor template choice.
Collapse
|
12
|
Bian WP, Chen YL, Luo JJ, Wang C, Xie SL, Pei DS. Knock-In Strategy for Editing Human and Zebrafish Mitochondrial DNA Using Mito-CRISPR/Cas9 System. ACS Synth Biol 2019; 8:621-632. [PMID: 30955321 DOI: 10.1021/acssynbio.8b00411] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mitochondria DNA (mtDNA) editing tool, zinc finger nucleases (ZFNs), transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system, is a promising approach for the treatment of mtDNA diseases by eliminating mutant mitochondrial genomes. However, there have been no reports of repairing the mutant mtDNA with homologous recombination strategy to date. Here, we show a mito-CRISPR/Cas9 system that mito-Cas9 protein can specifically target mtDNA and reduce mtDNA copy number in both human cells and zebrafish. An exogenous single-stranded DNA with short homologous arm was knocked into the targeting loci accurately, and this mutagenesis could be steadily transmitted to F1 generation of zebrafish. Moreover, we found some major factors involved in nuclear DNA repair were upregulated significantly by the mito-CRISPR/Cas9 system. Taken together, our data suggested that the mito-CRISPR/Cas9 system could be a useful method to edit mtDNA by knock-in strategy, providing a potential therapy for the treatment of inherited mitochondrial diseases.
Collapse
Affiliation(s)
- Wan-Ping Bian
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yan-Ling Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Juan-Juan Luo
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Chao Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shao-Lin Xie
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
13
|
Hecox-Lea BJ, Mark Welch DB. Evolutionary diversity and novelty of DNA repair genes in asexual Bdelloid rotifers. BMC Evol Biol 2018; 18:177. [PMID: 30486781 PMCID: PMC6264785 DOI: 10.1186/s12862-018-1288-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/02/2018] [Indexed: 11/26/2022] Open
Abstract
Background Bdelloid rotifers are the oldest, most diverse and successful animal taxon for which males, hermaphrodites, and traditional meiosis are unknown. Their degenerate tetraploid genome, with 2–4 copies of most loci, includes thousands of genes acquired from all domains of life by horizontal transfer. Many bdelloid species thrive in ephemerally aquatic habitats by surviving desiccation at any life stage with no loss of fecundity or lifespan. Their unique genomic diversity and the intense selective pressure of desiccation provide an exceptional opportunity to study the evolution of diversity and novelty in genes involved in DNA repair. Results We used genomic data and RNA-Seq of the desiccation process in the bdelloid Adineta vaga to characterize DNA damage reversal, translesion synthesis, and the major DNA repair pathways: base, nucleotide, and alternate excision repair, mismatch repair (MMR), and double strand break repair by homologous recombination (HR) and classical non-homologous end joining (NHEJ). We identify multiple horizontally transferred DNA damage response genes otherwise unknown in animals (AlkD, Fpg, LigK UVDE), and the presence of genes often considered vertebrate specific, particularly in the NHEJ complex and X family polymerases. While 75–100% of genes involved in MMR and HR are present in 0–2 copies, genes involved in NHEJ, which are present in only a single copy in nearly all other animals, are retained in 3–8 copies. We present structural predictions and expression evidence of neo- or sub-functionalization of multiple copy genes involved in NHEJ and other repair processes. Conclusion The horizontally-acquired genes and duplicated genes in BER and NHEJ suggest resilience to oxidative damage is conferred in part by increased DNA damage recognition and efficient end repair capabilities. The pattern of gene loss and retention in MMR and HR may facilitate recombination and gene conversion between divergent sequences, thus providing at least some of the benefits of sex. The unique retention and divergence of duplicates genes in NHEJ may be facilitated by the lack of efficient selection in the absence of meiotic recombination and independent assortment, and may contribute to the evolutionary success of bdelloids. Electronic supplementary material The online version of this article (10.1186/s12862-018-1288-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bette J Hecox-Lea
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Biology, Northeastern University, Boston, MA, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
14
|
Li S, Wehrenberg B, Waldman BC, Waldman AS. Mismatch tolerance during homologous recombination in mammalian cells. DNA Repair (Amst) 2018; 70:25-36. [PMID: 30103093 DOI: 10.1016/j.dnarep.2018.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
We investigated the homology dependency of recombination in thymidine kinase (tk)-deficient mouse fibroblasts. Cells were transfected with DNA constructs harboring a herpes tk gene (the "recipient") rendered non-functional by an oligonucleotide containing the recognition site for endonuclease I-SceI. Constructs also contained a "donor" tk sequence that could restore function to the recipient gene through spontaneous gene conversion or via repair of a double-strand break (DSB) at the I-SceI site. Recombination events were recoverable by selection for tk-positive clones. Three different donors were used containing 16, 25, or 33 mismatches relative to the recipient. The mismatches were clustered, forming an interval of "homeology" relative to the recipient sequences. We show that when homeologous sequences were surrounded by high homology, mismatches were frequently included in gene conversion events. Notably, conversion tracts from spontaneous recombination included either all or none of the mismatches, suggesting that recombination must begin and end in high homology. This requirement was relaxed for events that occurred near an induced DSB, as a significant number of these latter conversion tracts had one end positioned within homeology. Knock-down of mismatch repair showed that incorporation of mismatches into gene conversion tracts can involve repair of mismatched heteroduplex intermediates, indicating that mismatch repair does not necessarily impede homeologous genetic exchange. Our results illustrate (1) genetic exchange between homeologous sequences in a mammalian genome is enabled by nearby homology, (2) proximity to a DSB impacts the homology requirements for where genetic exchange may begin and end, and (3) mismatch correction and previously documented anti-recombination activity are separable functions of the mismatch repair machinery in mammalian cells.
Collapse
Affiliation(s)
- Shen Li
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Building, 700 Sumter Street, Columbia, South Carolina, 29208, USA
| | - Bryan Wehrenberg
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Building, 700 Sumter Street, Columbia, South Carolina, 29208, USA
| | - Barbara C Waldman
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Building, 700 Sumter Street, Columbia, South Carolina, 29208, USA
| | - Alan S Waldman
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Building, 700 Sumter Street, Columbia, South Carolina, 29208, USA.
| |
Collapse
|