1
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. Evolution 2025; 79:342-363. [PMID: 39565285 PMCID: PMC11879154 DOI: 10.1093/evolut/qpae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
2
|
McCauley MA, Milligan WR, Lin J, Penley MJ, Quinn LM, Morran LT. An empirical test of Baker's law: dispersal favors increased rates of self-fertilization. Evolution 2025; 79:432-441. [PMID: 39660484 DOI: 10.1093/evolut/qpae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Baker's law is the observation that recently dispersed populations are more likely to be self-fertilizing than populations at the range core. The explanatory hypothesis is that dispersal favors self-fertilization due to reproductive assurance. Caenorhabditis elegans nematodes reproduce via either self-fertilization or outcrossing and frequently disperse in small numbers to new bacterial food sources. While C. elegans males facilitate outcrossing, males and outcrossing are rare in natural C. elegans populations. Here, we use experimental evolution to test if frequent dispersal selects for the invasion of self-fertilization into predominantly outcrossing populations. C. elegans dispersal often occurs in the dauer alternative life stage. Therefore, we tested the effects of dispersal on rates of self-fertilization in populations exposed to dauer-inducing conditions and populations maintained under standard lab conditions. Overall, we found that populations required to disperse to new food sources rapidly evolved substantially elevated rates of self-fertilization compared to populations that were not required to disperse in both dauer and non-dauer populations. Our results demonstrate that frequent dispersal can readily favor the evolution of increased selfing rates in C. elegans populations, regardless of life stage. These data provide a potential mechanism to explain the dearth of outcrossing in natural populations of C. elegans.
Collapse
Affiliation(s)
- Michelle A McCauley
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, GA, United States
| | | | - Julie Lin
- Department of Biology, Emory University, Atlanta, GA, United States
| | - McKenna J Penley
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Lilja M Quinn
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Rockman MV. Parental-effect gene-drive elements under partial selfing, or why do Caenorhabditis genomes have hyperdivergent regions? Genetics 2025; 229:1-36. [PMID: 39475455 PMCID: PMC11708918 DOI: 10.1093/genetics/iyae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that do not inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here, I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggests that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
4
|
Schalkowski R, Kasimatis KR, Greischar MA, Cutter AD. Reproductive Interference Alters Species Coexistence in Nematodes due to Asymmetric Sperm-Induced Harm. Ecol Lett 2025; 28:e70067. [PMID: 39901585 PMCID: PMC11791382 DOI: 10.1111/ele.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025]
Abstract
Species coexistence is shaped by a range of biotic and abiotic factors. Beyond predation, parasitism and competition, one species may interfere with another's reproduction to induce sexual exclusion from a habitat. Here, we test for reproductive interference from inter-species mating between sympatric nematodes Caenorhabditis macrosperma and C. nouraguensis. Higher intrinsic population growth of C. nouraguensis arises from greater reproductive output by both sexes, predicting it to be superior in resource competition. Mate discrimination between species is incomplete, however, with inter-species mating errors reducing lifespan and reproductive fitness of female C. nouraguensis only. These asymmetric costs arise within hours, due to ectopic migration of C. macrosperma's giant sperm cells. We modelled the population dynamic impacts of reproductive interference, then confirmed rapid sexual exclusion in mixed-species communities with multi-generation experiments. These findings demonstrate the profound ecological implications of reproductive interference for demographic parameters and species coexistence through a cell-mediated mechanism of inter-species harm.
Collapse
Affiliation(s)
- Rebecca Schalkowski
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Katja R. Kasimatis
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Megan A. Greischar
- Department of Ecology & Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - Asher D. Cutter
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579142. [PMID: 38370745 PMCID: PMC10871249 DOI: 10.1101/2024.02.06.579142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
7
|
Rockman MV. Parental-effect gene-drive elements under partial selfing, or why do Caenorhabditis genomes have hyperdivergent regions? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604817. [PMID: 39091748 PMCID: PMC11291142 DOI: 10.1101/2024.07.23.604817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that don't inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggest that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
8
|
Alkan C, Brésard G, Frézal L, Richaud A, Ruaud A, Zhang G, Félix MA. Natural variation in infection specificity of Caenorhabditis briggsae isolates by two RNA viruses. PLoS Pathog 2024; 20:e1012259. [PMID: 38861582 PMCID: PMC11195985 DOI: 10.1371/journal.ppat.1012259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Antagonistic relationships such as host-virus interactions potentially lead to rapid evolution and specificity in interactions. The Orsay virus is so far the only horizontal virus naturally infecting the nematode C. elegans. In contrast, several related RNA viruses infect its congener C. briggsae, including Santeuil (SANTV) and Le Blanc (LEBV) viruses. Here we focus on the host's intraspecific variation in sensitivity to these two intestinal viruses. Many temperate-origin C. briggsae strains, including JU1264 and JU1498, are sensitive to both, while many tropical strains, such as AF16, are resistant to both. Interestingly, some C. briggsae strains exhibit a specific resistance, such as the HK104 strain, specifically resistant to LEBV. The viral sensitivity pattern matches the strains' geographic and genomic relationships. The heavily infected strains mount a seemingly normal small RNA response that is insufficient to suppress viral infection, while the resistant strains show no small RNA response, suggesting an early block in viral entry or replication. We use a genetic approach from the host side to map genomic regions participating in viral resistance polymorphisms. Using Advanced Intercrossed Recombinant Inbred Lines (RILs) between virus-resistant AF16 and SANTV-sensitive HK104, we detect Quantitative Trait Loci (QTLs) on chromosomes IV and III. Building RILs between virus-sensitive JU1498 and LEBV-resistant HK104 followed by bulk segregant analysis, we identify a chromosome II QTL. In both cases, further introgressions of the regions confirmed the QTLs. This diversity provides an avenue for studying virus entry, replication, and exit mechanisms, as well as host-virus specificity and the host response to a specific virus infection.
Collapse
Affiliation(s)
- Cigdem Alkan
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gautier Brésard
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Lise Frézal
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques Paris, Paris, France
| | - Aurélien Richaud
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Albane Ruaud
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gaotian Zhang
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Marie-Anne Félix
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
9
|
González R, Félix MA. Caenorhabditis elegans immune responses to microsporidia and viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105148. [PMID: 38325500 DOI: 10.1016/j.dci.2024.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The model organism Caenorhabditis elegans is susceptible to infection by obligate intracellular pathogens, specifically microsporidia and viruses. These intracellular pathogens infect intestinal cells, or, for some microsporidia, epidermal cells. Strikingly, intestinal cell infections by viruses or microsporidia trigger a common transcriptional response, activated in part by the ZIP-1 transcription factor. Among the strongest activated genes in this response are ubiquitin-pathway members and members of the pals family, an intriguing gene family with cross-regulations of different members of genomic clusters. Some of the induced genes participate in host defense against the pathogens, for example through ubiquitin-mediated inhibition. Other mechanisms defend the host specifically against viral infections, including antiviral RNA interference and uridylation. These various immune responses are altered by environmental factors and by intraspecific genetic variation of the host. These pathogens were first isolated 15 years ago and much remains to be discovered using C. elegans genetics; also, other intracellular pathogens of C. elegans may yet to be discovered.
Collapse
Affiliation(s)
- Rubén González
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France.
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France
| |
Collapse
|
10
|
Parée T, Noble L, Ferreira Gonçalves J, Teotónio H. rec-1 loss of function increases recombination in the central gene clusters at the expense of autosomal pairing centers. Genetics 2024; 226:iyad205. [PMID: 38001364 DOI: 10.1093/genetics/iyad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Meiotic control of crossover (CO) number and position is critical for homologous chromosome segregation and organismal fertility, recombination of parental genotypes, and the generation of novel genetic combinations. We here characterize the recombination rate landscape of a rec-1 loss of function modifier of CO position in Caenorhabditis elegans, one of the first ever modifiers discovered. By averaging CO position across hermaphrodite and male meioses and by genotyping 203 single-nucleotide variants covering about 95% of the genome, we find that the characteristic chromosomal arm-center recombination rate domain structure is lost in the loss of function rec-1 mutant. The rec-1 loss of function mutant smooths the recombination rate landscape but is insufficient to eliminate the nonuniform position of CO. Lower recombination rates in the rec-1 mutant are particularly found in the autosomal arm domains containing the pairing centers. We further find that the rec-1 mutant is of little consequence for organismal fertility and egg viability and thus for rates of autosomal nondisjunction. It nonetheless increases X chromosome nondisjunction rates and thus male appearance. Our findings question the maintenance of recombination rate heritability and genetic diversity among C. elegans natural populations, and they further suggest that manipulating genetic modifiers of CO position will help find quantitative trait loci located in low-recombining genomic regions normally refractory to discovery.
Collapse
Affiliation(s)
- Tom Parée
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| | - Luke Noble
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
- EnviroDNA, 95 Albert St., Brunswick, Victoria 3065, Australia
| | - João Ferreira Gonçalves
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| | - Henrique Teotónio
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| |
Collapse
|
11
|
Slowinski SP, Gresham JD, Cui ER, Haspel K, Lively CM, Morran LT. Outcrossing in Caenorhabditis elegans increases in response to food limitation. Ecol Evol 2024; 14:e11166. [PMID: 38516572 PMCID: PMC10954511 DOI: 10.1002/ece3.11166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Theory predicts that organisms should diversify their offspring when faced with a stressful environment. This prediction has received empirical support across diverse groups of organisms and stressors. For example, when encountered by Caenorhabditis elegans during early development, food limitation (a common environmental stressor) induces the nematodes to arrest in a developmental stage called dauer and to increase their propensity to outcross when they are subsequently provided with food and enabled to develop to maturity. Here we tested whether food limitation first encountered during late development/early adulthood can also induce increased outcrossing propensity in C. elegans. Previously well-fed C. elegans increased their propensity to outcross when challenged with food limitation during the final larval stage of development and into early adulthood, relative to continuously well-fed (control) nematodes. Our results thus support previous research demonstrating that the stress of food limitation can induce increased outcrossing propensity in C. elegans. Furthermore, our results expand on previous work by showing that food limitation can still increase outcrossing propensity even when it is not encountered until late development, and this can occur independently of the developmental and gene expression changes associated with dauer.
Collapse
Affiliation(s)
- Samuel P. Slowinski
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
- Department BiologyUniversity of MarylandCollege ParkMarylandUSA
| | | | - Eric R. Cui
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| | | | | | | |
Collapse
|
12
|
Crombie TA, McKeown R, Moya ND, Evans K, Widmayer S, LaGrassa V, Roman N, Tursunova O, Zhang G, Gibson S, Buchanan C, Roberto N, Vieira R, Tanny R, Andersen E. CaeNDR, the Caenorhabditis Natural Diversity Resource. Nucleic Acids Res 2024; 52:D850-D858. [PMID: 37855690 PMCID: PMC10767927 DOI: 10.1093/nar/gkad887] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.
Collapse
Affiliation(s)
- Timothy A Crombie
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Cell, Molecular, Developmental biology, and Biophysics Graduate Program, ohns Hopkins University, Baltimore, MD, USA
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Vincent LaGrassa
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Natalie Roman
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Orzu Tursunova
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sophia B Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Claire M Buchanan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Nicole M Roberto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Rodolfo Vieira
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Robyn E Tanny
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
13
|
Frézal L, Saglio M, Zhang G, Noble L, Richaud A, Félix MA. Genome-wide association and environmental suppression of the mortal germline phenotype of wild C. elegans. EMBO Rep 2023; 24:e58116. [PMID: 37983674 PMCID: PMC10702804 DOI: 10.15252/embr.202358116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The animal germline lineage needs to be maintained along generations. However, some Caenorhabditis elegans wild isolates display a mortal germline phenotype, leading to sterility after several generations at 25°C. Using a genome-wide association approach, we detect a significant peak on chromosome III around 5 Mb, confirmed by introgressions. Thus, a seemingly deleterious genotype is maintained at intermediate frequency in the species. Environmental rescue is a likely explanation, and indeed associated bacteria and microsporidia suppress the phenotype of wild isolates as well as mutants in small RNA inheritance (nrde-2) and histone modifications (set-2). Escherichia coli strains of the K-12 lineage suppress the phenotype compared to B strains. By shifting a wild strain from E. coli K-12 to E. coli B, we find that memory of the suppressing condition is maintained over several generations. Thus, the mortal germline phenotype of wild C. elegans is in part revealed by laboratory conditions and may represent variation in epigenetic inheritance and environmental interactions. This study also points to the importance of non-genetic memory in the face of environmental variation.
Collapse
Affiliation(s)
- Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie Saglio
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Gaotian Zhang
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Luke Noble
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Aurélien Richaud
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| |
Collapse
|
14
|
Sepulveda NB, Chen D, Petrella LN. Moderate heat stress-induced sterility is due to motility defects and reduced mating drive in Caenorhabditis elegans males. J Exp Biol 2023; 226:jeb245546. [PMID: 37724024 DOI: 10.1242/jeb.245546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Moderate heat stress negatively impacts fertility in sexually reproducing organisms at sublethal temperatures. These moderate heat stress effects are typically more pronounced in males. In some species, sperm production, quality and motility are the primary cause of male infertility during moderate heat stress. However, this is not the case in the model nematode Caenorhabditis elegans, where changes in mating behavior are the primary cause of fertility loss. We report that heat-stressed C. elegans males are more motivated to locate and remain on food and less motivated to leave food to find and mate with hermaphrodites than their unstressed counterparts. Heat-stressed males also demonstrate a reduction in motility that likely limits their ability to mate. Collectively these changes result in a dramatic reduction in reproductive success. The reduction in mate-searching behavior may be partially due to increased expression of the chemoreceptor odr-10 in the AWA sensory neurons, which is a marker for starvation in males. These results demonstrate that moderate heat stress may have profound and previously underappreciated effects on reproductive behaviors. As climate change continues to raise global temperatures, it will be imperative to understand how moderate heat stress affects behavioral and motility elements critical to reproduction.
Collapse
Affiliation(s)
- Nicholas B Sepulveda
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Donald Chen
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| |
Collapse
|
15
|
Santos J, Matos M, Flatt T, Chelo IM. Microbes are potential key players in the evolution of life histories and aging in Caenorhabditis elegans. Ecol Evol 2023; 13:e10537. [PMID: 37753311 PMCID: PMC10518755 DOI: 10.1002/ece3.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Microbes can have profound effects on host fitness and health and the appearance of late-onset diseases. Host-microbe interactions thus represent a major environmental context for healthy aging of the host and might also mediate trade-offs between life-history traits in the evolution of host senescence. Here, we have used the nematode Caenorhabditis elegans to study how host-microbe interactions may modulate the evolution of life histories and aging. We first characterized the effects of two non-pathogenic and one pathogenic Escherichia coli strains, together with the pathogenic Serratia marcescens DB11 strain, on population growth rates and survival of C. elegans from five different genetic backgrounds. We then focused on an outbred C. elegans population, to understand if microbe-specific effects on the reproductive schedule and in traits such as developmental rate and survival were also expressed in the presence of males and standing genetic variation, which could be relevant for the evolution of C. elegans and other nematode species in nature. Our results show that host-microbe interactions have a substantial host-genotype-dependent impact on the reproductive aging and survival of the nematode host. Although both pathogenic bacteria reduced host survival in comparison with benign strains, they differed in how they affected other host traits. Host fertility and population growth rate were affected by S. marcescens DB11 only during early adulthood, whereas this occurred at later ages with the pathogenic E. coli IAI1. In both cases, these effects were largely dependent on the host genotypes. Given such microbe-specific genotypic differences in host life history, we predict that the evolution of reproductive schedules and senescence might be critically contingent on host-microbe interactions in nature.
Collapse
Affiliation(s)
- Josiane Santos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Margarida Matos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ivo M. Chelo
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| |
Collapse
|
16
|
Teterina AA, Willis JH, Lukac M, Jovelin R, Cutter AD, Phillips PC. Genomic diversity landscapes in outcrossing and selfing Caenorhabditis nematodes. PLoS Genet 2023; 19:e1010879. [PMID: 37585484 PMCID: PMC10461856 DOI: 10.1371/journal.pgen.1010879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Caenorhabditis nematodes form an excellent model for studying how the mode of reproduction affects genetic diversity, as some species reproduce via outcrossing whereas others can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are only available for self-reproducing Caenorhabditis, making the generality of genomic patterns across the genus unclear given the profound potential influence of reproductive mode. Here we present a whole-genome diversity landscape, coupled with a new genetic map, for the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of recombination in C. remanei, like the model nematode C. elegans, shows high recombination rates on chromosome arms and low rates toward the central regions. Patterns of genetic variation across the genome are also similar between these species, but differ dramatically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation in effective population size over the past million generations echo this difference in polymorphism. Evolutionary simulations demonstrate how selection, recombination, mutation, and selfing shape variation along the genome, and that multiple drivers can produce patterns similar to those observed in natural populations. The results illustrate how genome organization and selection play a crucial role in shaping the genomic pattern of diversity whereas demographic processes scale the level of diversity across the genome as a whole.
Collapse
Affiliation(s)
- Anastasia A. Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Matt Lukac
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
17
|
Sloat S, Rockman M. Sexual antagonism evolves when autosomes influence offspring sex ratio. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544982. [PMID: 37398423 PMCID: PMC10312671 DOI: 10.1101/2023.06.14.544982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Sex allocation theory generally assumes maternal control of offspring sex and makes few predictions for populations evolving under paternal control. Using population genetic simulations, we show that maternal and paternal control of the sex ratio lead to different equilibrium sex ratios in structured populations. Sex ratios evolved under paternal control are more female biased. This effect is dependent on the population subdivision; fewer founding individuals leads to both more biased sex ratios and a greater difference between the paternal and maternal equilibria. In addition, sexual antagonism evolves in simulations with both maternally- and paternally-acting loci. Maternally-acting loci continuously accumulate ever more female-biasing effects as male-biasing effects accumulate at paternally-acting loci. The difference in evolved sex-ratio equilibria and the evolution of sexual antagonism can be largely explained by differences in the between-group variance of maternal and paternal effects in the founding generation. These theoretical results apply to any system with biparental autosomal influence over offspring sex, opening up an exciting new line of questioning.
Collapse
Affiliation(s)
- Solomon Sloat
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Matthew Rockman
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
18
|
Mok C, Xiao MA, Wan YC, Zhao W, Ahmed SM, Luallen RJ, Reinke AW. High-throughput phenotyping of infection by diverse microsporidia species reveals a wild C. elegans strain with opposing resistance and susceptibility traits. PLoS Pathog 2023; 19:e1011225. [PMID: 36893187 PMCID: PMC10030041 DOI: 10.1371/journal.ppat.1011225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/21/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Animals are under constant selective pressure from a myriad of diverse pathogens. Microsporidia are ubiquitous animal parasites, but the influence they exert on shaping animal genomes is mostly unknown. Using multiplexed competition assays, we measured the impact of four different species of microsporidia on 22 wild isolates of Caenorhabditis elegans. This resulted in the identification and confirmation of 13 strains with significantly altered population fitness profiles under infection conditions. One of these identified strains, JU1400, is sensitive to an epidermal-infecting species by lacking tolerance to infection. JU1400 is also resistant to an intestinal-infecting species and can specifically recognize and destroy this pathogen. Genetic mapping of JU1400 demonstrates that these two opposing phenotypes are caused by separate loci. Transcriptional analysis reveals the JU1400 sensitivity to epidermal microsporidia infection results in a response pattern that shares similarity to toxin-induced responses. In contrast, we do not observe JU1400 intestinal resistance being regulated at the transcriptional level. The transcriptional response to these four microsporidia species is conserved, with C. elegans strain-specific differences in potential immune genes. Together, our results show that phenotypic differences to microsporidia infection amongst C. elegans are common and that animals can evolve species-specific genetic interactions.
Collapse
Affiliation(s)
- Calvin Mok
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Meng A. Xiao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yin C. Wan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Winnie Zhao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shanzeh M. Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert J. Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Jiranek J, Gibson A. Diet can alter the cost of resistance to a natural parasite in Caenorhabditis elegans. Ecol Evol 2023; 13:e9793. [PMID: 36789344 PMCID: PMC9911625 DOI: 10.1002/ece3.9793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Resistance to parasites confers a fitness advantage, yet hosts show substantial variation in resistance in natural populations. Evolutionary theory indicates that resistant and susceptible genotypes can coexist if resistance is costly, but there is mixed evidence that resistant individuals have lower fitness in the absence of parasites. One explanation for this discrepancy is that the cost of resistance varies with environmental context. We tested this hypothesis using Caenorhabditis elegans and its natural microsporidian parasite, Nematocida ironsii. We used multiple metrics to compare the fitness of two near-isogenic host genotypes differing at regions associated with resistance to N. ironsii. To quantify the effect of the environment on the cost associated with these known resistance regions, we measured fitness on three microbial diets. We found that the cost of resistance varied with both diet and the measure of fitness. We detected no cost to resistance, irrespective of diet, when fitness was measured as fecundity. However, we detected a cost when fitness was measured in terms of population growth, and the magnitude of this cost varied with diet. These results provide a proof of concept that, by mediating the cost of resistance, environmental context may govern the rate and nature of resistance evolution in heterogeneous environments.
Collapse
Affiliation(s)
- Juliana Jiranek
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Amanda Gibson
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
20
|
Antoł W, Byszko J, Dyba A, Palka J, Babik W, Prokop Z. No detectable changes in reproductive behaviour of Caenorhabditis elegans males after 97 generations under obligatory outcrossing. PeerJ 2023; 11:e14572. [PMID: 36643640 PMCID: PMC9838211 DOI: 10.7717/peerj.14572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
In Caenorhabditis elegans, a species reproducing mostly via self-fertilization, numerous signatures of selfing syndrome are observed, including differences in reproductive behaviour compared to related obligatory outcrossing species. In this study we investigated the effect of nearly 100 generations of obligatory outcrossing on several characteristics of male reproductive behaviour. A genetically uniform ancestral population carrying a mutation changing the reproductive system to obligatory outcrossing was split into four independent populations. We predicted that the transition from the natural reproductive system, where males were extremely rare, to obligatory outcrossing, where males comprise 50% of the population and are necessary for reproduction, will increase the selection pressure on higher effectiveness of mating behaviour. Several characteristics of male mating behaviour during a 15 min interaction as well as copulation success were compared between the ancestral and evolved populations. No significant differences in male mating behaviour or fertilization success were detected between generations 1 and 97 of obligatory outcrossing populations. We found, however, that longer contact with females increased chances of successful copulation, although this effect did not differ between populations. We conclude that either selection acting on male mating behaviour has not been strong enough, or mutational input of new adaptive variants has not been sufficient to cause noticeable behavioural differences after 97 generations of evolution starting from genetically uniform population.
Collapse
|
21
|
Taylor M, Janasky L, Vega N. Convergent structure with divergent adaptations in combinatorial microbiome communities. FEMS Microbiol Ecol 2022; 98:6726631. [PMID: 36170949 DOI: 10.1093/femsec/fiac115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
Adaptation of replicate microbial communities frequently produces shared trajectories of community composition and structure. However, divergent adaptation of individual community members can occur and is associated with community-level divergence. The extent to which community-based adaptation of microbes should be convergent when community members are similar but not identical is, therefore, not well-understood. In these experiments, adaptation of combinatorial minimal communities of bacteria with the model host Caenorhabditis elegans produces structurally similar communities over time, but with divergent adaptation of member taxa and differences in community-level resistance to invasion. These results indicate that community-based adaptation from taxonomically similar starting points can produce compositionally similar communities that differ in traits of member taxa and in ecological properties.
Collapse
Affiliation(s)
- Megan Taylor
- Biology Department, Emory University, Atlanta, GA, 30322, United States
| | - Lili Janasky
- Biology Department, Emory University, Atlanta, GA, 30322, United States
| | - Nic Vega
- Biology Department, Emory University, Atlanta, GA, 30322, United States.,Physics Department, Emory University, Atlanta, GA, 30322, United States
| |
Collapse
|
22
|
Antoł W, Palka JK, Błażejowska A, Sychta K, Kosztyła P, Labocha MK, Prokop ZM. Evolution of Reproductive Efficiency in Caenorhabditis elegans Under Obligatory Outcrossing. Evol Biol 2022. [DOI: 10.1007/s11692-022-09572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractRadical shifts in reproductive systems result in radical changes in selective pressures acting on reproductive traits. Nematode Caenorhabditis elegans constitutes one of rare model systems where such shifts can be experimentally induced, providing an opportunity for studying the evolution of reproductive phenotypes in real time. Evolutionary history of predominantly selfing reproduction in has led to degeneration of traits involved outcrossing, making it inefficient. Here, we introduced obligatory outcrossing into isogenic lines of C. elegans and allowed replicate populations to evolve under the new reproductive system. We predicted that they should evolve higher outcrossing efficiency, leading to increased fitness relative to unevolved ancestors. To test this prediction, we assayed fitness of both ancestral and evolved outcrossing populations. To control for the potentially confounding effect of adaptation to laboratory conditions, we also assayed populations with wild-type (selfing) reproductive system. In five experimental blocks, we measured competitive fitness of 12 evolved populations (6 outcrossing, 6 selfing) after ca. 95 generations of evolution, along with their respective ancestors. On average, we found that fitness increased by 0.72 SD (± 0.3 CI) in outcrossing and by 0.52 (± 0.35 CI) in selfing populations, suggesting further adaptation to laboratory conditions in both types. Contrary to predictions, fitness increase was not significantly higher in outcrossing populations, suggesting no detectable adaptation to the changed reproductive system. Importantly, the results for individual populations varied strongly between experimental blocks, in some cases even differing in effect direction. This emphasises the importance of experimental replication in avoiding reporting false findings.
Collapse
|
23
|
Sloat SA, Noble LM, Paaby AB, Bernstein M, Chang A, Kaur T, Yuen J, Tintori SC, Jackson JL, Martel A, Salome Correa JA, Stevens L, Kiontke K, Blaxter M, Rockman MV. Caenorhabditis nematodes colonize ephemeral resource patches in neotropical forests. Ecol Evol 2022; 12:e9124. [PMID: 35898425 PMCID: PMC9309040 DOI: 10.1002/ece3.9124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
Factors shaping the distribution and abundance of species include life-history traits, population structure, and stochastic colonization-extinction dynamics. Field studies of model species groups help reveal the roles of these factors. Species of Caenorhabditis nematodes are highly divergent at the sequence level but exhibit highly conserved morphology, and many of these species live in sympatry on microbe-rich patches of rotten material. Here, we use field experiments and large-scale opportunistic collections to investigate species composition, abundance, and colonization efficiency of Caenorhabditis species in two of the world's best-studied lowland tropical field sites: Barro Colorado Island in Panamá and La Selva in Sarapiquí, Costa Rica. We observed seven species of Caenorhabditis, four of them known only from these collections. We formally describe two species and place them within the Caenorhabditis phylogeny. While these localities contain species from many parts of the phylogeny, both localities were dominated by globally distributed androdiecious species. We found that Caenorhabditis individuals were able to colonize baits accessible only through phoresy and preferentially colonized baits that were in direct contact with the ground. We estimate the number of colonization events per patch to be low.
Collapse
Affiliation(s)
- Solomon A. Sloat
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Luke M. Noble
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Annalise B. Paaby
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Max Bernstein
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Audrey Chang
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Taniya Kaur
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - John Yuen
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
- Renaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Sophia C. Tintori
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Jacqueline L. Jackson
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Arielle Martel
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Jose A. Salome Correa
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | | | - Karin Kiontke
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger InstituteHinxtonUK
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| |
Collapse
|
24
|
Bubrig LT, Janisch AN, Tillet EM, Gibson AK. Contrasting parasite-mediated reductions in fitness within versus between patches of a nematode host. Evolution 2022; 76:1556-1564. [PMID: 35652582 PMCID: PMC9329228 DOI: 10.1111/evo.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/22/2023]
Abstract
Host and parasites interact across spatial scales, but parasite-mediated fitness effects are typically measured only at local scales. Recent work suggests that parasites can reduce host fitness during dispersal between patches, highlighting the potential for both within- and between-patch effects to contribute to the net fitness consequences of parasitism. Building on this work, we measured the contribution of the dispersal phase to parasite-mediated reductions in host fitness. We used the nematode Caenorhabditis elegans and its natural microsporidian parasite Nematocida parisii to quantify the fitness consequences of parasitism at the individual, population, and metapopulation level. Nematocida parisii reduced individual fecundity and population growth but had its greatest fitness impact at the dispersal stage: parasitism reduced the fitness of dispersing larvae by 62%-100%. These results indicate that the cost of parasitism in this system is greatly underestimated if the metapopulation level is not taken into account. We also found that the effects of N. parisii vary with host genotype, and the relative advantage of the most resistant genotype increases with inclusion of the dispersal stage. Taken together, our findings demonstrate that host-parasite interactions at the dispersal stage can magnify selection for parasite resistance.
Collapse
Affiliation(s)
- Louis T. Bubrig
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginia22904
| | - Anne N. Janisch
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginia22904
| | - Emily M. Tillet
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginia22904
| | | |
Collapse
|
25
|
Crombie TA, Battlay P, Tanny RE, Evans KS, Buchanan CM, Cook DE, Dilks CM, Stinson LA, Zdraljevic S, Zhang G, Roberto NM, Lee D, Ailion M, Hodgins KA, Andersen EC. Local adaptation and spatiotemporal patterns of genetic diversity revealed by repeated sampling of Caenorhabditis elegans across the Hawaiian Islands. Mol Ecol 2022; 31:2327-2347. [PMID: 35167162 PMCID: PMC9306471 DOI: 10.1111/mec.16400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
The nematode Caenorhabditis elegans is among the most widely studied organisms, but relatively little is known about its natural ecology. Genetic diversity is low across much of the globe but high in the Hawaiian Islands and across the Pacific Rim. To characterize the niche and genetic diversity of C. elegans on the Hawaiian Islands and to explore how genetic diversity might be influenced by local adaptation, we repeatedly sampled nematodes over a three-year period, measured various environmental parameters at each sampling site, and whole-genome sequenced the C. elegans isolates that we identified. We found that the typical Hawaiian C. elegans niche comprises moderately moist native forests at high elevations (500-1,500 m) where ambient air temperatures are cool (15-20°C). Compared to other Caenorhabditis species found on the Hawaiian Islands (e.g., Caenorhabditis briggsae and Caenorhabditis tropicalis), we found that C. elegans were enriched in native habitats. We measured levels of genetic diversity and differentiation among Hawaiian C. elegans and found evidence of seven genetically distinct groups distributed across the islands. Then, we scanned these genomes for signatures of local adaptation and identified 18 distinct regions that overlap with hyper-divergent regions, which may be maintained by balancing selection and are enriched for genes related to environmental sensing, xenobiotic detoxification, and pathogen resistance. These results provide strong evidence of local adaptation among Hawaiian C. elegans and contribute to our understanding of the forces that shape genetic diversity on the most remote volcanic archipelago in the world.
Collapse
Affiliation(s)
- Timothy A. Crombie
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Paul Battlay
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Robyn E. Tanny
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Kathryn S. Evans
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Claire M. Buchanan
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Daniel E. Cook
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Clayton M. Dilks
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Loraina A. Stinson
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Stefan Zdraljevic
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Gaotian Zhang
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Nicole M. Roberto
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Daehan Lee
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| | - Michael Ailion
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Kathryn A. Hodgins
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Erik C. Andersen
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
26
|
van Sluijs L, Bosman KJ, Pankok F, Blokhina T, Wilten JIHA, te Molder DM, Riksen JAG, Snoek BL, Pijlman GP, Kammenga JE, Sterken MG. Balancing Selection of the Intracellular Pathogen Response in Natural Caenorhabditis elegans Populations. Front Cell Infect Microbiol 2022; 11:758331. [PMID: 35174100 PMCID: PMC8841876 DOI: 10.3389/fcimb.2021.758331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Genetic variation in host populations may lead to differential viral susceptibilities. Here, we investigate the role of natural genetic variation in the Intracellular Pathogen Response (IPR), an important antiviral pathway in the model organism Caenorhabditis elegans against Orsay virus (OrV). The IPR involves transcriptional activity of 80 genes including the pals-genes. We examine the genetic variation in the pals-family for traces of selection and explore the molecular and phenotypic effects of having distinct pals-gene alleles. Genetic analysis of 330 global C. elegans strains reveals that genetic diversity within the IPR-related pals-genes can be categorized in a few haplotypes worldwide. Importantly, two key IPR regulators, pals-22 and pals-25, are in a genomic region carrying signatures of balancing selection, suggesting that different evolutionary strategies exist in IPR regulation. We infected eleven C. elegans strains that represent three distinct pals-22 pals-25 haplotypes with Orsay virus to determine their susceptibility. For two of these strains, N2 and CB4856, the transcriptional response to infection was also measured. The results indicate that pals-22 pals-25 haplotype shapes the defense against OrV and host genetic variation can result in constitutive activation of IPR genes. Our work presents evidence for balancing genetic selection of immunity genes in C. elegans and provides a novel perspective on the functional diversity that can develop within a main antiviral response in natural host populations.
Collapse
Affiliation(s)
- Lisa van Sluijs
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Kobus J. Bosman
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Frederik Pankok
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Tatiana Blokhina
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Jop I. H. A. Wilten
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Dennie M. te Molder
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Basten L. Snoek
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Mark G. Sterken,
| |
Collapse
|
27
|
Abstract
Wild populations of the model organism C. elegans represent a valuable resource, allowing for genetic characterization underlying natural phenotypic variation. Here we provide a simple protocol on how to sample and rapidly identify C. elegans wild isolates. We outline how to find suitable habitats and organic substrates, followed by describing isolation and identification of C. elegans live cultures based on easily recognizable morphological characteristics, molecular barcodes, and mating tests. This protocol uses standard laboratory equipment and requires little prior knowledge of C. elegans biology.
Collapse
Affiliation(s)
| | - Nausicaa Poullet
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
- URZ, INRAE, Petit-Bourg (Guadeloupe), France
| | | |
Collapse
|
28
|
van Sluijs L, Liu J, Schrama M, van Hamond S, Vromans SPJM, Scholten MH, Žibrat N, Riksen JAG, Pijlman GP, Sterken MG, Kammenga JE. Virus infection modulates male sexual behaviour in Caenorhabditis elegans. Mol Ecol 2021; 30:6776-6790. [PMID: 34534386 PMCID: PMC9291463 DOI: 10.1111/mec.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022]
Abstract
Mating dynamics follow from natural selection on mate choice and individuals maximizing their reproductive success. Mate discrimination reveals itself by a plethora of behaviours and morphological characteristics, each of which can be affected by pathogens. A key question is how pathogens affect mate choice and outcrossing behaviour. Here we investigated the effect of Orsay virus on the mating dynamics of the androdiecious (male and hermaphrodite) nematode Caenorhabditis elegans. We tested genetically distinct strains and found that viral susceptibility differed between sexes in a genotype-dependent manner with males of reference strain N2 being more resistant than hermaphrodites. Males displayed a constitutively higher expression of intracellular pathogen response (IPR) genes, whereas the antiviral RNAi response did not have increased activity in males. Subsequent monitoring of sex ratios over 10 generations revealed that viral presence can change mating dynamics in isogenic populations. Sexual attraction assays showed that males preferred mating with uninfected rather than infected hermaphrodites. Together our results illustrate for the first time that viral infection can significantly affect male mating choice and suggest altered mating dynamics as a novel cause benefitting outcrossing under pathogenic stress conditions in C. elegans.
Collapse
Affiliation(s)
- Lisa van Sluijs
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
- Laboratory of VirologyWageningen University and ResearchWageningenthe Netherlands
| | - Jie Liu
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Mels Schrama
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Sanne van Hamond
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | | | - Marèl H. Scholten
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Nika Žibrat
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Joost A. G. Riksen
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Gorben P. Pijlman
- Laboratory of VirologyWageningen University and ResearchWageningenthe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Jan E. Kammenga
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
29
|
Sepulveda NB, Petrella LN. Temperature stressed Caenorhabditis elegans males fail to mate successfully and successful males produce very few viable cross progeny. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000475. [PMID: 34693216 PMCID: PMC8527335 DOI: 10.17912/micropub.biology.000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 11/06/2022]
Abstract
Exposure to moderate temperature stress can have profoundly negative effects on an organism's reproductive capacity at temperatures where there are minimal or indiscernible effects on the organism as a whole. These negative effects are often more pronounced in males of the species that produce sperm. Previously we showed that few males of Caenorhabditis elegans wild type strains are able to successfully produce any cross progeny after experiencing temperature stress. However, these experiments did not assess the number of progeny from temperature stressed males. To understand if temperature stress can reduce the number of progeny a male sires, we crossed temperature stressed males of three wild type strains of C. elegans: JU1171, LKC34, and N2, to strain matched hermaphrodites of their own genetic background or to uncoordinated hermaphrodites in the N2 background. We found that significantly fewer males exposed to moderate temperature stress can successfully mate and that the small number of males in the population that do successfully mate produce significantly fewer viable cross progeny than unstressed controls. Our results suggest that exposure to moderate temperature stress significantly reduces male C. elegans chances at reproducing similar to what is seen in other organisms.
Collapse
|
30
|
Zhang G, Mostad JD, Andersen EC. Natural variation in fecundity is correlated with species-wide levels of divergence in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2021; 11:jkab168. [PMID: 33983439 PMCID: PMC8496234 DOI: 10.1093/g3journal/jkab168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
Life history traits underlie the fitness of organisms and are under strong natural selection. A new mutation that positively impacts a life history trait will likely increase in frequency and become fixed in a population (e.g., a selective sweep). The identification of the beneficial alleles that underlie selective sweeps provides insights into the mechanisms that occurred during the evolution of a species. In the global population of Caenorhabditis elegans, we previously identified selective sweeps that have drastically reduced chromosomal-scale genetic diversity in the species. Here, we measured the fecundity of 121 wild C. elegans strains, including many recently isolated divergent strains from the Hawaiian islands and found that strains with larger swept genomic regions have significantly higher fecundity than strains without evidence of the recent selective sweeps. We used genome-wide association (GWA) mapping to identify three quantitative trait loci (QTL) underlying the fecundity variation. In addition, we mapped previous fecundity data from wild C. elegans strains and C. elegans recombinant inbred advanced intercross lines that were grown in various conditions and detected eight QTL using GWA and linkage mappings. These QTL show the genetic complexity of fecundity across this species. Moreover, the haplotype structure in each GWA QTL region revealed correlations with recent selective sweeps in the C. elegans population. North American and European strains had significantly higher fecundity than most strains from Hawaii, a hypothesized origin of the C. elegans species, suggesting that beneficial alleles that caused increased fecundity could underlie the selective sweeps during the worldwide expansion of C. elegans.
Collapse
Affiliation(s)
- Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Jake D Mostad
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
31
|
Lee D, Zdraljevic S, Stevens L, Wang Y, Tanny RE, Crombie TA, Cook DE, Webster AK, Chirakar R, Baugh LR, Sterken MG, Braendle C, Félix MA, Rockman MV, Andersen EC. Balancing selection maintains hyper-divergent haplotypes in Caenorhabditis elegans. Nat Ecol Evol 2021; 5:794-807. [PMID: 33820969 PMCID: PMC8202730 DOI: 10.1038/s41559-021-01435-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Across diverse taxa, selfing species have evolved independently from outcrossing species thousands of times. The transition from outcrossing to selfing decreases the effective population size, effective recombination rate and heterozygosity within a species. These changes lead to a reduction in genetic diversity, and therefore adaptive potential, by intensifying the effects of random genetic drift and linked selection. Within the nematode genus Caenorhabditis, selfing has evolved at least three times, and all three species, including the model organism Caenorhabditis elegans, show substantially reduced genetic diversity relative to outcrossing species. Selfing and outcrossing Caenorhabditis species are often found in the same niches, but we still do not know how selfing species with limited genetic diversity can adapt to these environments. Here, we examine the whole-genome sequences from 609 wild C. elegans strains isolated worldwide and show that genetic variation is concentrated in punctuated hyper-divergent regions that cover 20% of the C. elegans reference genome. These regions are enriched in environmental response genes that mediate sensory perception, pathogen response and xenobiotic stress response. Population genomic evidence suggests that genetic diversity in these regions has been maintained by long-term balancing selection. Using long-read genome assemblies for 15 wild strains, we show that hyper-divergent haplotypes contain unique sets of genes and show levels of divergence comparable to levels found between Caenorhabditis species that diverged millions of years ago. These results provide an example of how species can avoid the evolutionary dead end associated with selfing.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Timothy A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Amy K Webster
- Department of Biology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | | | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
32
|
White PS, Arslan D, Kim D, Penley M, Morran L. Host genetic drift and adaptation in the evolution and maintenance of parasite resistance. J Evol Biol 2021; 34:845-851. [PMID: 33783870 DOI: 10.1111/jeb.13785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 03/22/2021] [Indexed: 01/17/2023]
Abstract
Host-parasite interactions may often be subject to opposing evolutionary forces, which likely influence the evolutionary trajectories of both partners. Natural selection and genetic drift are two major evolutionary forces that act in host and parasite populations. Further, population size is a significant determinant of the relative strengths of these forces. In small populations, drift may undermine the persistence of beneficial alleles, potentially impeding host adaptation to parasites. Here, we investigate two questions: (a) can selection pressure for increased resistance in small, susceptible host populations overcome the effects of drift and (b) can resistance be maintained in small host populations? To answer these questions, we experimentally evolved the host Caenorhabditis elegans against its bacterial parasite, Serratia marcescens, for 13 host generations. We found that strong selection favouring increased host resistance was insufficient to counteract drift in small populations, resulting in persistently high host mortality. Additionally, in small populations of resistant hosts, we found that selection for the maintenance of resistance is not always sufficient to curb the loss of resistance. We compared these results with selection in large host populations. We found that initially resistant, large host populations were able to maintain high levels of resistance. Likewise, initially susceptible, large host populations were able to gain resistance to the parasite. These results show that strong selection pressure for survival is not always sufficient to counteract drift. In consideration of C. elegans natural population dynamics, we suggest that drift may often impede selection in nature.
Collapse
Affiliation(s)
- P Signe White
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Danial Arslan
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA, USA
| | - David Kim
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA, USA
| | - McKenna Penley
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA, USA
| | - Levi Morran
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
33
|
Galimov ER, Gems D. Death happy: adaptive ageing and its evolution by kin selection in organisms with colonial ecology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190730. [PMID: 33678027 DOI: 10.1098/rstb.2019.0730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Standard evolutionary theory, supported by mathematical modelling of outbred, dispersed populations predicts that ageing is not an adaptation. We recently argued that in clonal, viscous populations, programmed organismal death could promote fitness through social benefits and has, in some organisms (e.g. Caenorhabditis elegans), evolved to shorten lifespan. Here, we review previous adaptive death theory, including consumer sacrifice, biomass sacrifice and defensive sacrifice types of altruistic adaptive death. In addition, we discuss possible adaptive death in certain semelparous fish, coevolution of reproductive and adaptive death, and adaptive reproductive senescence in C. elegans. We also describe findings from recent tests for the existence of adaptive death in C. elegans using computer modelling. Such models have provided new insights into how trade-offs between fitness at the individual and colony levels mean that senescent changes can be selected traits. Exploring further the relationship between adaptive death and social interactions, we consider examples where adaptive death results more from action of kin than from self-destructive mechanisms and, to describe this, introduce the term adaptive killing of kin. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Evgeniy R Galimov
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
34
|
Noble LM, Yuen J, Stevens L, Moya N, Persaud R, Moscatelli M, Jackson JL, Zhang G, Chitrakar R, Baugh LR, Braendle C, Andersen EC, Seidel HS, Rockman MV. Selfing is the safest sex for Caenorhabditis tropicalis. eLife 2021; 10:e62587. [PMID: 33427200 PMCID: PMC7853720 DOI: 10.7554/elife.62587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Mating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three Caenorhabditis species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, Caenorhabditis tropicalis is the least genetically diverse and most afflicted by outbreeding depression. We generated a chromosomal-scale genome for C. tropicalis and surveyed global diversity. Population structure is very strong, and islands of extreme divergence punctuate a genomic background that is highly homogeneous around the globe. Outbreeding depression in the laboratory is caused largely by multiple Medea-like elements, genetically consistent with maternal toxin/zygotic antidote systems. Loci with Medea activity harbor novel and duplicated genes, and their activity is modified by mito-nuclear background. Segregating Medea elements dramatically reduce fitness, and simulations show that selfing limits their spread. Frequent selfing in C. tropicalis may therefore be a strategy to avoid Medea-mediated outbreeding depression.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | - John Yuen
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Nicolas Moya
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Riaad Persaud
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Marc Moscatelli
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Jacqueline L Jackson
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | | | - L Ryan Baugh
- Department of Biology, Duke UniversityDurhamUnited States
| | - Christian Braendle
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, InsermNiceFrance
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan UniversityYpsilantiUnited States
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
35
|
Besnard F, Picao-Osorio J, Dubois C, Félix MA. A broad mutational target explains a fast rate of phenotypic evolution. eLife 2020; 9:54928. [PMID: 32851977 PMCID: PMC7556874 DOI: 10.7554/elife.54928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
The rapid evolution of a trait in a clade of organisms can be explained by the sustained action of natural selection or by a high mutational variance, that is the propensity to change under spontaneous mutation. The causes for a high mutational variance are still elusive. In some cases, fast evolution depends on the high mutation rate of one or few loci with short tandem repeats. Here, we report on the fastest evolving cell fate among vulva precursor cells in Caenorhabditis nematodes, that of P3.p. We identify and validate causal mutations underlying P3.p's high mutational variance. We find that these positions do not present any characteristics of a high mutation rate, are scattered across the genome and the corresponding genes belong to distinct biological pathways. Our data indicate that a broad mutational target size is the cause of the high mutational variance and of the corresponding fast phenotypic evolutionary rate. Heritable characteristics or traits of a group of organisms, for example the large brain size of primates or the hooves of a horse, are determined by genes, the environment, and by the interactions between them. Traits can change over time and generations when enough mutations in these genes have spread in a species to result in visible differences. However, some traits, such as the large brain of primates, evolve faster than others, but why this is the case has been unclear. It could be that a few specific genes important for that trait in question mutate at a high rate, or, that many genes affect the trait, creating a lot of variation for natural selection to choose from. Here, Besnard, Picao-Osorio et al. studied the roundworm Caenorhabditis elegans to better understand the causes underlying the different rates of trait evolution. These worms have a short life cycle and evolve quickly over many generations, making them an ideal candidate for studying mutation rates in different traits. Previous studies have shown that one of C. elegans’ six cells of the reproductive system evolves faster than the others. To investigate this further, Besnard, Picao-Osorio et al. analysed the genetic mutations driving change in this cell in 250 worm generations. The results showed that five mutations in five different genes – all responsible for different processes in the cells – were behind the supercharged evolution of this particular cell. This suggests that fast evolution results from natural selection acting upon a collection of genes, rather than one gene, and that many genes and pathways shape this trait. In conclusion, these results demonstrate that how traits are coded at the molecular level, in one gene or many, can influence the rate at which they evolve.
Collapse
Affiliation(s)
- Fabrice Besnard
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France.,Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Joao Picao-Osorio
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| | - Clément Dubois
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| |
Collapse
|
36
|
Abstract
Nictation is a behaviour in which a nematode stands on its tail and waves its head in three dimensions. This activity promotes dispersal of dauer larvae by allowing them to attach to other organisms and travel on them to a new niche. In this review, we describe our understanding of nictation, including its diversity in nematode species, how it is induced by environmental factors, and neurogenetic factors that regulate nictation. We also highlight the known cellular and signalling factors that affect nictation, for example, IL2 neurons, insulin/IGF-1 signalling, TGF-β signalling, FLP neuropeptides and piRNAs. Elucidation of the mechanism of nictation will contribute to increased understanding of the conserved dispersal strategies in animals.
Collapse
Affiliation(s)
- Heeseung Yang
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Bo Yun Lee
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Hyunsoo Yim
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
37
|
Galimov ER, Gems D. Shorter life and reduced fecundity can increase colony fitness in virtual Caenorhabditis elegans. Aging Cell 2020; 19:e13141. [PMID: 32301222 PMCID: PMC7253062 DOI: 10.1111/acel.13141] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 01/23/2023] Open
Abstract
In the nematode Caenorhabditis elegans, loss of function of many genes leads to increases in lifespan, sometimes of a very large magnitude. Could this reflect the occurrence of programmed death that, like apoptosis of cells, promotes fitness? The notion that programmed death evolves as a mechanism to remove worn out, old individuals in order to increase food availability for kin is not supported by classic evolutionary theory for most species. However, it may apply in organisms with colonies of closely related individuals such as C. elegans in which largely clonal populations subsist on spatially limited food patches. Here, we ask whether food competition between nonreproductive adults and their clonal progeny could favor programmed death by using an in silico model of C. elegans. Colony fitness was estimated as yield of dauer larva propagules from a limited food patch. Simulations showed that not only shorter lifespan but also shorter reproductive span and reduced adult feeding rate can increase colony fitness, potentially by reducing futile food consumption. Early adult death was particularly beneficial when adult food consumption rate was high. These results imply that programmed, adaptive death could promote colony fitness in C. elegans through a consumer sacrifice mechanism. Thus, C. elegans lifespan may be limited not by aging in the usual sense but rather by apoptosis-like programmed death.
Collapse
Affiliation(s)
- Evgeniy R. Galimov
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
38
|
Crombie TA, Zdraljevic S, Cook DE, Tanny RE, Brady SC, Wang Y, Evans KS, Hahnel S, Lee D, Rodriguez BC, Zhang G, van der Zwagg J, Kiontke K, Andersen EC. Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. eLife 2019; 8:50465. [PMID: 31793880 PMCID: PMC6927746 DOI: 10.7554/elife.50465] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
Hawaiian isolates of the nematode species Caenorhabditis elegans have long been known to harbor genetic diversity greater than the rest of the worldwide population, but this observation was supported by only a small number of wild strains. To better characterize the niche and genetic diversity of Hawaiian C. elegans and other Caenorhabditis species, we sampled different substrates and niches across the Hawaiian islands. We identified hundreds of new Caenorhabditis strains from known species and a new species, Caenorhabditis oiwi. Hawaiian C. elegans are found in cooler climates at high elevations but are not associated with any specific substrate, as compared to other Caenorhabditis species. Surprisingly, admixture analysis revealed evidence of shared ancestry between some Hawaiian and non-Hawaiian C. elegans strains. We suggest that the deep diversity we observed in Hawaii might represent patterns of ancestral genetic diversity in the C. elegans species before human influence.
Collapse
Affiliation(s)
- Tim A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Shannon C Brady
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Steffen Hahnel
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Briana C Rodriguez
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Joost van der Zwagg
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Karin Kiontke
- Department of Biology, New York University, New York, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
39
|
Beets I, Zhang G, Fenk LA, Chen C, Nelson GM, Félix MA, de Bono M. Natural Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression. Neuron 2019; 105:106-121.e10. [PMID: 31757604 PMCID: PMC6953435 DOI: 10.1016/j.neuron.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/18/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022]
Abstract
The extent to which behavior is shaped by experience varies between individuals. Genetic differences contribute to this variation, but the neural mechanisms are not understood. Here, we dissect natural variation in the behavioral flexibility of two Caenorhabditis elegans wild strains. In one strain, a memory of exposure to 21% O2 suppresses CO2-evoked locomotory arousal; in the other, CO2 evokes arousal regardless of previous O2 experience. We map that variation to a polymorphic dendritic scaffold protein, ARCP-1, expressed in sensory neurons. ARCP-1 binds the Ca2+-dependent phosphodiesterase PDE-1 and co-localizes PDE-1 with molecular sensors for CO2 at dendritic ends. Reducing ARCP-1 or PDE-1 activity promotes CO2 escape by altering neuropeptide expression in the BAG CO2 sensors. Variation in ARCP-1 alters behavioral plasticity in multiple paradigms. Our findings are reminiscent of genetic accommodation, an evolutionary process by which phenotypic flexibility in response to environmental variation is reset by genetic change. Behavioral flexibility varies across Caenorhabditis and C. elegans wild isolates A natural polymorphism in ARCP-1 underpins inter-individual variation in plasticity ARCP-1 is a dendritic scaffold protein localizing cGMP signaling machinery to cilia Disrupting ARCP-1 alters behavioral plasticity by changing neuropeptide expression
Collapse
Affiliation(s)
- Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gaotian Zhang
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris 75005, France
| | - Lorenz A Fenk
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Changchun Chen
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Geoffrey M Nelson
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris 75005, France.
| | - Mario de Bono
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
40
|
Vertical transmission in Caenorhabditis nematodes of RNA molecules encoding a viral RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 2019; 116:24738-24747. [PMID: 31740606 PMCID: PMC6900638 DOI: 10.1073/pnas.1903903116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In organisms composed of a single cell, RNAs of viral origin may be transmitted to daughter cells at cell division without passing through an extracellular virion stage. These RNAs usually encode an RNA-dependent RNA polymerase that enables their replication. For some of these agents, such as Narnaviruses, no capsid protein is expressed, and thus, they are called capsidless viruses. Here, we identify putative capsidless viral RNAs in animals, in nematodes closely related to the model organism Caenorhabditis elegans. We show that these RNAs are transmitted vertically through the host germline. Our work provides evidence that animal cells harbor capsidless viruses. Here, we report on the discovery in Caenorhabditis nematodes of multiple vertically transmitted RNAs coding for putative RNA-dependent RNA polymerases. Their sequences share similarity to distinct RNA viruses, including bunyaviruses, narnaviruses, and sobemoviruses. The sequences are present exclusively as RNA and are not found in DNA form. The RNAs persist in progeny after bleach treatment of adult animals, indicating vertical transmission of the RNAs. We tested one of the infected strains for transmission to an uninfected strain and found that mating of infected animals with uninfected animals resulted in infected progeny. By in situ hybridization, we detected several of these RNAs in the cytoplasm of the male and female germline of the nematode host. The Caenorhabditis hosts were found defective in degrading exogenous double-stranded RNAs, which may explain retention of viral-like RNAs. Strikingly, one strain, QG551, harbored three distinct virus-like RNA elements. Specific patterns of small RNAs complementary to the different viral-like RNAs were observed, suggesting that the different RNAs are differentially recognized by the RNA interference (RNAi) machinery. While vertical transmission of viruses in the family Narnaviridae, which are known as capsidless viruses, has been described in fungi, these observations provide evidence that multicellular animal cells harbor similar viruses.
Collapse
|
41
|
Frézal L, Jung H, Tahan S, Wang D, Félix MA. Noda-Like RNA Viruses Infecting Caenorhabditis Nematodes: Sympatry, Diversity, and Reassortment. J Virol 2019; 93:e01170-19. [PMID: 31434736 PMCID: PMC6803290 DOI: 10.1128/jvi.01170-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
Three RNA viruses related to nodaviruses were previously described to naturally infect the nematode Caenorhabditis elegans and its relative, Caenorhabditis briggsae Here, we report on a collection of more than 50 viral variants from wild-caught Caenorhabditis. We describe the discovery of a new related virus, the Mělník virus, infecting C. briggsae, which similarly infects intestinal cells. In France, a frequent pattern of coinfection of C. briggsae by the Santeuil virus and Le Blanc virus was observed at the level of an individual nematode and even a single cell. We do not find evidence of reassortment between the RNA1 and RNA2 molecules of Santeuil and Le Blanc viruses. However, by studying patterns of evolution of each virus, reassortments of RNA1 and RNA2 among variants of each virus were identified. We develop assays to test the relative infectivity and competitive ability of the viral variants and detect an interaction between host genotype and Santeuil virus genotype, such that the result depends on the host strain.IMPORTANCE The roundworm Caenorhabditis elegans is a laboratory model organism in biology. We study natural populations of this small animal and its relative, C. briggsae, and the viruses that infect them. We previously discovered three RNA viruses related to nodaviruses and here describe a fourth one, called the Mělník virus. These viruses have a genome composed of two RNA molecules. We find that two viruses may infect the same animal and the same cell. The two RNA molecules may be exchanged between variants of a given viral species. We study the diversity of each viral species and devise an assay of their infectivity and competitive ability. Using this assay, we show that the outcome of the competition also depends on the host.
Collapse
Affiliation(s)
- Lise Frézal
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Hyeim Jung
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Stephen Tahan
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Marie-Anne Félix
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
42
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
43
|
White PS, Penley MJ, Tierney ARP, Soper DM, Morran LT. Dauer life stage of Caenorhabditis elegans induces elevated levels of defense against the parasite Serratia marcescens. Sci Rep 2019; 9:11575. [PMID: 31399616 PMCID: PMC6688991 DOI: 10.1038/s41598-019-47969-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/23/2019] [Indexed: 01/17/2023] Open
Abstract
Host-parasite research often focuses on a single host life stage, yet different life stages may exhibit different defenses. The nematode Caenorhabditis elegans has an alternate dispersal life stage, dauer. Despite dauer's importance in nature, we know little of how it responds to parasites. Previous research indicates that non-dauer C. elegans prefer to consume the virulent bacterial parasite, Serratia marcescens, when given a choice between the parasite and benign Escherichia coli. Here, we compared the preferences of dauer individuals from six strains of C. elegans to the preferences of other life stages. We found that dauer individuals exhibited reduced preference for S. marcescens, and dauers from some strains preferred E. coli to S. marcescens. In addition to testing food preference, a mechanism of parasite avoidance, we also measured host mortality rates after direct parasite exposure to determine if life stage also altered host survival. Overall, dauer individuals exhibited reduced mortality rates. However, dauer versus non-dauer larvae mortality rates also varied significantly by host strain. Collectively, we found evidence of dauer-induced parasite avoidance and reduced mortality in the presence of a parasite, but these effects were strain-specific. These results demonstrate the importance of host life stage and genotype when assessing infection dynamics.
Collapse
Affiliation(s)
- P Signe White
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, GA, 30322, USA.
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| | - McKenna J Penley
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Aimee R Paulk Tierney
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, GA, 30322, USA
| | - Deanna M Soper
- Biology Department, University of Dallas, Irving, TX, 75062, USA
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
44
|
Snoek BL, Volkers RJM, Nijveen H, Petersen C, Dirksen P, Sterken MG, Nakad R, Riksen JAG, Rosenstiel P, Stastna JJ, Braeckman BP, Harvey SC, Schulenburg H, Kammenga JE. A multi-parent recombinant inbred line population of C. elegans allows identification of novel QTLs for complex life history traits. BMC Biol 2019; 17:24. [PMID: 30866929 PMCID: PMC6417139 DOI: 10.1186/s12915-019-0642-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/26/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The nematode Caenorhabditis elegans has been extensively used to explore the relationships between complex traits, genotypes, and environments. Complex traits can vary across different genotypes of a species, and the genetic regulators of trait variation can be mapped on the genome using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) derived from genetically and phenotypically divergent parents. Most RILs have been derived from crossing two parents from globally distant locations. However, the genetic diversity between local C. elegans populations can be as diverse as between global populations and could thus provide means of identifying genetic variation associated with complex traits relevant on a broader scale. RESULTS To investigate the effect of local genetic variation on heritable traits, we developed a new RIL population derived from 4 parental wild isolates collected from 2 closely located sites in France: Orsay and Santeuil. We crossed these 4 genetically diverse parental isolates to generate a population of 200 multi-parental RILs and used RNA-seq to obtain sequence polymorphisms identifying almost 9000 SNPs variable between the 4 genotypes with an average spacing of 11 kb, doubling the mapping resolution relative to currently available RIL panels for many loci. The SNPs were used to construct a genetic map to facilitate QTL analysis. We measured life history traits such as lifespan, stress resistance, developmental speed, and population growth in different environments, and found substantial variation for most traits. We detected multiple QTLs for most traits, including novel QTLs not found in previous QTL analysis, including those for lifespan and pathogen responses. This shows that recombining genetic variation across C. elegans populations that are in geographical close proximity provides ample variation for QTL mapping. CONCLUSION Taken together, we show that using more parents than the classical two parental genotypes to construct a RIL population facilitates the detection of QTLs and that the use of wild isolates facilitates the detection of QTLs. The use of multi-parent RIL populations can further enhance our understanding of local adaptation and life history trade-offs.
Collapse
Affiliation(s)
- Basten L Snoek
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands. .,Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Rita J M Volkers
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Carola Petersen
- Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Philipp Dirksen
- Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Rania Nakad
- Zoological Institute, University of Kiel, 24098, Kiel, Germany
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, 24098, Kiel, Germany
| | - Jana J Stastna
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Bart P Braeckman
- Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Simon C Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Hinrich Schulenburg
- Zoological Institute, University of Kiel, 24098, Kiel, Germany. .,Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
45
|
McGrath PT, Ruvinsky I. A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. ACTA ACUST UNITED AC 2018; 13:23-30. [PMID: 30984890 DOI: 10.1016/j.coisb.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Individuals communicate information about their age, sex, social status, and recent life history with other members of their species through the release of pheromones, chemical signals that elicit behavioral or physiological changes in the recipients. Pheromones provide a fascinating example of information exchange: animals have evolved intraspecific languages in the presence of eavesdroppers and cheaters. In this review, we discuss the recent work using the nematode C. elegans to decipher its chemical language through the analysis of ascaroside pheromones. Genetic dissection has started to identify the enzymes that produce pheromones and the neural circuits that process these signals. Ecological experiments have characterized the biotic environment of C. elegans and its relatives, including ecological relationships with a variety of species that sense or release similar blends of ascarosides. Systems biology approaches should be fruitful in understanding the organization and function of communication systems in C. elegans.
Collapse
Affiliation(s)
- Patrick T McGrath
- Department of Biological Sciences, Department of Physics; Georgia Institute of Technology, Atlanta, GA 30332.
| | - Ilya Ruvinsky
- Department of Molecular Biosciences; Northwestern University, Evanston, IL 60208.
| |
Collapse
|
46
|
Frézal L, Demoinet E, Braendle C, Miska E, Félix MA. Natural Genetic Variation in a Multigenerational Phenotype in C. elegans. Curr Biol 2018; 28:2588-2596.e8. [PMID: 30078564 PMCID: PMC6984962 DOI: 10.1016/j.cub.2018.05.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
Although heredity mostly relies on the transmission of DNA sequence, additional molecular and cellular features are heritable across several generations. In the nematode Caenorhabditis elegans, insights into such unconventional inheritance result from two lines of work. First, the mortal germline (Mrt) phenotype was defined as a multigenerational phenotype whereby a selfing lineage becomes sterile after several generations, implying multigenerational memory [1, 2]. Second, certain RNAi effects are heritable over several generations in the absence of the initial trigger [3-5]. Both lines of work converged when the subset of Mrt mutants that are heat sensitive were found to closely correspond to mutants defective in the RNAi-inheritance machinery, including histone modifiers [6-9]. Here, we report the surprising finding that several C. elegans wild isolates display a heat-sensitive mortal germline phenotype in laboratory conditions: upon chronic exposure to higher temperatures, such as 25°C, lines reproducibly become sterile after several generations. This phenomenon is reversible, as it can be suppressed by temperature alternations at each generation, suggesting a non-genetic basis for the sterility. We tested whether natural variation in the temperature-induced Mrt phenotype was of genetic nature by building recombinant inbred lines between the isolates MY10 (Mrt) and JU1395 (non-Mrt). Using bulk segregant analysis, we detected two quantitative trait loci. After further recombinant mapping and genome editing, we identified the major causal locus as a polymorphism in the set-24 gene, encoding a SET- and SPK-domain protein. We conclude that C. elegans natural populations may harbor natural genetic variation in epigenetic inheritance phenomena.
Collapse
Affiliation(s)
- Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France; Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | | - Eric Miska
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK.
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France.
| |
Collapse
|
47
|
Pristionchus nematodes occur frequently in diverse rotting vegetal substrates and are not exclusively necromenic, while Panagrellus redivivoides is found specifically in rotting fruits. PLoS One 2018; 13:e0200851. [PMID: 30074986 PMCID: PMC6075748 DOI: 10.1371/journal.pone.0200851] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/05/2018] [Indexed: 01/31/2023] Open
Abstract
The lifestyle and feeding habits of nematodes are highly diverse. Several species of Pristionchus (Nematoda: Diplogastridae), including Pristionchus pacificus, have been reported to be necromenic, i.e. to associate with beetles in their dauer diapause stage and wait until the death of their host to resume development and feed on microbes in the decomposing beetle corpse. We review the literature and suggest that the association of Pristionchus to beetles may be phoretic and not necessarily necromenic. The view that Pristionchus nematodes have a necromenic lifestyle is based on studies that have sought Pristionchus only by sampling live beetles. By surveying for nematode genera in different types of rotting vegetal matter, we found Pristionchus spp. at a similar high frequency as Caenorhabditis, often in large numbers and in feeding stages. Thus, these Pristionchus species may feed in decomposing vegetal matter. In addition, we report that one species of Panagrellus (Nematoda: Panagrolaimidae), Panagrellus redivivoides, is found in rotting fruits but not in rotting stems, with a likely association with Drosophila fruitflies. Based on our sampling and the observed distribution of feeding and dauer stages, we propose a life cycle for Pristionchus nematodes and Panagrellus redivivoides that is similar to that of C. elegans, whereby they feed on the microbial blooms on decomposing vegetal matter and are transported between food patches by coleopterans for Pristionchus spp., fruitflies for Panagrellus redivivoides and isopods and terrestrial molluscs for C. elegans.
Collapse
|
48
|
GIBSON AMANDAK, MORRAN LEVIT. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites. J Nematol 2018. [DOI: 10.21307/jofnem-2017-083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|